Ejemplo n.º 1
0
z1 = persalys.Output('z1', '')
z2 = persalys.Output('z2', 'fake output')
inputs = [z0, v0, m, c]
outputs = [z1, z2]

# mesh model
meshModel = persalys.GridMeshModel(ot.Interval(0., 12.), [20])

# Python model
code = 'from math import exp\n\ndef _exec(z0,v0,m,c):\n    g = 9.81\n    zmin = 0.\n    tau = m / c\n    vinf = -m * g / c\n\n    # mesh nodes\n    t = getMesh().getVertices()\n\n    z = [max(z0 + vinf * t_i[0] + tau * (v0 - vinf) * (1 - exp(-t_i[0] / tau)), zmin) for t_i in t]\n    z2 = [2*max(z0 + vinf * t_i[0] + tau * (v0 - vinf) * (1 - exp(-t_i[0] / tau)), zmin) for t_i in t]\n\n    return z, z2'
PhysicalModel_1 = persalys.PythonFieldModel('PhysicalModel_1', meshModel, inputs, outputs, code)
Study_0.add(PhysicalModel_1)

# central tendency
mcAnalysis1 = persalys.FieldMonteCarloAnalysis("mcAnalysis", PhysicalModel_1)
mcAnalysis1.setMaximumCalls(10)
mcAnalysis1.setMaximumElapsedTime(1000)
mcAnalysis1.setBlockSize(5)
mcAnalysis1.setSeed(2)
mcAnalysis1.setInterestVariables(['z'])
mcAnalysis1.setKarhunenLoeveThreshold(2e-5)
Study_0.add(mcAnalysis1)

# evaluation
evaluation1 = persalys.FieldModelEvaluation("evaluation", PhysicalModel_1)
evaluation1.setInterestVariables(['z'])
Study_0.add(evaluation1)



z1 = persalys.Output('z1', '')
z2 = persalys.Output('z2', 'fake output')
inputs = [z0, v0, m, c]
outputs = [z1, z2]

# mesh model
meshModel = persalys.GridMeshModel(ot.Interval(0., 12.), [20])

# Python model
code = 'from math import exp\n\ndef _exec(z0,v0,m,c):\n    g = 9.81\n    zmin = 0.\n    tau = m / c\n    vinf = -m * g / c\n\n    # mesh nodes\n    t = getMesh().getVertices()\n\n    z = [max(z0 + vinf * t_i[0] + tau * (v0 - vinf) * (1 - exp(-t_i[0] / tau)), zmin) for t_i in t]\n    z2 = [2*max(z0 + vinf * t_i[0] + tau * (v0 - vinf) * (1 - exp(-t_i[0] / tau)), zmin) for t_i in t]\n\n    return z, z2'
PhysicalModel_1 = persalys.PythonFieldModel('PhysicalModel_1', meshModel,
                                            inputs, outputs, code)
Study_0.add(PhysicalModel_1)

# evaluation
analysis1 = persalys.FieldModelEvaluation("analysis1", PhysicalModel_1)
Study_0.add(analysis1)
print(analysis1)

analysis1.run()
result1 = analysis1.getProcessSample()
print("result=", result1)

analysis2 = persalys.FieldModelEvaluation("analysis2", PhysicalModel_1,
                                          [100, 55, 81, 17])
analysis2.setInterestVariables(['z2'])
Study_0.add(analysis2)
print(analysis2)

analysis2.run()
result2 = analysis2.getProcessSample()