def setup(self): self.wasd = pg.WASD(self, speed=8) self.wasd.look_at((-10, 0, 0), (0, 0, 0)) # cuboids self.context = pg.Context(pg.DirectionalLightProgram()) self.context.use_color = True self.context.ambient_color = (0.5, 0.5, 0.5) self.context.light_color = (0.5, 0.5, 0.5) self.context.light_direction = pg.normalize((-1, 1, 1)) data = [] n = 16 for x in range(256): z = random.randint(-n, n) y = random.randint(-n, n) cuboid = pg.Cuboid(x, x + 1, y - 0.5, y + 0.5, z - 0.5, z + 0.5) color = pg.hex_color(random.randint(0, 0xffffff)) colors = [color] * len(cuboid.positions) data.extend(pg.interleave( cuboid.positions, cuboid.normals, colors)) self.context.position, self.context.normal, self.context.color = ( pg.VertexBuffer(data).slices(3, 3, 3)) # bullets self.bullet = pg.Context(pg.DirectionalLightProgram()) self.bullet.ambient_color = (0.5, 0.5, 0.5) self.bullet.light_color = (0.5, 0.5, 0.5) sphere = pg.Sphere(3, 0.05, (0, 0, 0)) self.bullet.position = pg.VertexBuffer(sphere.positions) self.bullet.normal = pg.VertexBuffer(sphere.normals) self.bullets = [] # crosshairs self.crosshairs = pg.Context(pg.SolidColorProgram()) self.crosshairs.position = pg.VertexBuffer(pg.Crosshairs().positions)
def setup(self): self.wasd = pg.WASD(self, speed=3) self.wasd.look_at((-5, 4, 5), (0, 0, 0)) self.context = pg.Context(pg.DirectionalLightProgram()) data = [] points = pg.poisson_disc(-4, -4, 4, 4, 1, 32) for x, z in points: noise = pg.simplex2(10 + x * 0.25, 10 + z * 0.25, 4) y = (noise + 1) / 1 shape = pg.Cone((x, 0, z), (x, y, z), 0.4, 36) data.extend(pg.interleave(shape.positions, shape.normals)) shape = pg.Sphere(3, 0.3, (x, y, z)) data.extend(pg.interleave(shape.positions, shape.normals)) self.context.position, self.context.normal = ( pg.VertexBuffer(data).slices(3, 3)) self.plane = pg.Context(pg.DirectionalLightProgram()) self.plane.object_color = (1, 1, 1) shape = pg.Plane((0, -0.1, 0), (0, 1, 0), 5) data = pg.interleave(shape.positions, shape.normals) self.plane.position, self.plane.normal = (pg.VertexBuffer(data).slices( 3, 3)) self.axes = pg.Context(pg.SolidColorProgram()) self.axes.color = (0.3, 0.3, 0.3) self.axes.position = pg.VertexBuffer(pg.Axes(100).positions)
def setup(self): self.wasd = pg.WASD(self, speed=3) self.wasd.look_at((-5, 4, 5), (0, 0, 0)) self.context = pg.Context(pg.DirectionalLightProgram()) data = [] points = pg.poisson_disc(-4, -4, 4, 4, 1, 32) for x, z in points: noise = pg.simplex2(10 + x * 0.25, 10 + z * 0.25, 4) y = (noise + 1) / 1 shape = pg.Cone((x, 0, z), (x, y, z), 0.4, 36) data.extend(pg.interleave(shape.positions, shape.normals)) shape = pg.Sphere(3, 0.3, (x, y, z)) data.extend(pg.interleave(shape.positions, shape.normals)) self.context.position, self.context.normal = ( pg.VertexBuffer(data).slices(3, 3)) self.plane = pg.Context(pg.DirectionalLightProgram()) self.plane.object_color = (1, 1, 1) shape = pg.Plane((0, -0.1, 0), (0, 1, 0), 5) data = pg.interleave(shape.positions, shape.normals) self.plane.position, self.plane.normal = ( pg.VertexBuffer(data).slices(3, 3)) self.axes = pg.Context(pg.SolidColorProgram()) self.axes.color = (0.3, 0.3, 0.3) self.axes.position = pg.VertexBuffer(pg.Axes(100).positions)
def setup(self): self.wasd = pg.WASD(self, speed=30) self.wasd.look_at((-20, 20, -8), (0, 0, 0)) self.context = pg.Context(pg.DirectionalLightProgram()) self.context.use_color = True self.context.specular_power = 8.0 self.context.specular_multiplier = 0.3 normals = defaultdict(list) position = [] normal = [] color = [] size = 50 # generate height map height = {} colors = {} for x in xrange(-size, size + 1): for z in xrange(-size, size + 1): height[(x, z)] = noise(x, z) colors[(x, z)] = generate_color(x, z) # generate triangles and track normals for all vertices for x in xrange(-size, size): for z in xrange(-size, size): t1 = [x + 0, z + 0, x + 1, z + 0, x + 0, z + 1] t2 = [x + 0, z + 1, x + 1, z + 0, x + 1, z + 1] for t in [t1, t2]: x1, z1, x2, z2, x3, z3 = t p1 = (x1, height[(x1, z1)], z1) p2 = (x2, height[(x2, z2)], z2) p3 = (x3, height[(x3, z3)], z3) c1 = colors[(x1, z1)] c2 = colors[(x2, z2)] c3 = colors[(x3, z3)] position.extend([p3, p2, p1]) color.extend([c3, c2, c1]) n = pg.normalize(pg.cross(pg.sub(p3, p1), pg.sub(p2, p1))) normals[(x1, z1)].append(n) normals[(x2, z2)].append(n) normals[(x3, z3)].append(n) # compute average normal for all vertices for key, value in normals.items(): normals[key] = pg.normalize(reduce(pg.add, value)) for x, y, z in position: normal.append(normals[(x, z)]) # generate vertex buffer vb = pg.VertexBuffer(pg.interleave(position, normal, color)) self.context.position, self.context.normal, self.context.color = ( vb.slices(3, 3, 3))