Ejemplo n.º 1
0
    def test_color_mapping(self):
        """
        Testing the color-group mapping for obtaining colors for visualizations
        from mapping file.

        :return:Returns OK if test goals were achieved, otherwise raises
                 error.
        """
        colormap1 = ut.color_mapping(self.map_data, self.map_header,
                                     "Treatment", "Color")
        self.assertEqual({
            "Control": "#008000",
            "Fast": "#0000CC"
        },
                         colormap1,
                         msg="Color-group mapping not computed "
                         "accurately. Please check category and color "
                         "columns.")
        colormap2 = ut.color_mapping(self.map_data, self.map_header,
                                     "Treatment")
        self.assertEqual({
            "Control": "#8DD3C7",
            "Fast": "#FFFFB3"
        },
                         colormap2,
                         msg="With no color column given, the "
                         "color-group mapping not computed accurately.")
Ejemplo n.º 2
0
    def test_color_mapping(self):
        """
        Testing the color-group mapping for obtaining colors for visualizations
        from mapping file.

        :return:Returns OK if test goals were achieved, otherwise raises
                 error.
        """
        colormap1 = ut.color_mapping(self.map_data, self.map_header, "Treatment", "Color")
        self.assertEqual({"Control": "#008000", "Fast": "#0000CC"},
                         colormap1, msg="Color-group mapping not computed "
                         "accurately. Please check category and color "
                         "columns.")
        colormap2 = ut.color_mapping(self.map_data, self.map_header, "Treatment")
        self.assertEqual({"Control": "#8DD3C7", "Fast": "#FFFFB3"},
                         colormap2, msg="With no color column given, the "
                         "color-group mapping not computed accurately.")
def main():
    args = handle_program_options()

    # Parse and read mapping file
    try:
        header, imap = util.parse_map_file(args.map_fp)
        category_idx = header.index(args.group_by)
    except IOError as ioe:
        err_msg = "\nError in metadata mapping filepath (-m): {}\n"
        sys.exit(err_msg.format(ioe))

    # map groups to colors
    class_colors = util.color_mapping(imap, header, args.group_by,
                                      args.color_by)

    core_files = args.core_files
    tsv = False
    if args.core_files is None:
        core_files = args.tsv_core_files
        tsv = True

    # map each core file to its matching category in the mapping file
    group_cores = OrderedDict()
    for group, fp in zip(class_colors, core_files):
        if not tsv:
            core = load_core_file(fp)
            group_cores[group] = [
                name.replace("_", " ") for name in core.values()
                if not name.startswith("Unclassified")
            ]
        else:
            group_cores[group] = load_tsv_core(fp, args.skipheader)

    # create the overlap set of OTUs and plot
    overlap = set()
    overlap.update(*group_cores.values())

    plot_overlaps(overlap,
                  group_cores,
                  class_colors,
                  out_fp=args.out_fp,
                  fig_size=args.figsize,
                  title=args.title,
                  filter_common=args.filtercommon)
Ejemplo n.º 4
0
def main():
    args = handle_program_options()

    # Read in the distance data
    try:
        dm_data = pd.read_csv(args.dist_matrix_file, sep="\t", index_col=0)
    except IOError as ioe:
        sys.exit("\nError reading in distance matrix file: {}.".format(ioe))

    # mapping and colors info for plotting
    try:
        header, map_data = util.parse_map_file(args.map_fp)
    except IOError as ioe:
        sys.exit("\nError reading mapping file: {}.".format(ioe))
    y = [map_data[sid][header.index(args.group_by)] for sid in dm_data.index]
    cond_colors = util.color_mapping(map_data, header, args.group_by, args.color_by)

    # Prep input data for t-SNE
    X = dm_data[range(dm_data.shape[1])].values
    X_tsne = TSNE(n_components=3, metric="precomputed").fit_transform(X)

    # Plot t-SNE result
    fig = plt.figure(figsize=(14, 8))
    for cond, sid, xy in zip(y, dm_data.index, X_tsne):
        plt.scatter(x=xy[0], y=xy[1], s=150, c=cond_colors[cond], alpha=0.85,
                    edgecolors="k")
        if args.annotate:
            plt.annotate(s=sid, xy=(xy[0], xy[1]), xytext=(12, 12),
                         textcoords="offset points", ha="center", va="center",
                         alpha=1, style="italic")
    if args.plot_title is not None:
        plt.title(args.plot_title, fontsize=16, weight="bold")
    l = [plt.scatter([], [], c=cond_colors[cond], s=150, edgecolors="k")
         for cond in cond_colors]
    plt.legend(l, ["{}".format(cond) for cond in cond_colors], loc="best",
               scatterpoints=3, frameon=True, framealpha=1, fontsize=14)
    plt.xlabel("t-SNE 1", fontsize=16)
    plt.ylabel("t-SNE 2", fontsize=16)
    plt.xticks(size=12)
    plt.yticks(size=12)
    plt.grid()
    plt.show()
def main():
    args = handle_program_options()

    # Parse and read mapping file
    try:
        header, imap = util.parse_map_file(args.map_fp)
        category_idx = header.index(args.group_by)
    except IOError as ioe:
        err_msg = "\nError in metadata mapping filepath (-m): {}\n"
        sys.exit(err_msg.format(ioe))

    # map groups to colors
    class_colors = util.color_mapping(imap, header, args.group_by, args.color_by)

    core_files = args.core_files
    tsv = False
    if args.core_files is None:
        core_files = args.tsv_core_files
        tsv = True

    # map each core file to its matching category in the mapping file
    group_cores = OrderedDict()
    for group, fp in zip(class_colors, core_files):
        if not tsv:
            core = load_core_file(fp)
            group_cores[group] = [name.replace("_", " ") for name in core.values()
                                    if not name.startswith("Unclassified")]
        else:
            group_cores[group] = load_tsv_core(fp, args.skipheader)

    # create the overlap set of OTUs and plot
    overlap = set()
    overlap.update(*group_cores.values())

    plot_overlaps(overlap, group_cores, class_colors, 
                  out_fp=args.out_fp, fig_size=args.figsize, title=args.title,
                  filter_common=args.filtercommon)
Ejemplo n.º 6
0
def main():
    args = handle_program_options()

    try:
        with open(args.otu_table):
            pass
    except IOError as ioe:
        sys.exit("\nError with BIOM format file:{}\n".format(ioe))

    try:
        with open(args.pcoa_fp):
            pass
    except IOError as ioe:
        sys.exit("\nError with principal coordinates file:{}\n".format(ioe))

    try:
        with open(args.mapping):
            pass
    except IOError as ioe:
        sys.exit("\nError with mapping file:{}\n".format(ioe))

    if not os.path.exists(args.output_dir):
        try:
            os.mkdir(args.output_dir)
        except OSError as oe:
            if os.errno == 2:
                msg = ("One or more directories in the path provided for " +
                       "--output-dir ({}) do not exist. If you are specifying " +
                       "a new directory for output, please ensure all other " +
                       "directories in the path currently exist.")
                sys.exit(msg.format(args.output_dir))
            else:
                msg = ("An error occurred trying to create the output " +
                       "directory ({}) with message: {}")
                sys.exit(msg.format(args.output_dir, oe.strerror))

    # load the BIOM table
    biomtbl = biom.load_table(args.otu_table)

    # Read unifrac principal coordinates file
    unifrac = util.parse_unifrac(args.pcoa_fp)

    # Read otu data file
    otus = set()
    with open(args.otu_ids_fp, "rU") as nciF:
        for line in nciF.readlines():
            line = line.strip()
            otus.add(line)

    # Gather categories from mapping file
    header, imap = util.parse_map_file(args.mapping)
    try:
        category_idx = header.index(args.group_by)
    except ValueError:
        msg = "Error: Specified mapping category '{}' not found."
        sys.exit(msg.format(args.group_by))
    category_ids = util.gather_categories(imap, header, [args.group_by])
    color_map = util.color_mapping(imap, header, args.group_by, args.colors)
    rel_abd = get_relative_abundance(biomtbl)

    # plot samples based on relative abundance of some OTU ID
    for otuid in otus:
        otuname = oc.otu_name(biomtbl.metadata(otuid, axis="observation")["taxonomy"])
        cat_data = {cat: {"pc1": [], "pc2": [], "size": []}
                    for cat in category_ids}

        for sid in unifrac["pcd"]:
            category = cat_data[imap[sid][category_idx]]
            try:
                size = rel_abd[sid][otuid] * args.scale_by
            except KeyError as ke:
                print "{} not found in {} sample.".format(ke, sid)
                continue
            category["pc1"].append(float(unifrac["pcd"][sid][0]))
            category["pc2"].append(float(unifrac["pcd"][sid][1]))
            category["size"].append(size)

        if args.verbose:
            print "Saving chart for {}".format(" ".join(otuname.split("_")))
        xr, yr = calculate_xy_range(cat_data)
        plot_PCoA(cat_data, otuname, unifrac, color_map.keys(),
                  color_map, xr, yr, args.output_dir,
                  args.save_as, args.ggplot2_style)
Ejemplo n.º 7
0
def main():
    args = handle_program_options()

    try:
        with open(args.otu_table):
            pass
    except IOError as ioe:
        sys.exit("\nError with BIOM format file:{}\n".format(ioe))

    try:
        with open(args.pcoa_fp):
            pass
    except IOError as ioe:
        sys.exit("\nError with principal coordinates file:{}\n".format(ioe))

    try:
        with open(args.mapping):
            pass
    except IOError as ioe:
        sys.exit("\nError with mapping file:{}\n".format(ioe))

    # check that the output dir exists, create it if not
    util.ensure_dir(args.output_dir)

    # load the BIOM table
    biomtbl = biom.load_table(args.otu_table)

    # Read unifrac principal coordinates file
    unifrac = util.parse_unifrac(args.pcoa_fp)

    # Read otu data file
    otus = set()
    with open(args.otu_ids_fp, "rU") as nciF:
        for line in nciF.readlines():
            line = line.strip()
            otus.add(line)

    # Gather categories from mapping file
    header, imap = util.parse_map_file(args.mapping)
    try:
        category_idx = header.index(args.group_by)
    except ValueError:
        msg = "Error: Specified mapping category '{}' not found."
        sys.exit(msg.format(args.group_by))
    category_ids = util.gather_categories(imap, header, [args.group_by])
    color_map = util.color_mapping(imap, header, args.group_by, args.colors)
    rel_abd = bc.relative_abundance(biomtbl)
    rel_abd = bc.arcsine_sqrt_transform(rel_abd)

    # plot samples based on relative abundance of some OTU ID
    for otuid in otus:
        otuname = oc.otu_name(biomtbl.metadata(otuid, axis="observation")["taxonomy"])
        cat_data = {cat: {"pc1": [], "pc2": [], "size": []}
                    for cat in category_ids}

        for sid in unifrac["pcd"]:
            category = cat_data[imap[sid][category_idx]]
            try:
                size = rel_abd[sid][otuid] * args.scale_by
            except KeyError as ke:
                print("{} not found in {} sample.".format(ke, sid))
                continue
            category["pc1"].append(float(unifrac["pcd"][sid][0]))
            category["pc2"].append(float(unifrac["pcd"][sid][1]))
            category["size"].append(size)

        if args.verbose:
            print("Saving chart for {}".format(" ".join(otuname.split("_"))))
        xr, yr = calculate_xy_range(cat_data)
        plot_PCoA(cat_data, otuname, unifrac, color_map.keys(),
                  color_map, xr, yr, args.output_dir,
                  args.save_as, args.ggplot2_style)
Ejemplo n.º 8
0
def main():
    args = handle_program_options()

    # Parse and read mapping file
    try:
        header, imap = util.parse_map_file(args.map_fp)
        category_idx = header.index(args.group_by)
    except IOError as ioe:
        err_msg = "\nError in metadata mapping filepath (-m): {}\n"
        sys.exit(err_msg.format(ioe))

    # Obtain group colors
    try:
        assert args.colors is not None
    except AssertionError:
        categories = {v[category_idx] for k, v in imap.items()}
        color_cycle = cycle(Set3_12.hex_colors)
        class_colors = {c: color_cycle.next() for c in categories}
    else:
        class_colors = util.color_mapping(imap, header, args.group_by, args.colors)

    if args.dist_matrix_file:
        try:
            dm_data = pd.read_csv(args.dist_matrix_file, sep="\t", index_col=0)
        except IOError as ioe:
            err_msg = "\nError with unifrac distance matrix file (-d): {}\n"
            sys.exit(err_msg.format(ioe))
        dm_data.insert(0, "Condition", [imap[str(sid)][category_idx] for sid in dm_data.index])
        if args.annotate_points:
            sampleids = [str(sid) for sid in dm_data.index]
        else:
            sampleids = None
        if args.save_lda_input:
            dm_data.to_csv(args.save_lda_input, sep="\t")
        # Run LDA
        X_lda, y_lda, exp_var = run_LDA(dm_data)
    else:
        # Load biom file and calculate relative abundance
        try:
            biomf = biom.load_table(args.otu_table)
        except IOError as ioe:
            err_msg = "\nError with biom format file (-d): {}\n"
            sys.exit(err_msg.format(ioe))
        # Get normalized relative abundances
        rel_abd = bc.relative_abundance(biomf)
        rel_abd = bc.arcsine_sqrt_transform(rel_abd)
        df_rel_abd = pd.DataFrame(rel_abd).T
        df_rel_abd.insert(0, "Condition", [imap[sid][category_idx]
                                           for sid in df_rel_abd.index])
        if args.annotate_points:
            sampleids = df_rel_abd.index
        else:
            sampleids = None
        if args.save_lda_input:
            df_rel_abd.to_csv(args.save_lda_input, sep="\t")
        # Run LDA
        X_lda, y_lda, exp_var = run_LDA(df_rel_abd)

    # Plot LDA
    if args.dimensions == 3:
        plot_LDA(X_lda, y_lda, class_colors, exp_var, style=args.ggplot2_style,
                 fig_size=args.figsize, label_pad=args.label_padding,
                 font_size=args.font_size, sids=sampleids, dim=3,
                 zangles=args.z_angles, pt_size=args.point_size, out_fp=args.out_fp)
    else:
        plot_LDA(X_lda, y_lda, class_colors, exp_var, style=args.ggplot2_style,
                 fig_size=args.figsize, label_pad=args.label_padding,
                 font_size=args.font_size, sids=sampleids, pt_size=args.point_size,
                 out_fp=args.out_fp)
Ejemplo n.º 9
0
def main():
    args = handle_program_options()

    try:
        with open(args.coord_fp):
            pass
    except IOError as ioe:
        err_msg = "\nError in input principal coordinates filepath (-i): {}\n"
        sys.exit(err_msg.format(ioe))

    try:
        with open(args.map_fp):
            pass
    except IOError as ioe:
        err_msg = "\nError in input metadata mapping filepath (-m): {}\n"
        sys.exit(err_msg.format(ioe))

    with open(args.coord_fp) as F:
        pcd = F.readlines()
    pcd = [line.split("\t") for line in pcd]

    map_header, imap = util.parse_map_file(args.map_fp)

    data_gather = util.gather_categories(imap, map_header,
                                         args.group_by.split(","))
    categories = OrderedDict([(condition, {"pc1": [], "pc2": [], "pc3": []})
                              for condition in data_gather.keys()])

    bcolors = itertools.cycle(Set3_12.hex_colors)
    if not args.colors:
        colors = [bcolors.next() for _ in categories]
    else:
        colors = util.color_mapping(imap, map_header,
                                    args.group_by, args.colors)
        colors = colors.values()

    parsed_unifrac = util.parse_unifrac(args.coord_fp)

    pco = args.pc_order
    if args.dimensions == 3:
        pco.append(3)

    pc1v = parsed_unifrac["varexp"][pco[0] - 1]
    pc2v = parsed_unifrac["varexp"][pco[1] - 1]
    if args.dimensions == 3:
        pc3v = parsed_unifrac["varexp"][pco[2] - 1]

    for sid, points in parsed_unifrac["pcd"].items():
        for condition, dc in data_gather.items():
            if sid in dc.sids:
                cat = condition
                break
        categories[cat]["pc1"].append((sid, points[pco[0] - 1]))
        categories[cat]["pc2"].append((sid, points[pco[1] - 1]))

        if args.dimensions == 3:
            categories[cat]["pc3"].append((sid, points[pco[2] - 1]))

    axis_str = "PC{} (Percent Explained Variance {:.3f}%)"
    # initialize plot
    fig = plt.figure(figsize=args.figsize)
    if args.dimensions == 3:
        ax = fig.add_subplot(111, projection="3d")
        ax.view_init(elev=args.z_angles[1], azim=args.z_angles[0])
        ax.set_zlabel(axis_str.format(3, pc3v), labelpad=args.label_padding)
        if args.z_limits:
            ax.set_zlim(args.z_limits)
    else:
        ax = fig.add_subplot(111)

    # plot data
    for i, cat in enumerate(categories):
        if args.dimensions == 3:
            ax.scatter(xs=[e[1] for e in categories[cat]["pc1"]],
                       ys=[e[1] for e in categories[cat]["pc2"]],
                       zs=[e[1] for e in categories[cat]["pc3"]],
                       zdir="z", c=colors[i], s=args.point_size, label=cat,
                       edgecolors="k")
        else:
            ax.scatter([e[1] for e in categories[cat]["pc1"]],
                       [e[1] for e in categories[cat]["pc2"]],
                       c=colors[i], s=args.point_size, label=cat, edgecolors="k")

        # Script to annotate PCoA sample points.
        if args.annotate_points:
            for x, y in zip(categories[cat]["pc1"], categories[cat]["pc2"]):
                ax.annotate(
                    x[0], xy=(x[1], y[1]), xytext=(-10, -15),
                    textcoords="offset points", ha="center", va="center",
                    )

    # customize plot options
    if args.x_limits:
        ax.set_xlim(args.x_limits)
    if args.y_limits:
        ax.set_ylim(args.y_limits)

    ax.set_xlabel(axis_str.format(pco[0], float(pc1v)), labelpad=args.label_padding)
    ax.set_ylabel(axis_str.format(pco[1], float(pc2v)), labelpad=args.label_padding)

    leg = plt.legend(loc="best", scatterpoints=3, frameon=True, framealpha=1)
    leg.get_frame().set_edgecolor('k')

    # Set the font characteristics
    font = {"family": "normal", "weight": "bold", "size": args.font_size}
    mpl.rc("font", **font)

    if args.title:
        ax.set_title(args.title)

    if args.ggplot2_style and not args.dimensions == 3:
        gu.ggplot2_style(ax)

    # save or display result
    if args.out_fp:
        fig.savefig(args.out_fp, facecolor="white", edgecolor="none", bbox_inches="tight",
                    pad_inches=0.2)
    else:
        plt.show()
Ejemplo n.º 10
0
def main():
    args = handle_program_options()

    # Parse and read mapping file
    try:
        header, imap = util.parse_map_file(args.map_fp)
        category_idx = header.index(args.group_by)
    except IOError as ioe:
        err_msg = "\nError in metadata mapping filepath (-m): {}\n"
        sys.exit(err_msg.format(ioe))

    # Obtain group colors
    try:
        assert args.colors is not None
    except AssertionError:
        categories = {v[category_idx] for k, v in imap.items()}
        color_cycle = cycle(Set3_12.hex_colors)
        class_colors = {c: color_cycle.next() for c in categories}
    else:
        class_colors = util.color_mapping(imap, header, args.group_by,
                                          args.colors)

    if args.dist_matrix_file:
        try:
            dm_data = pd.read_csv(args.dist_matrix_file, sep="\t", index_col=0)
        except IOError as ioe:
            err_msg = "\nError with unifrac distance matrix file (-d): {}\n"
            sys.exit(err_msg.format(ioe))
        dm_data.insert(0, "Condition",
                       [imap[str(sid)][category_idx] for sid in dm_data.index])
        if args.annotate_points:
            sampleids = [str(sid) for sid in dm_data.index]
        else:
            sampleids = None
        if args.save_lda_input:
            dm_data.to_csv(args.save_lda_input, sep="\t")
        # Run LDA
        X_lda, y_lda, exp_var = run_LDA(dm_data)
    else:
        # Load biom file and calculate relative abundance
        try:
            biomf = biom.load_table(args.otu_table)
        except IOError as ioe:
            err_msg = "\nError with biom format file (-d): {}\n"
            sys.exit(err_msg.format(ioe))
        # Get normalized relative abundances
        rel_abd = bc.relative_abundance(biomf)
        rel_abd = bc.arcsine_sqrt_transform(rel_abd)
        df_rel_abd = pd.DataFrame(rel_abd).T
        df_rel_abd.insert(
            0, "Condition",
            [imap[sid][category_idx] for sid in df_rel_abd.index])
        if args.annotate_points:
            sampleids = df_rel_abd.index
        else:
            sampleids = None
        if args.save_lda_input:
            df_rel_abd.to_csv(args.save_lda_input, sep="\t")
        # Run LDA
        X_lda, y_lda, exp_var = run_LDA(df_rel_abd)

    # Plot LDA
    if args.dimensions == 3:
        plot_LDA(X_lda,
                 y_lda,
                 class_colors,
                 exp_var,
                 style=args.ggplot2_style,
                 fig_size=args.figsize,
                 label_pad=args.label_padding,
                 font_size=args.font_size,
                 sids=sampleids,
                 dim=3,
                 zangles=args.z_angles,
                 pt_size=args.point_size,
                 out_fp=args.out_fp)
    else:
        plot_LDA(X_lda,
                 y_lda,
                 class_colors,
                 exp_var,
                 style=args.ggplot2_style,
                 fig_size=args.figsize,
                 label_pad=args.label_padding,
                 font_size=args.font_size,
                 sids=sampleids,
                 pt_size=args.point_size,
                 out_fp=args.out_fp)
Ejemplo n.º 11
0
def main():
    args = handle_program_options()

    # Read in the distance data
    try:
        dm_data = pd.read_csv(args.dist_matrix_file, sep="\t", index_col=0)
        dm_data_sids = dm_data.index
        dm_data = pairwise_distances(dm_data[range(dm_data.shape[1])].values,
                                     metric="precomputed")
    except IOError as ioe:
        sys.exit("\nError reading in distance matrix file: {}.".format(ioe))

    # Mapping and colors info for plotting
    try:
        header, map_data = util.parse_map_file(args.map_fp)
    except IOError as ioe:
        sys.exit("\nError reading mapping file: {}.".format(ioe))
    y = [map_data[sid][header.index(args.group_by)] for sid in dm_data_sids]

    # Get colors for all categories
    if not args.color_by:
        categories = set(y)
        bcolors = itertools.cycle(Set1_9.hex_colors)
        cond_colors = {c: bcolors.next() for c in categories}
    else:
        cond_colors = util.color_mapping(map_data, header, args.group_by, args.color_by)

    # Prep input data for t-SNE
    X_tsne = TSNE(n_components=3, perplexity=args.perplexity, metric="precomputed",
                  method="exact", verbose=2, random_state=0, angle=0.8)
    X_new = X_tsne.fit_transform(dm_data)
    print("KL divergence after optimization: {}\n".format(X_tsne.kl_divergence_))
    x_min, x_max = np.min(X_new, 0), np.max(X_new, 0)
    X_new = (X_new - x_min) / (x_max - x_min)

    # Plot t-SNE result
    fig = plt.figure(figsize=(14, 8))
    for cond, sid, xy in zip(y, dm_data_sids, X_new):
        ax = fig.add_subplot(111)
        ax.scatter(x=xy[0], y=xy[1], s=args.point_size, c=cond_colors[cond],
                   alpha=0.9, edgecolors="k")
        if args.annotate:
            ax.annotate(s=sid, xy=(xy[0], xy[1]), xytext=(12, 12),
                        textcoords="offset points", ha="center", va="center",
                        alpha=1, style="italic")
    if args.plot_title is not None:
        ax.set_title(args.plot_title, fontsize=16, weight="bold")
    l = [plt.scatter([], [], c=cond_colors[cond], s=150, edgecolors="k")
         for cond in cond_colors]
    plt.legend(l, ["{}".format(cond) for cond in cond_colors], loc="best",
               scatterpoints=3, frameon=True, framealpha=1, fontsize=14)
    ax.set_xlabel("t-SNE 1", fontsize=14)
    ax.set_ylabel("t-SNE 2", fontsize=14)
    plt.tight_layout()
    if args.ggplot2_style:
        gu.ggplot2_style(ax)
        fc = "0.8"
    else:
        fc = "none"

    # save or display result
    if args.out_fp:
        plt.savefig(args.out_fp, facecolor=fc, edgecolor="none", dpi=300, pad_inches=0.1,
                    bbox_inches="tight")
    else:
        plt.show()
Ejemplo n.º 12
0
def main():
    args = handle_program_options()

    metrics = [m for m in alpha.__all__ if "_ci" not in m]
    try:
        metrics.remove("faith_pd")
    except ValueError:
        pass
    if args.show_available_metrics:
        print "\nAvailable alpha diversity metrics:"
        return "\n".join(metrics)

    # check that the output dir exists, create it if not
    msg = putil.ensure_dir(args.output_dir)
    # if an error occurs, print and exit
    if msg:
        sys.exit(msg)

    # parse mapping file
    try:
        header, sample_map = putil.parse_map_file(args.map_file)
    except Exception as ioe:
            err_msg = "\nError while processing the mapping file: {}\n"
            sys.exit(err_msg.format(ioe))

    # parse BIOM table
    try:
        biom_tbl = biom.load_table(args.biom_fp)
    except Exception as ioe:
        err_msg = "\nError loading BIOM table file: {}\n"
        sys.exit(err_msg.format(ioe))

    # group samples by category
    if args.category not in header:
        sys.exit("Category '{}' not found".format(args.category))
    cat_idx = header.index(args.category)
    cat_vals = {entry[cat_idx] for entry in sample_map.values()}

    plot_title = args.plot_title

    colors = putil.color_mapping(sample_map, header, args.category, args.color_by)

    # Perform diversity calculations and density plotting
    for method, x_label in izip_longest(args.diversity, args.x_label):
        if x_label is None:
            x_label = method.title()
        if method not in alpha.__all__:
            sys.exit("ERROR: Diversity metric not found: {}.".format(method))
        elif method in alpha.__all__ and method not in metrics:
            sys.exit("Currently, PhyloToAST does not support {} metric.".format(method))
        metric = eval("alpha."+method)
        div_calc, sample_ids = calc_diversity(metric, sample_map, biom_tbl,
                                              cat_vals, cat_idx)

        if args.save_calculations:
            write_diversity_metrics(div_calc, sample_ids, args.save_calculations)

        plot_group_diversity(div_calc, colors, plot_title, x_label, args.output_dir,
                             args.image_type)

        # calculate and print significance testing results
        if not args.suppress_stats:
            print "Diversity significance testing: {}".format(x_label)
            if len(cat_vals) == 2:
                print_MannWhitneyU(div_calc)
            elif len(cat_vals) > 2:
                print_KruskalWallisH(div_calc)
            print
        else:
            continue
Ejemplo n.º 13
0
def main():
    args = handle_program_options()

    metrics = [m for m in alpha.__all__ if "_ci" not in m]
    try:
        metrics.remove("faith_pd")
    except ValueError:
        pass
    if args.show_available_metrics:
        print "\nAvailable alpha diversity metrics:"
        return "\n".join(metrics)

    # check that the output dir exists, create it if not
    msg = putil.ensure_dir(args.output_dir)
    # if an error occurs, print and exit
    if msg:
        sys.exit(msg)

    # parse mapping file
    try:
        header, sample_map = putil.parse_map_file(args.map_file)
    except Exception as ioe:
        err_msg = "\nError while processing the mapping file: {}\n"
        sys.exit(err_msg.format(ioe))

    # parse BIOM table
    try:
        biom_tbl = biom.load_table(args.biom_fp)
    except Exception as ioe:
        err_msg = "\nError loading BIOM table file: {}\n"
        sys.exit(err_msg.format(ioe))

    # group samples by category
    if args.category not in header:
        sys.exit("Category '{}' not found".format(args.category))
    cat_idx = header.index(args.category)
    cat_vals = {entry[cat_idx] for entry in sample_map.values()}

    plot_title = args.plot_title

    colors = putil.color_mapping(sample_map, header, args.category,
                                 args.color_by)

    # Perform diversity calculations and density plotting
    for method, x_label in izip_longest(args.diversity, args.x_label):
        if x_label is None:
            x_label = method.title()
        if method not in alpha.__all__:
            sys.exit("ERROR: Diversity metric not found: {}.".format(method))
        elif method in alpha.__all__ and method not in metrics:
            sys.exit(
                "Currently, PhyloToAST does not support {} metric.".format(
                    method))
        metric = eval("alpha." + method)
        div_calc, sample_ids = calc_diversity(metric, sample_map, biom_tbl,
                                              cat_vals, cat_idx)

        if args.save_calculations:
            write_diversity_metrics(div_calc, sample_ids,
                                    args.save_calculations)

        plot_group_diversity(div_calc, colors, plot_title, x_label,
                             args.output_dir, args.image_type)

        # calculate and print significance testing results
        if not args.suppress_stats:
            print "Diversity significance testing: {}".format(x_label)
            if len(cat_vals) == 2:
                print_MannWhitneyU(div_calc)
            elif len(cat_vals) > 2:
                print_KruskalWallisH(div_calc)
            print
        else:
            continue
Ejemplo n.º 14
0
def main():
    args = handle_program_options()

    try:
        with open(args.coord_fp):
            pass
    except IOError as ioe:
        err_msg = "\nError in input principal coordinates filepath (-i): {}\n"
        sys.exit(err_msg.format(ioe))

    try:
        with open(args.map_fp):
            pass
    except IOError as ioe:
        err_msg = "\nError in input metadata mapping filepath (-m): {}\n"
        sys.exit(err_msg.format(ioe))

    with open(args.coord_fp) as F:
        pcd = F.readlines()
    pcd = [line.split("\t") for line in pcd]

    map_header, imap = util.parse_map_file(args.map_fp)

    data_gather = util.gather_categories(imap, map_header,
                                         args.group_by.split(","))
    categories = OrderedDict([(condition, {
        "pc1": [],
        "pc2": [],
        "pc3": []
    }) for condition in data_gather.keys()])

    bcolors = itertools.cycle(Set3_12.hex_colors)
    if not args.colors:
        colors = [bcolors.next() for _ in categories]
    else:
        colors = util.color_mapping(imap, map_header, args.group_by,
                                    args.colors)
        colors = colors.values()

    parsed_unifrac = util.parse_unifrac(args.coord_fp)

    pco = args.pc_order
    if args.dimensions == 3:
        pco.append(3)

    pc1v = parsed_unifrac["varexp"][pco[0] - 1]
    pc2v = parsed_unifrac["varexp"][pco[1] - 1]
    if args.dimensions == 3:
        pc3v = parsed_unifrac["varexp"][pco[2] - 1]

    for sid, points in parsed_unifrac["pcd"].items():
        for condition, dc in data_gather.items():
            if sid in dc.sids:
                cat = condition
                break
        categories[cat]["pc1"].append((sid, points[pco[0] - 1]))
        categories[cat]["pc2"].append((sid, points[pco[1] - 1]))

        if args.dimensions == 3:
            categories[cat]["pc3"].append((sid, points[pco[2] - 1]))

    axis_str = "PC{} (Percent Explained Variance {:.3f}%)"
    # initialize plot
    fig = plt.figure(figsize=args.figsize)
    if args.dimensions == 3:
        ax = fig.add_subplot(111, projection="3d")
        ax.view_init(elev=args.z_angles[1], azim=args.z_angles[0])
        ax.set_zlabel(axis_str.format(3, pc3v), labelpad=args.label_padding)
        if args.z_limits:
            ax.set_zlim(args.z_limits)
    else:
        ax = fig.add_subplot(111)

    # plot data
    for i, cat in enumerate(categories):
        if args.dimensions == 3:
            ax.scatter(xs=[e[1] for e in categories[cat]["pc1"]],
                       ys=[e[1] for e in categories[cat]["pc2"]],
                       zs=[e[1] for e in categories[cat]["pc3"]],
                       zdir="z",
                       c=colors[i],
                       s=args.point_size,
                       label=cat,
                       edgecolors="k")
        else:
            ax.scatter([e[1] for e in categories[cat]["pc1"]],
                       [e[1] for e in categories[cat]["pc2"]],
                       c=colors[i],
                       s=args.point_size,
                       label=cat,
                       edgecolors="k")

        # Script to annotate PCoA sample points.
        if args.annotate_points:
            for x, y in zip(categories[cat]["pc1"], categories[cat]["pc2"]):
                ax.annotate(
                    x[0],
                    xy=(x[1], y[1]),
                    xytext=(-10, -15),
                    textcoords="offset points",
                    ha="center",
                    va="center",
                )

    # customize plot options
    if args.x_limits:
        ax.set_xlim(args.x_limits)
    if args.y_limits:
        ax.set_ylim(args.y_limits)

    ax.set_xlabel(axis_str.format(pco[0], float(pc1v)),
                  labelpad=args.label_padding)
    ax.set_ylabel(axis_str.format(pco[1], float(pc2v)),
                  labelpad=args.label_padding)

    leg = plt.legend(loc="best", scatterpoints=3, frameon=True, framealpha=1)
    leg.get_frame().set_edgecolor('k')

    # Set the font characteristics
    font = {"family": "normal", "weight": "bold", "size": args.font_size}
    mpl.rc("font", **font)

    if args.title:
        ax.set_title(args.title)

    if args.ggplot2_style and not args.dimensions == 3:
        gu.ggplot2_style(ax)

    # save or display result
    if args.out_fp:
        fig.savefig(args.out_fp,
                    facecolor="white",
                    edgecolor="none",
                    bbox_inches="tight",
                    pad_inches=0.2)
    else:
        plt.show()
Ejemplo n.º 15
0
def main():
    args = handle_program_options()

    try:
        with open(args.otu_table):
            pass
    except IOError as ioe:
        sys.exit("\nError with BIOM format file:{}\n".format(ioe))

    try:
        with open(args.pcoa_fp):
            pass
    except IOError as ioe:
        sys.exit("\nError with principal coordinates file:{}\n".format(ioe))

    try:
        with open(args.mapping):
            pass
    except IOError as ioe:
        sys.exit("\nError with mapping file:{}\n".format(ioe))

    # check that the output dir exists, create it if not
    util.ensure_dir(args.output_dir)

    # load the BIOM table
    biomtbl = biom.load_table(args.otu_table)

    # Read unifrac principal coordinates file
    unifrac = util.parse_unifrac(args.pcoa_fp)

    # Read otu data file
    otus = set()
    with open(args.otu_ids_fp, "rU") as nciF:
        for line in nciF.readlines():
            line = line.strip()
            otus.add(line)

    # Gather categories from mapping file
    header, imap = util.parse_map_file(args.mapping)
    try:
        category_idx = header.index(args.group_by)
    except ValueError:
        msg = "Error: Specified mapping category '{}' not found."
        sys.exit(msg.format(args.group_by))
    category_ids = util.gather_categories(imap, header, [args.group_by])
    color_map = util.color_mapping(imap, header, args.group_by, args.colors)
    rel_abd = bc.relative_abundance(biomtbl)
    rel_abd = bc.arcsine_sqrt_transform(rel_abd)

    # plot samples based on relative abundance of some OTU ID
    for otuid in otus:
        otuname = oc.otu_name(
            biomtbl.metadata(otuid, axis="observation")["taxonomy"])
        cat_data = {
            cat: {
                "pc1": [],
                "pc2": [],
                "size": []
            }
            for cat in category_ids
        }

        for sid in unifrac["pcd"]:
            category = cat_data[imap[sid][category_idx]]
            try:
                size = rel_abd[sid][otuid] * args.scale_by
            except KeyError as ke:
                print("{} not found in {} sample.".format(ke, sid))
                continue
            category["pc1"].append(float(unifrac["pcd"][sid][0]))
            category["pc2"].append(float(unifrac["pcd"][sid][1]))
            category["size"].append(size)

        if args.verbose:
            print("Saving chart for {}".format(" ".join(otuname.split("_"))))
        xr, yr = calculate_xy_range(cat_data)
        plot_PCoA(cat_data, otuname, unifrac, color_map.keys(), color_map, xr,
                  yr, args.output_dir, args.save_as, args.ggplot2_style)
Ejemplo n.º 16
0
def main():
    args = handle_program_options()

    try:
        with open(args.map_fp):
            pass
    except IOError as ioe:
        err_msg = "\nError in metadata mapping filepath (-m): {}\n"
        sys.exit(err_msg.format(ioe))

    # Parse and read mapping file and obtain group colors
    header, imap = util.parse_map_file(args.map_fp)
    class_colors = util.color_mapping(imap, header, args.group_by, args.color_by)

    if args.input_data_type == "unifrac_dm":
        try:
            with open(args.unifrac_file):
                pass
        except IOError as ioe:
            err_msg = "\nError with unifrac distance matrix file (-d): {}\n"
            sys.exit(err_msg.format(ioe))
        uf_data = pd.read_csv(args.unifrac_file, sep="\t", index_col=0)
        uf_data.insert(0, "Condition", [imap[sid][header.index(args.group_by)]
                                        for sid in uf_data.index])
        sampleids = uf_data.index
        if args.save_lda_input:
            uf_data.to_csv(args.save_lda_input, sep="\t")
        # Run LDA
        X_lda, y_lda, exp_var = run_LDA(uf_data)
        # Plot LDA
        plot_LDA(X_lda, y_lda, class_colors, exp_var, style=args.ggplot2_style,
                 out_fp=args.out_fp)
    else:
        # Load biom file and calculate relative abundance
        try:
            rel_abd = get_relative_abundance(args.biom_file)
        except ValueError as ve:
            err_msg = "\nError with biom format file (-d): {}\n"
            sys.exit(err_msg.format(ve))
        df_rel_abd = pd.DataFrame(rel_abd).T
        df_rel_abd.insert(0, "Condition", [imap[sid][header.index(args.group_by)]
                                           for sid in df_rel_abd.index])
        sampleids = df_rel_abd.index
        if args.save_lda_input:
            df_rel_abd.to_csv(args.save_lda_input, sep="\t")
        # Run LDA
        X_lda, y_lda, exp_var = run_LDA(df_rel_abd)
        # Plot LDA
        plot_LDA(X_lda, y_lda, class_colors, exp_var, style=args.ggplot2_style,
                 out_fp=args.out_fp)

    if args.bubble:
        # Get otus for LDA bubble plots
        try:
            with open(args.bubble) as hojiehr:
                for line in hojiehr.readlines():
                    bubble_otus = line.strip().split("\r")
        except IOError as ioe:
            err_msg = "\nError in OTU name list file (--bubble): {}\n"
            sys.exit(err_msg.format(ioe))

        # Load biom file and calculate relative abundance
        try:
            rel_abd = get_relative_abundance(args.biom_file)
        except ValueError as ve:
            err_msg = "\nError with biom format file (-d): {}\n"
            sys.exit(err_msg.format(ve))
        category_idx = header.index(args.group_by)

        # Calculate position and size of SampleIDs to plot for each OTU
        for otuname in bubble_otus:
            plot_data = {cat: {"x": [], "y": [], "size": [], "label": []}
                         for cat in class_colors.keys()}
            for sid, data in zip(sampleids, X_lda):
                category = plot_data[imap[sid][category_idx]]
                try:
                    size = rel_abd[sid][otuname] * args.scale_by
                except KeyError as ke:
                    print "{} not found in {} sample.".format(ke, sid)
                    continue
                category["x"].append(float(data[0]))
                category["y"].append(float(data[1]))
                category["size"].append(size)

            # Plot LDA bubble for each OTU
            fig = plt.figure(figsize=(12, 9))
            ax = fig.add_subplot(111)
            for i, cat in enumerate(plot_data):
                plt.scatter(plot_data[cat]["x"], plot_data[cat]["y"],
                            plot_data[cat]["size"], label=cat,
                            color=class_colors[cat],
                            alpha=0.85, marker="o", edgecolor="k")
            mpl.rc("font", family="Arial")  # define font for figure text
            mpl.rc("xtick", labelsize=12)  # increase X axis ticksize
            mpl.rc("ytick", labelsize=12)  # increase Y axis ticksize
            if X_lda.shape[1] == 1:
                plt.ylim((0.5, 2.5))
            plt.title(" ".join(otuname.split("_")), style="italic")
            plt.xlabel("LD1 (Percent Explained Variance: {:.3f}%)".format(exp_var[0]*100),
                       fontsize=12)
            plt.ylabel("LD2 (Percent Explained Variance: {:.3f}%)".format(exp_var[1]*100),
                       fontsize=12)
            lgnd = plt.legend(loc="best", scatterpoints=3, fontsize=12)
            # Change the legend marker size manually
            for i in range(len(class_colors.keys())):
                lgnd.legendHandles[i]._sizes = [75]

            # Set style for LDA bubble plots
            if args.ggplot2_style:
                gu.ggplot2_style(ax)
                fc = "0.8"
            else:
                fc = "none"

            # Save LDA bubble plots to output directory
            print "Saving chart for {}".format(" ".join(otuname.split("_")))
            fig.savefig(os.path.join(args.output_dir, "_".join(otuname.split())) + "." + args.save_as,
                        facecolor=fc, edgecolor="none", dpi=300,
                        bbox_inches="tight", pad_inches=0.2)
            plt.close(fig)
Ejemplo n.º 17
0
def main():
    args = handle_program_options()

    # Parse and read mapping file
    try:
        header, imap = util.parse_map_file(args.map_fp)
        category_idx = header.index(args.group_by)
    except IOError as ioe:
        err_msg = "\nError in metadata mapping filepath (-m): {}\n"
        sys.exit(err_msg.format(ioe))
    # Obtain group colors
    class_colors = util.color_mapping(imap, header, args.group_by, args.color_by)

    # Get otus for LDA bubble plots
    try:
        bubble_otus = set(pd.read_csv(args.otu_ids_fp, sep="\n", header=None)[0])
    except IOError as ioe:
        err_msg = "\nError in OTU IDs file (--bubble): {}\n"
        sys.exit(err_msg.format(ioe))

    # Load biom file and calculate relative abundance
    try:
        biomf = biom.load_table(args.otu_table)
    except IOError as ioe:
        err_msg = "\nError with biom format file (-d): {}\n"
        sys.exit(err_msg.format(ioe))

    # Get normalized relative abundances
    rel_abd = bc.relative_abundance(biomf)
    rel_abd = bc.arcsine_sqrt_transform(rel_abd)
    abd_val = {abd for sid, v1 in rel_abd.items() for otuid, abd in v1.items() if abd > 0}
    bubble_range = np.linspace(min(abd_val), max(abd_val), num=5) * args.scale_by
    # Get abundance to the nearest 50
    bubble_range = [int(50 * round(float(abd)/50)) for abd in bubble_range[1:]]

    # Set up input for LDA calc and get LDA transformed data
    if args.dist_matrix_file:
        try:
            uf_data = pd.read_csv(args.dist_matrix_file, sep="\t", index_col=0)
        except IOError as ioe:
            err_msg = "\nError with unifrac distance matrix file (-d): {}\n"
            sys.exit(err_msg.format(ioe))
        uf_data.insert(0, "Condition", [imap[sid][category_idx] for sid in uf_data.index])
        sampleids = uf_data.index
        if args.save_lda_input:
            uf_data.to_csv(args.save_lda_input, sep="\t")
        # Run LDA
        X_lda, y_lda, exp_var = run_LDA(uf_data)
    else:
        df_rel_abd = pd.DataFrame(rel_abd).T
        df_rel_abd.insert(0, "Condition", [imap[sid][category_idx]
                                           for sid in df_rel_abd.index])
        sampleids = df_rel_abd.index
        if args.save_lda_input:
            df_rel_abd.to_csv(args.save_lda_input, sep="\t")
        # Run LDA
        X_lda, y_lda, exp_var = run_LDA(df_rel_abd)

    # Calculate position and size of SampleIDs to plot for each OTU
    for otuid in bubble_otus:
        otuname = oc.otu_name(biomf.metadata(otuid, axis="observation")["taxonomy"])
        plot_data = {cat: {"x": [], "y": [], "size": [], "label": []}
                     for cat in class_colors.keys()}
        for sid, data in zip(sampleids, X_lda):
            category = plot_data[imap[sid][category_idx]]
            try:
                size = rel_abd[sid][otuid] * args.scale_by
            except KeyError as ke:
                print("{} not found in {} sample.".format(ke, sid))
                continue
            category["x"].append(float(data[0]))
            category["y"].append(float(data[1]))
            category["size"].append(size)

        # Plot LDA bubble for each OTU
        fig = plt.figure(figsize=args.figsize)
        ax = fig.add_subplot(111)
        for i, cat in enumerate(plot_data):
            plt.scatter(plot_data[cat]["x"], plot_data[cat]["y"],
                        s=plot_data[cat]["size"], label=cat, color=class_colors[cat],
                        alpha=0.85, edgecolors="k")
        if X_lda.shape[1] == 1:
            plt.ylim((0.5, 2.5))
        plt.title(" ".join(otuname.split("_")), style="italic", fontsize=13)
        try:
            plt.xlabel("LD1 (Percent Explained Variance: {:.3f}%)".format(exp_var[0]*100),
                       fontsize=13, labelpad=15)
        except:
            plt.xlabel("LD1", fontsize=13, labelpad=15)
        try:
            plt.ylabel("LD2 (Percent Explained Variance: {:.3f}%)".format(exp_var[1]*100),
                       fontsize=13, labelpad=15)
        except:
            plt.ylabel("LD2", fontsize=13, labelpad=15)

        lgnd1 = plt.legend(loc="best", scatterpoints=3, fontsize=13)
        for i in range(len(class_colors.keys())):
            lgnd1.legendHandles[i]._sizes = [80]  # Change the legend marker size manually
        # Add the legend manually to the current plot
        plt.gca().add_artist(lgnd1)

        c = [plt.scatter([], [], c="w", edgecolors="k", s=s1) for s1 in bubble_range]
        plt.legend(c, ["{}".format(s2) for s2 in bubble_range],
                   title="Scaled Bubble\n       Sizes", frameon=True, labelspacing=2,
                   fontsize=13, loc=4, scatterpoints=1, borderpad=1.1)

        # Set style for LDA bubble plots
        if args.ggplot2_style:
            gu.ggplot2_style(ax)
            fc = "0.8"
        else:
            fc = "none"

        # Save LDA bubble plots to output directory
        if args.verbose:
            print("Saving chart for {}".format(" ".join(otuname.split("_"))))
        fig.savefig(pj(args.output_dir, "_".join(otuname.split())) + "." + args.save_as,
                    facecolor=fc, edgecolor="none", dpi=300,
                    bbox_inches="tight", pad_inches=0.2)
        plt.close(fig)