Ejemplo n.º 1
0
    def test_save_feature_importances(self):
        test_pipe = InnerFoldManager(self.pipe.copy_me, self.config,
                                     self.optimization, self.cross_validation,
                                     self.outer_fold_id)

        # we expect the feature importances to be of length 5 because the input is through the PCA reduced to 5 dimensions
        output_config = test_pipe.fit(self.X, self.y)
        for inner_fold in output_config.inner_folds:
            self.assertEqual(len(inner_fold.feature_importances[0]), 5)
Ejemplo n.º 2
0
    def test_fit_against_sklearn(self):
        test_pipe = InnerFoldManager(
            self.pipe.copy_me,
            self.config,
            self.optimization,
            self.cross_validation,
            self.outer_fold_id,
        )

        photon_results_config_item = test_pipe.fit(self.X, self.y)
        self.assertIsNotNone(photon_results_config_item.computation_start_time)
        self.assertIsNotNone(photon_results_config_item.computation_end_time)

        # now sklearn.
        sklearn_pipe = Pipeline([
            ("StandardScaler", StandardScaler()),
            ("PCA", PCA()),
            ("RidgeClassifier", RidgeClassifier()),
        ])
        sklearn_pipe.set_params(**self.config)
        for fold_obj in self.cross_validation.inner_folds[
                self.outer_fold_id].values():
            train_X, test_X = (
                self.X[fold_obj.train_indices],
                self.X[fold_obj.test_indices],
            )
            train_y, test_y = (
                self.y[fold_obj.train_indices],
                self.y[fold_obj.test_indices],
            )

            sklearn_pipe.fit(train_X, train_y)
            sklearn_predictions = sklearn_pipe.predict(test_X)
            sklearn_feature_importances = sklearn_pipe.named_steps[
                "RidgeClassifier"].coef_

            photon_test_results = photon_results_config_item.inner_folds[
                fold_obj.fold_nr - 1].validation

            self.assertTrue(
                np.array_equal(sklearn_predictions,
                               photon_test_results.y_pred))

            for fi, sklearn_feature_importance_score in enumerate(
                    sklearn_feature_importances[0]):
                self.assertAlmostEqual(
                    sklearn_feature_importance_score,
                    photon_results_config_item.inner_folds[
                        fold_obj.fold_nr - 1].feature_importances[0][fi],
                )

            accuracy = accuracy_score(test_y, sklearn_predictions)
            self.assertEqual(photon_test_results.metrics["accuracy"], accuracy)

            recall = recall_score(test_y, sklearn_predictions)
            self.assertEqual(photon_test_results.metrics["recall"], recall)
Ejemplo n.º 3
0
    def _fit_dummy(self):
        if self.dummy_estimator is not None:
            logger.info("Running Dummy Estimator...")
            try:
                if isinstance(self._validation_X, np.ndarray):
                    if len(self._validation_X.shape) > 2:
                        logger.info(
                            "Skipping dummy estimator because of too many dimensions"
                        )
                        self.result_object.dummy_results = None
                        return
                dummy_y = np.reshape(self._validation_y, (-1, 1))
                self.dummy_estimator.fit(dummy_y, self._validation_y)
                train_scores = InnerFoldManager.score(
                    self.dummy_estimator,
                    self._validation_X,
                    self._validation_y,
                    metrics=self.optimization_info.metrics,
                )

                # fill result tree with fold information
                inner_fold = MDBInnerFold()
                inner_fold.training = train_scores

                if self.cross_validaton_info.eval_final_performance:
                    test_scores = InnerFoldManager.score(
                        self.dummy_estimator,
                        self._test_X,
                        self._test_y,
                        metrics=self.optimization_info.metrics,
                    )
                    print_metrics("DUMMY", test_scores.metrics)
                    inner_fold.validation = test_scores

                self.result_object.dummy_results = inner_fold

                # performaceConstraints: DummyEstimator
                if self.constraint_objects is not None:
                    dummy_constraint_objs = [
                        opt
                        for opt in self.constraint_objects
                        if isinstance(opt, DummyPerformance)
                    ]
                    if dummy_constraint_objs:
                        for dummy_constraint_obj in dummy_constraint_objs:
                            dummy_constraint_obj.set_dummy_performance(
                                self.result_object.dummy_results
                            )

                return inner_fold
            except Exception as e:
                logger.error(e)
                logger.info("Skipping dummy because of error..")
                return None
        else:
            logger.info("Skipping dummy ..")
Ejemplo n.º 4
0
    def test_save_predictions(self):

        # assert that we have the predictions stored
        test_pipe = InnerFoldManager(self.pipe.copy_me, self.config,
                                     self.optimization, self.cross_validation,
                                     self.outer_fold_id)

        # in case we want to have metrics calculated across false, we need to temporarily store the predictions
        test_pipe.optimization_infos.calculate_metrics_across_folds = True
        config_item = test_pipe.fit(self.X, self.y)

        for inner_fold in config_item.inner_folds:
            self.assertEqual(len(inner_fold.training.y_pred),
                             inner_fold.number_samples_training)
            self.assertEqual(len(inner_fold.validation.y_pred),
                             inner_fold.number_samples_validation)
Ejemplo n.º 5
0
    def test_performance_constraints(self):
        # test if the constraints are considered
        # A: for a single constraint
        test_pipe = InnerFoldManager(
            self.pipe.copy_me,
            self.config,
            self.optimization,
            self.cross_validation,
            self.outer_fold_id,
            optimization_constraints=MinimumPerformance(
                "accuracy", 0.95, "first"),
        )

        photon_results_config_item = test_pipe.fit(self.X, self.y)
        # the first fold has an accuracy of 0.874 so we expect the test_pipe to stop calculating after the first fold
        # which means it has only one outer fold and
        self.assertTrue(len(photon_results_config_item.inner_folds) == 1)

        # B: for a list of constraints, accuracy should pass (0.874 in first fold > accuracy threshold)
        # but specificity should stop the computation (0.78 in first fold < specificity threshold)
        test_pipe = InnerFoldManager(
            self.pipe.copy_me,
            self.config,
            self.optimization,
            self.cross_validation,
            self.outer_fold_id,
            optimization_constraints=[
                MinimumPerformance("accuracy", 0.85, "first"),
                MinimumPerformance("specificity", 0.8, "first"),
            ],
        )

        photon_results_config_item = test_pipe.fit(self.X, self.y)
        self.assertTrue(len(photon_results_config_item.inner_folds) == 1)

        # C: for a list of constraints, all should pass
        test_pipe = InnerFoldManager(
            self.pipe.copy_me,
            self.config,
            self.optimization,
            self.cross_validation,
            self.outer_fold_id,
            optimization_constraints=[
                MinimumPerformance("accuracy", 0.75, "all"),
                MinimumPerformance("specificity", 0.75, "all"),
            ],
        )

        photon_results_config_item = test_pipe.fit(self.X, self.y)
        self.assertTrue(len(photon_results_config_item.inner_folds) == 4)
Ejemplo n.º 6
0
    def test_raise_error(self):

        # case A: raise_error = False -> we expect continuation of the computation
        test_pipe = InnerFoldManager(self.pipe.copy_me,
                                     self.config,
                                     self.optimization,
                                     self.cross_validation,
                                     self.outer_fold_id,
                                     raise_error=False)

        # computing with inequal number of features and targets should result in an error
        test_pipe.fit(self.X, self.y[:10])

        # case B:
        test_pipe.raise_error = True
        with self.assertRaises(IndexError):
            test_pipe.fit(self.X, self.y[:10])
Ejemplo n.º 7
0
    def test_process_fit_results(self):

        test_pipe = InnerFoldManager(
            self.pipe.copy_me,
            self.config,
            self.optimization,
            self.cross_validation,
            self.outer_fold_id,
        )
        test_pipe.cross_validation_infos.calculate_metrics_across_folds = True
        test_pipe.cross_validation_infos.calculate_metrics_per_fold = False
        across_folds_config_item = test_pipe.fit(self.X, self.y)

        test_pipe.cross_validation_infos.calculate_metrics_across_folds = False
        test_pipe.cross_validation_infos.calculate_metrics_per_fold = True
        per_fold_config_item = test_pipe.fit(self.X, self.y)

        test_pipe.cross_validation_infos.calculate_metrics_across_folds = True
        test_pipe.cross_validation_infos.calculate_metrics_per_fold = True
        across_and_per_folds_config_item = test_pipe.fit(self.X, self.y)

        def assert_fold_operations(expected_operations, returned_metric_list):
            # assert that we have raw and std and mean
            expected_returns = list()
            for metric in self.optimization.metrics:
                for operation in expected_operations:
                    expected_returns.append(metric + "__" + str(operation))

            returned_formatted_metric_list = [
                m.metric_name + "__" + str(m.operation)
                for m in returned_metric_list
            ]
            self.assertTrue(
                set(expected_returns) == set(returned_formatted_metric_list))

        # if we have both, then we have mean and std over the folds + three raw across folds
        num_of_metrics = len(test_pipe.optimization_infos.metrics)
        self.assertTrue(
            len(across_and_per_folds_config_item.metrics_train) == 2 *
            num_of_metrics + num_of_metrics)
        self.assertTrue(
            len(across_and_per_folds_config_item.metrics_test) == 2 *
            num_of_metrics + num_of_metrics)

        assert_fold_operations(
            [FoldOperations.RAW, FoldOperations.MEAN, FoldOperations.STD],
            across_and_per_folds_config_item.metrics_train,
        )
        assert_fold_operations(
            [FoldOperations.RAW, FoldOperations.MEAN, FoldOperations.STD],
            across_and_per_folds_config_item.metrics_test,
        )

        # if we have across folds only, then it should be 3, one for each metrics
        self.assertTrue(
            len(across_folds_config_item.metrics_train) == num_of_metrics)
        self.assertTrue(
            len(across_folds_config_item.metrics_test) == num_of_metrics)

        assert_fold_operations([FoldOperations.RAW],
                               across_folds_config_item.metrics_train)
        assert_fold_operations([FoldOperations.RAW],
                               across_folds_config_item.metrics_test)

        # if we have per fold only, then it should be 6, one for mean and std for each of the three metrics
        self.assertTrue(
            len(per_fold_config_item.metrics_train) == 2 * num_of_metrics)
        self.assertTrue(
            len(per_fold_config_item.metrics_test) == 2 * num_of_metrics)
        assert_fold_operations(
            [FoldOperations.MEAN, FoldOperations.STD],
            per_fold_config_item.metrics_train,
        )
        assert_fold_operations([FoldOperations.MEAN, FoldOperations.STD],
                               per_fold_config_item.metrics_test)
Ejemplo n.º 8
0
    def objective_function(self, current_config):
        if current_config is None:
            return
        logger.clean_info(
            '---------------------------------------------------------------------------------------------------------------'
        )
        self.tested_config_counter += 1

        if hasattr(self.optimizer, 'ask_for_pipe'):
            pipe_ctor = self.optimizer.ask_for_pipe()
        else:
            pipe_ctor = self.copy_pipe_fnc

        # self.__distribute_cv_info_to_hyperpipe_children(reset=True, config_counter=tested_config_counter)

        hp = InnerFoldManager(pipe_ctor,
                              current_config,
                              self.optimization_info,
                              self.cross_validaton_info,
                              self.outer_fold_id,
                              self.constraint_objects,
                              cache_folder=self.cache_folder,
                              cache_updater=self.cache_updater)

        # Test the configuration cross validated by inner_cv object
        current_config_mdb = hp.fit(self._validation_X, self._validation_y,
                                    **self._validation_kwargs)
        current_config_mdb.config_nr = self.tested_config_counter

        if not current_config_mdb.config_failed:
            metric_train = MDBHelper.get_metric(
                current_config_mdb, self.fold_operation,
                self.optimization_info.best_config_metric)
            metric_test = MDBHelper.get_metric(
                current_config_mdb,
                self.fold_operation,
                self.optimization_info.best_config_metric,
                train=False)

            if metric_train is None or metric_test is None:
                raise Exception(
                    "Config did not fail, but did not get any metrics either....!!?"
                )
            config_performance = (metric_train, metric_test)
            if self.best_metric_yet is None:
                self.best_metric_yet = config_performance
                self.current_best_config = current_config_mdb
            else:
                # check if we have the next superstar around that exceeds any old performance
                if self.optimization_info.maximize_metric:
                    if metric_test > self.best_metric_yet[1]:
                        self.best_metric_yet = config_performance
                        self.current_best_config.save_memory()
                        self.current_best_config = current_config_mdb
                    else:
                        current_config_mdb.save_memory()
                else:
                    if metric_test < self.best_metric_yet[1]:
                        self.best_metric_yet = config_performance
                        self.current_best_config.save_memory()
                        self.current_best_config = current_config_mdb
                    else:
                        current_config_mdb.save_memory()

            # Print Result for config
            computation_duration = current_config_mdb.computation_end_time - current_config_mdb.computation_start_time
            logger.info('Computed configuration ' +
                        str(self.tested_config_counter) + "/" +
                        self.max_nr_of_configs + " in " +
                        str(computation_duration))
            logger.info("Performance:             " +
                        self.optimization_info.best_config_metric +
                        " - Train: " + "%.4f" % config_performance[0] +
                        ", Validation: " + "%.4f" % config_performance[1])
            logger.info("Best Performance So Far: " +
                        self.optimization_info.best_config_metric +
                        " - Train: " + "%.4f" % self.best_metric_yet[0] +
                        ", Validation: " + "%.4f" % self.best_metric_yet[1])
        else:
            config_performance = (-1, -1)
            # Print Result for config
            logger.debug('...failed:')
            logger.error(current_config_mdb.config_error)

        # add config to result tree
        self.result_object.tested_config_list.append(current_config_mdb)

        # 3. inform optimizer about performance
        logger.debug(
            "Telling hyperparameter optimizer about recent performance.")
        if isinstance(self.optimizer, PhotonSlaveOptimizer):
            self.optimizer.tell(current_config, config_performance)
        logger.debug("Asking hyperparameter optimizer for new config.")

        if self.optimization_info.maximize_metric:
            return 1 - config_performance[1]
        else:
            return config_performance[1]
Ejemplo n.º 9
0
    def fit(self, X, y=None, **kwargs):
        logger.photon_system_log('')
        logger.photon_system_log(
            '***************************************************************************************************************'
        )
        logger.photon_system_log('Outer Cross validation Fold {}'.format(
            self.cross_validaton_info.outer_folds[self.outer_fold_id].fold_nr))
        logger.photon_system_log(
            '***************************************************************************************************************'
        )

        self._prepare_data(X, y, **kwargs)
        self._fit_dummy()
        self._generate_inner_folds()
        self._prepare_optimization()

        outer_fold_fit_start_time = datetime.datetime.now()
        self.best_metric_yet = None
        self.tested_config_counter = 0

        # distribute number of folds to encapsulated child hyperpipes
        # self.__distribute_cv_info_to_hyperpipe_children(num_of_folds=num_folds,
        #                                                 outer_fold_counter=outer_fold_counter)

        if self.cross_validaton_info.calculate_metrics_per_fold:
            self.fold_operation = FoldOperations.MEAN
        else:
            self.fold_operation = FoldOperations.RAW

        self.max_nr_of_configs = ''
        if hasattr(self.optimizer, 'n_configurations'):
            self.max_nr_of_configs = str(self.optimizer.n_configurations)

        if isinstance(self.optimizer, PhotonMasterOptimizer):
            self.optimizer.optimize()
        else:
            # do the optimizing
            for current_config in self.optimizer.ask:
                self.objective_function(current_config)

        logger.clean_info(
            '---------------------------------------------------------------------------------------------------------------'
        )
        logger.info(
            'Hyperparameter Optimization finished. Now finding best configuration .... '
        )
        print(self.tested_config_counter)
        # now go on with the best config found
        if self.tested_config_counter > 0:
            best_config_outer_fold = self.optimization_info.get_optimum_config(
                self.result_object.tested_config_list, self.fold_operation)

            if not best_config_outer_fold:
                raise Exception("No best config was found!")

            # ... and create optimal pipeline
            optimum_pipe = self.copy_pipe_fnc()
            if self.cache_updater is not None:
                self.cache_updater(optimum_pipe, self.cache_folder,
                                   "fixed_fold_id")
            optimum_pipe.caching = False
            # set self to best config
            optimum_pipe.set_params(**best_config_outer_fold.config_dict)

            # Todo: set all children to best config and inform to NOT optimize again, ONLY fit
            # for child_name, child_config in best_config_outer_fold_mdb.children_config_dict.items():
            #     if child_config:
            #         # in case we have a pipeline stacking we need to identify the particular subhyperpipe
            #         splitted_name = child_name.split('__')
            #         if len(splitted_name) > 1:
            #             stacking_element = self.optimum_pipe.named_steps[splitted_name[0]]
            #             pipe_element = stacking_element.elements[splitted_name[1]]
            #         else:
            #             pipe_element = self.optimum_pipe.named_steps[child_name]
            #         pipe_element.set_params(**child_config)
            #         pipe_element.is_final_fit = True

            # self.__distribute_cv_info_to_hyperpipe_children(reset=True)

            logger.debug(
                'Fitting model with best configuration of outer fold...')
            optimum_pipe.fit(self._validation_X, self._validation_y,
                             **self._validation_kwargs)

            self.result_object.best_config = best_config_outer_fold

            # save test performance
            best_config_performance_mdb = MDBInnerFold()
            best_config_performance_mdb.fold_nr = -99
            best_config_performance_mdb.number_samples_training = self._validation_y.shape[
                0]
            best_config_performance_mdb.number_samples_validation = self._test_y.shape[
                0]
            best_config_performance_mdb.feature_importances = optimum_pipe.feature_importances_

            if self.cross_validaton_info.eval_final_performance:
                # Todo: generate mean and std over outer folds as well. move this items to the top
                logger.info(
                    'Calculating best model performance on test set...')

                logger.debug('...scoring test data')
                test_score_mdb = InnerFoldManager.score(
                    optimum_pipe,
                    self._test_X,
                    self._test_y,
                    indices=self.cross_validaton_info.outer_folds[
                        self.outer_fold_id].test_indices,
                    metrics=self.optimization_info.metrics,
                    **self._test_kwargs)

                logger.debug('... scoring training data')

                train_score_mdb = InnerFoldManager.score(
                    optimum_pipe,
                    self._validation_X,
                    self._validation_y,
                    indices=self.cross_validaton_info.outer_folds[
                        self.outer_fold_id].train_indices,
                    metrics=self.optimization_info.metrics,
                    training=True,
                    **self._validation_kwargs)

                best_config_performance_mdb.training = train_score_mdb
                best_config_performance_mdb.validation = test_score_mdb

                print_double_metrics(train_score_mdb.metrics,
                                     test_score_mdb.metrics)
            else:

                def _copy_inner_fold_means(metric_dict):
                    # We copy all mean values from validation to the best config
                    # training
                    train_item_metrics = {}
                    for m in metric_dict:
                        if m.operation == str(self.fold_operation):
                            train_item_metrics[m.metric_name] = m.value
                    train_item = MDBScoreInformation()
                    train_item.metrics_copied_from_inner = True
                    train_item.metrics = train_item_metrics
                    return train_item

                # training
                best_config_performance_mdb.training = _copy_inner_fold_means(
                    best_config_outer_fold.metrics_train)
                # validation
                best_config_performance_mdb.validation = _copy_inner_fold_means(
                    best_config_outer_fold.metrics_test)

            # write best config performance to best config item
            self.result_object.best_config.best_config_score = best_config_performance_mdb

        logger.info('Computations in outer fold {} took {} minutes.'.format(
            self.cross_validaton_info.outer_folds[self.outer_fold_id].fold_nr,
            (datetime.datetime.now() -
             outer_fold_fit_start_time).total_seconds() / 60))
Ejemplo n.º 10
0
    def fit(self, X, y=None, **kwargs):
        logger.photon_system_log("")
        logger.photon_system_log(
            "********************************************************"
        ) 
        logger.photon_system_log(
            "Outer Cross validation Fold {}".format(
                self.cross_validaton_info.outer_folds[self.outer_fold_id].fold_nr
            )
        )
        logger.photon_system_log(
            "********************************************************"
        )

        self._prepare_data(X, y, **kwargs)
        self._fit_dummy()
        self._generate_inner_folds()
        self._prepare_optimization()

        outer_fold_fit_start_time = datetime.datetime.now()
        best_metric_yet = None
        tested_config_counter = 0

        # distribute number of folds to encapsulated child hyperpipes
        # self.__distribute_cv_info_to_hyperpipe_children(num_of_folds=num_folds,
        #                                                 outer_fold_counter=outer_fold_counter)

        if self.cross_validaton_info.calculate_metrics_per_fold:
            fold_operation = FoldOperations.MEAN
        else:
            fold_operation = FoldOperations.RAW

        max_nr_of_configs = ""
        if hasattr(self.optimizer, "n_configurations"):
            max_nr_of_configs = str(self.optimizer.n_configurations)

        # do the optimizing1
        for current_config in self.optimizer.ask:
            if current_config is None:
                continue
            logger.clean_info(
                "---------------------------------------------------------------------------------------------------------------"
            )
            tested_config_counter += 1

            if hasattr(self.optimizer, "ask_for_pipe"):
                pipe_ctor = self.optimizer.ask_for_pipe()
            else:
                pipe_ctor = self.copy_pipe_fnc

            # self.__distribute_cv_info_to_hyperpipe_children(reset=True, config_counter=tested_config_counter)

            hp = InnerFoldManager(
                pipe_ctor,
                current_config,
                self.optimization_info,
                self.cross_validaton_info,
                self.outer_fold_id,
                self.constraint_objects,
                cache_folder=self.cache_folder,
                cache_updater=self.cache_updater,
            )

            # Test the configuration cross validated by inner_cv object
            current_config_mdb = hp.fit(
                self._validation_X, self._validation_y, **self._validation_kwargs
            )
            current_config_mdb.config_nr = tested_config_counter

            if not current_config_mdb.config_failed:
                metric_train = MDBHelper.get_metric(
                    current_config_mdb,
                    fold_operation,
                    self.optimization_info.best_config_metric,
                )
                metric_test = MDBHelper.get_metric(
                    current_config_mdb,
                    fold_operation,
                    self.optimization_info.best_config_metric,
                    train=False,
                )

                if metric_train is None or metric_test is None:
                    raise Exception(
                        "Config did not fail, but did not get any metrics either....!!?"
                    )
                config_performance = (metric_train, metric_test)
                if best_metric_yet is None:
                    best_metric_yet = config_performance
                    self.current_best_config = current_config_mdb
                else:
                    # check if we have the next superstar around that exceeds any old performance
                    if self.optimization_info.maximize_metric:
                        if metric_test > best_metric_yet[1]:
                            best_metric_yet = config_performance
                            self.current_best_config.save_memory()
                            self.current_best_config = current_config_mdb
                        else:
                            current_config_mdb.save_memory()
                    else:
                        if metric_test < best_metric_yet[1]:
                            best_metric_yet = config_performance
                            self.current_best_config.save_memory()
                            self.current_best_config = current_config_mdb
                        else:
                            current_config_mdb.save_memory()

                # Print Result for config
                computation_duration = (
                    current_config_mdb.computation_end_time
                    - current_config_mdb.computation_start_time
                )
                logger.info(
                    "Computed configuration "
                    + str(tested_config_counter)
                    + "/"
                    + max_nr_of_configs
                    + " in "
                    + str(computation_duration)
                )
                logger.info(
                    "Performance:             "
                    + self.optimization_info.best_config_metric
                    + " - Train: "
                    + "%.4f" % config_performance[0]
                    + ", Validation: "
                    + "%.4f" % config_performance[1]
                )
                logger.info(
                    "Best Performance So Far: "
                    + self.optimization_info.best_config_metric
                    + " - Train: "
                    + "%.4f" % best_metric_yet[0]
                    + ", Validation: "
                    + "%.4f" % best_metric_yet[1]
                )
            else:
                config_performance = (-1, -1)
                # Print Result for config
                logger.debug("...failed:")
                logger.error(current_config_mdb.config_error)

            # add config to result tree
            self.result_object.tested_config_list.append(current_config_mdb)

            # 3. inform optimizer about performance
            logger.debug("Telling hyperparameter optimizer about recent performance.")
            self.optimizer.tell(current_config, config_performance)
            logger.debug("Asking hyperparameter optimizer for new config.")
        logger.clean_info(
            "---------------------------------------------------------------------------------------------------------------"
        )
        logger.info(
            "Hyperparameter Optimization finished. Now finding best configuration .... "
        )
        # now go on with the best config found
        if tested_config_counter > 0:
            best_config_outer_fold = self.optimization_info.get_optimum_config(
                self.result_object.tested_config_list, fold_operation
            )

            if not best_config_outer_fold:
                raise Exception("No best config was found!")

            # ... and create optimal pipeline
            optimum_pipe = self.copy_pipe_fnc()
            if self.cache_updater is not None:
                self.cache_updater(optimum_pipe, self.cache_folder, "fixed_fold_id")
            optimum_pipe.caching = False
            # set self to best config
            optimum_pipe.set_params(**best_config_outer_fold.config_dict)

            # Todo: set all children to best config and inform to NOT optimize again, ONLY fit
            # for child_name, child_config in best_config_outer_fold_mdb.children_config_dict.items():
            #     if child_config:
            #         # in case we have a pipeline stacking we need to identify the particular subhyperpipe
            #         splitted_name = child_name.split('__')
            #         if len(splitted_name) > 1:
            #             stacking_element = self.optimum_pipe.named_steps[splitted_name[0]]
            #             pipe_element = stacking_element.elements[splitted_name[1]]
            #         else:
            #             pipe_element = self.optimum_pipe.named_steps[child_name]
            #         pipe_element.set_params(**child_config)
            #         pipe_element.is_final_fit = True

            # self.__distribute_cv_info_to_hyperpipe_children(reset=True)

            logger.debug("Fitting model with best configuration of outer fold...")
            optimum_pipe.fit(
                self._validation_X, self._validation_y, **self._validation_kwargs
            )

            self.result_object.best_config = best_config_outer_fold

            # save test performance
            best_config_performance_mdb = MDBInnerFold()
            best_config_performance_mdb.fold_nr = -99
            best_config_performance_mdb.number_samples_training = self._validation_y.shape[
                0
            ]
            best_config_performance_mdb.number_samples_validation = self._test_y.shape[
                0
            ]
            best_config_performance_mdb.feature_importances = (
                optimum_pipe.feature_importances_
            )

            if self.cross_validaton_info.eval_final_performance:
                # Todo: generate mean and std over outer folds as well. move this items to the top
                logger.info("Calculating best model performance on test set...")

                logger.debug("...scoring test data")
                test_score_mdb = InnerFoldManager.score(
                    optimum_pipe,
                    self._test_X,
                    self._test_y,
                    indices=self.cross_validaton_info.outer_folds[
                        self.outer_fold_id
                    ].test_indices,
                    metrics=self.optimization_info.metrics,
                    **self._test_kwargs
                )

                logger.debug("... scoring training data")

                train_score_mdb = InnerFoldManager.score(
                    optimum_pipe,
                    self._validation_X,
                    self._validation_y,
                    indices=self.cross_validaton_info.outer_folds[
                        self.outer_fold_id
                    ].train_indices,
                    metrics=self.optimization_info.metrics,
                    training=True,
                    **self._validation_kwargs
                )

                best_config_performance_mdb.training = train_score_mdb
                best_config_performance_mdb.validation = test_score_mdb

                print_double_metrics(train_score_mdb.metrics, test_score_mdb.metrics)
            else:

                def _copy_inner_fold_means(metric_dict):
                    # We copy all mean values from validation to the best config
                    # training
                    train_item_metrics = {}
                    for m in metric_dict:
                        if m.operation == str(fold_operation):
                            train_item_metrics[m.metric_name] = m.value
                    train_item = MDBScoreInformation()
                    train_item.metrics_copied_from_inner = True
                    train_item.metrics = train_item_metrics
                    return train_item

                # training
                best_config_performance_mdb.training = _copy_inner_fold_means(
                    best_config_outer_fold.metrics_train
                )
                # validation
                best_config_performance_mdb.validation = _copy_inner_fold_means(
                    best_config_outer_fold.metrics_test
                )

            # write best config performance to best config item
            self.result_object.best_config.best_config_score = (
                best_config_performance_mdb
            )

        logger.info(
            "Computations in outer fold {} took {} minutes.".format(
                self.cross_validaton_info.outer_folds[self.outer_fold_id].fold_nr,
                (datetime.datetime.now() - outer_fold_fit_start_time).total_seconds()
                / 60,
            )
        )