Ejemplo n.º 1
0
    def seed(self,
             seed_pose: Pose,
             pos_std_dev: float = 1.,
             heading_std_dev: float = 0.3) -> None:
        """
        Reinitialise particles around given seed pose
        Particles are initialised with standard deviations around
        position and heading as specified
        """

        # log seed in ground truth portion of input log
        if self.log_inputs:
            self.input_log.append((None, None, seed_pose))

        # if particle filter is not intialised, init it
        if self._pfilter is None:
            self._pfilter_init()
        self._pfilter.particles = independent_sample([
            norm(loc=seed_pose.x, scale=pos_std_dev).rvs,
            norm(loc=seed_pose.y, scale=pos_std_dev).rvs,
            norm(loc=seed_pose.heading, scale=heading_std_dev).rvs,
            norm(loc=0, scale=0).rvs,
        ])(self._n_particles)
Ejemplo n.º 2
0
    def initialize(self, initial_position):
        # Prior sampling function for each of the state variables
        # Centered around initial position estimate
        self.prior_fn = independent_sample([
            norm(loc=initial_position[0], scale=2).rvs,
            norm(loc=initial_position[1], scale=2).rvs,
            uniform(loc=initial_position[2], scale=np.pi / 2).rvs
        ])

        self.pf_lock.acquire()

        self.pf = ParticleFilter(
            n_particles=self.n,
            prior_fn=self.prior_fn,
            observe_fn=self.observation_function,
            weight_fn=self.weight_function,
            dynamics_fn=self.dynamics_function,
            noise_fn=lambda x: gaussian_noise(x, sigmas=[0.08, 0.08, 0.08]))

        self.pf.update()
        rospy.loginfo("Finished initial pf update")

        self.pf_lock.release()
        rospy.loginfo("Released initial lock")
Ejemplo n.º 3
0
    for row in data:
        preds.append(row)
        preds[rownum] = [float(i) for i in preds[rownum]]
        rownum += 1

nppreds = np.asarray(preds)
nplabel = np.asarray(labels)

# ------------- Particle filter setup -------------
#
columns = ["x", "y", "z", "dx", "dy", "dz"]
prior_fn = independent_sample([
    # Location
    norm(loc=nppreds[0, 0], scale=20).rvs,
    norm(loc=nppreds[0, 1], scale=20).rvs,
    norm(loc=nppreds[0, 2], scale=20).rvs,
    # Speed
    norm(loc=0, scale=0.5).rvs,
    norm(loc=0, scale=0.5).rvs,
    norm(loc=0, scale=0.5).rvs,
])


def ob_fn(x):
    # observation function
    y = np.zeros((x.shape[0], 3))
    for i, particle in enumerate(x):
        y[i, 0] = norm(loc=particle[0], scale=2).rvs(1)
        y[i, 1] = norm(loc=particle[1], scale=2).rvs(1)
        y[i, 2] = norm(loc=particle[2], scale=2).rvs(1)
    return y
Ejemplo n.º 4
0
    return y


#%%

# names (this is just for reference for the moment!)
columns = ["x", "y", "radius", "dx", "dy"]


# prior sampling function for each variable
# (assumes x and y are coordinates in the range 0-img_size)
prior_fn = independent_sample(
    [
        norm(loc=img_size / 2, scale=img_size / 2).rvs,
        norm(loc=img_size / 2, scale=img_size / 2).rvs,
        gamma(a=1, loc=0, scale=10).rvs,
        norm(loc=0, scale=0.5).rvs,
        norm(loc=0, scale=0.5).rvs,
    ]
)

# very simple linear dynamics: x += dx
def velocity(x):
    dt = 1.0
    xp = (
        x
        @ np.array(
            [
                [1, 0, 0, dt, 0],
                [0, 1, 0, 0, dt],
                [0, 0, 1, 0, 0],