Ejemplo n.º 1
0
 def test_score_titanic(self):
     scorer = BicScore(self.titanic_data2)
     titanic = BayesianModel([("Sex", "Survived"), ("Pclass", "Survived")])
     self.assertAlmostEqual(scorer.score(titanic), -1896.7250012840179)
     titanic2 = BayesianModel([("Pclass", "Sex")])
     titanic2.add_nodes_from(["Sex", "Survived", "Pclass"])
     self.assertLess(scorer.score(titanic2), scorer.score(titanic))
Ejemplo n.º 2
0
def model_change(dag, data):
    bay_model = []
    data = pd.DataFrame(data)
    print(data)
    for i in range(len(dag)):
        for j in range(np.size(data, 1)):
            if dag[i][j] != 0:
                bay_model.append((str(i), str(j)))
    best_model = BayesianModel(bay_model)
    bic = BicScore(data)
    return bic.score(best_model)
Ejemplo n.º 3
0
#nodes=['A','S',	'T','L'	,'B',	'E',	'X',	'D']
nodes = ['Pollution', 'Smoker', 'Cancer', 'Xray', 'Dyspnoea']
nao_dag = []
bic_score = BicScore(data)
ind_size = round((len(nodes) * len(nodes) - len(nodes)) / 2)
gen_max = 50
gen = 0
melhor_fit = []
#populacao inicial
while len(ind) < pop_size:
    aux = [random.randint(min_valor, max_valor) for i in range(ind_size)]
    if aux not in nao_dag:
        G = vetor_Rede(aux, nodes)
        if G:
            ind.append(aux)
            fitness.append(abs(bic_score.score(G)))
        else:
            nao_dag.append(aux)
while gen < gen_max:
    print(gen)
    filhos = []
    filhos_fitness = []
    while len(filhos) < pop_size:
        [fitness_sel1, ind_sel1] = torneio(fitness, ind)
        [fitness_sel2, ind_sel2] = torneio(fitness, ind)
        r = random.random()
        if r <= p_cruzamento:
            [filho1, filho2] = cruzamento_binario(ind_sel1, ind_sel2, ind_size)
            if filho1 not in nao_dag:
                G = vetor_Rede(filho1, nodes)
                if G: