Ejemplo n.º 1
0
def test_time_arrays() -> None:
    t = dca.get_time()
    assert is_monotonic_increasing(t)

    int_t = dca.get_time_monthly_vol()

    thm = dca.THM(1000, 0.5, 2.0, 1.0, 30.0)
Ejemplo n.º 2
0
def check_transient_model_rate_cum(model: dca.THM) -> bool:
    # these are computationally expensive, so check separately
    t = dca.get_time()

    with warnings.catch_warnings(record=True) as w:
        t_N = model.transient_cum(t)
        assert is_float_array_like(t_N, t)
        # assert is_monotonic_nondecreasing(t_N)
        assert np.all(np.isfinite(t_N))

        t_q = model.transient_rate(t)
        assert is_float_array_like(t_q, t)
        # assert is_monotonic_nonincreasing(t_q)
        assert np.all(np.isfinite(t_q))

    return True
Ejemplo n.º 3
0
def test_nulls() -> None:
    t = dca.get_time()
    primary = dca.NullPrimaryPhase()
    assert np.allclose(primary.rate(t), 0.0)
    assert np.allclose(primary.cum(t), 0.0)
    assert np.allclose(primary.D(t), 0.0)
    assert np.allclose(primary.beta(t), 0.0)
    assert np.allclose(primary.b(t), 0.0)
    assert np.allclose(primary._Dfn2(t), 0.0)

    secondary = dca.NullAssociatedPhase()
    assert np.allclose(secondary.gor(t), 0.0)
    assert np.allclose(secondary.cgr(t), 0.0)
    assert np.allclose(secondary.wor(t), 0.0)
    assert np.allclose(secondary.rate(t), 0.0)
    assert np.allclose(secondary.cum(t), 0.0)
    assert np.allclose(secondary.D(t), 0.0)
    assert np.allclose(secondary.beta(t), 0.0)
    assert np.allclose(secondary.b(t), 0.0)
    assert np.allclose(secondary._Dfn2(t), 0.0)
Ejemplo n.º 4
0
def check_transient_model(model: dca.THM) -> bool:
    t = dca.get_time()

    with warnings.catch_warnings(record=True) as w:
        t_D = model.transient_D(t)
        assert is_float_array_like(t_D, t)
        # assert is_monotonic_nonincreasing(t_D)
        assert np.all(np.isfinite(t_D))

        t_beta = model.transient_beta(t)
        assert is_float_array_like(t_beta, t)
        # assert is_monotonic_nonincreasing(t_beta)
        assert np.all(np.isfinite(t_beta))

        t_b = model.transient_b(t)
        assert is_float_array_like(t_b, t)
        # assert is_monotonic_nonincreasing(t_b)
        assert np.all(np.isfinite(t_b))

    return True
Ejemplo n.º 5
0
def check_model(model: dca.DeclineCurve, qi: float) -> bool:
    t = dca.get_time()

    with warnings.catch_warnings(record=True) as w:
        if isinstance(model, dca.Duong):
            t0 = 1e-3
            assert np.isclose(model.rate(np.array(1.0)), qi, atol=1e-10)
            assert np.isclose(model.cum(np.array(1.0)),
                              qi / model.a,
                              atol=1e-10)
        else:
            t0 = 0.0
            assert np.isclose(model.rate(np.array(0.0)), qi, atol=1e-10)
            assert np.isclose(model.cum(np.array(0.0)), 0.0, atol=1e-10)

        rate = model.rate(t)
        assert is_float_array_like(rate, t)
        # assert is_monotonic_nonincreasing(rate)
        assert np.all(np.isfinite(rate))

        cum = model.cum(t)
        assert is_float_array_like(cum, t)
        # if not isinstance(model, dca.PLE):
        # exclude PLE as it is numerically integrated
        # assert is_monotonic_nondecreasing(cum)
        assert np.all(np.isfinite(cum))

        mvolume = model.monthly_vol(t)
        mavg_rate = np.gradient(mvolume, t)
        # assert is_float_array_like(mvolume, t)
        # assert is_monotonic_nonincreasing(mavg_rate)
        assert np.all(np.isfinite(mvolume))
        assert np.all(np.isfinite(mavg_rate))

        ivolume = model.interval_vol(t)
        iavg_rate = np.gradient(ivolume, t)
        # assert is_float_array_like(ivolume, t)
        # assert is_monotonic_nonincreasing(iavg_rate)
        assert np.all(np.isfinite(ivolume))
        assert np.all(np.isfinite(iavg_rate))

        evolume = model.monthly_vol_equiv(t)
        mavg_rate = np.gradient(evolume, t)
        # assert is_float_array_like(evolume, t)
        # assert is_monotonic_nonincreasing(mavg_rate)
        assert np.all(np.isfinite(evolume))
        assert np.all(np.isfinite(mavg_rate))

        D = model.D(t)
        assert is_float_array_like(D, t)
        # assert is_monotonic_nonincreasing(D)
        assert np.all(np.isfinite(D))

        D2 = model._Dfn2(t)
        assert is_float_array_like(D2, t)
        # assert is_monotonic_nonincreasing(D2)
        assert np.all(np.isfinite(D2))

        beta = model.beta(t)
        assert is_float_array_like(beta, t)
        # TODO: what are the invariants for beta?
        D_inferred = beta / t
        # assert is_monotonic_nonincreasing(D_inferred)
        assert np.all(np.isfinite(beta))

        b = model.b(t)
        assert is_float_array_like(b, t)
        assert np.all(np.isfinite(b))

    return True
Ejemplo n.º 6
0
def check_yield_model(model: Union[dca.SecondaryPhase, dca.WaterPhase],
                      phase: str, qi: float) -> bool:
    t = dca.get_time()

    with warnings.catch_warnings(record=True) as w:
        t0 = 0.0
        assert np.isclose(model.cum(np.array(0.0)), 0.0, atol=1e-10)

        if phase == 'secondary' and isinstance(model, dca.SecondaryPhase):
            gor = model.gor(t)
            assert is_float_array_like(gor, t)
            assert np.all(np.isfinite(gor))

            cgr = model.cgr(t)
            assert is_float_array_like(cgr, t)
            assert np.all(np.isfinite(cgr))

            with pytest.raises(ValueError) as e:
                wor = model.wor(t)  # type: ignore
                assert is_float_array_like(wor, t)
                assert np.all(np.isfinite(wor))

        elif phase == 'water' and isinstance(model, dca.WaterPhase):
            with pytest.raises(ValueError) as e:
                gor = model.gor(t)  # type: ignore
                assert is_float_array_like(gor, t)
                assert np.all(np.isfinite(gor))

                cgr = model.cgr(t)  # type: ignore
                assert is_float_array_like(cgr, t)
                assert np.all(np.isfinite(cgr))

            wor = model.wor(t)
            assert is_float_array_like(wor, t)
            assert np.all(np.isfinite(wor))

        rate = model.rate(t)
        assert is_float_array_like(rate, t)
        # assert is_monotonic_nonincreasing(rate)
        assert np.all(np.isfinite(rate))

        cum = model.cum(t)
        assert is_float_array_like(cum, t)
        # if not isinstance(model, dca.PLE):
        # exclude PLE as it is numerically integrated
        # assert is_monotonic_nondecreasing(cum)
        assert np.all(np.isfinite(cum))

        mvolume = model.monthly_vol(t)
        mavg_rate = np.gradient(mvolume, t)
        # assert is_float_array_like(mvolume, t)
        # assert is_monotonic_nonincreasing(mavg_rate)
        assert np.all(np.isfinite(mvolume))
        assert np.all(np.isfinite(mavg_rate))

        ivolume = model.interval_vol(t, t0=t0)
        iavg_rate = np.gradient(ivolume, t)
        # assert is_float_array_like(ivolume, t)
        # assert is_monotonic_nonincreasing(iavg_rate)
        assert np.all(np.isfinite(ivolume))
        assert np.all(np.isfinite(iavg_rate))

        evolume = model.monthly_vol_equiv(t)
        mavg_rate = np.gradient(evolume, t)
        # assert is_float_array_like(evolume, t)
        # assert is_monotonic_nonincreasing(mavg_rate)
        assert np.all(np.isfinite(evolume))
        assert np.all(np.isfinite(mavg_rate))

        D = model.D(t)
        assert is_float_array_like(D, t)
        # assert is_monotonic_nonincreasing(D)
        # assert np.all(np.isfinite(D))

        D2 = model._Dfn2(t)
        assert is_float_array_like(D2, t)
        # assert is_monotonic_nonincreasing(D2)
        # assert np.all(np.isfinite(D2))

        beta = model.beta(t)
        assert is_float_array_like(beta, t)
        # TODO: what are the invariants for beta?
        # D_inferred = beta / t
        # assert is_monotonic_nonincreasing(D_inferred)
        # assert np.all(np.isfinite(beta))

        b = model.b(t)
        assert is_float_array_like(b, t)
        assert np.all(np.isfinite(b))

        # der = model._derfn(np.array([0.0]))
        # NN = model._NNfn(np.array([0.0]))

    return True
Ejemplo n.º 7
0
from petbox import dca

#
ftime = dca.get_time()

#
thm = dca.THM(qi=750, Di=.8, bi=2, bf=.5, telf=28)
q_trans = thm.transient_rate(ftime)
N_trans = thm.transient_cum(ftime)
D_trans = thm.transient_D(ftime)
b_trans = thm.transient_b(ftime)
beta_trans = thm.transient_beta(ftime)

#
q_thm = thm.rate(ftime)
N_thm = thm.cum(ftime)
D_thm = thm.D(ftime)
b_thm = thm.b(ftime)
beta_thm = thm.beta(ftime)

#
mh = dca.MH(qi=725, Di=0.85, bi=0.6, Dterm=0.2)
q_mh = mh.rate(ftime)
N_mh = mh.cum(ftime)
N_mh = mh.monthly_vol(ftime)
N_mh = mh.interval_vol(ftime)
D_mh = mh.D(ftime)
b_mh = mh.b(ftime)
beta_mh = mh.beta(ftime)

#