def align(params): locus, opts = params name, sequences = locus # get additional params from params tuple window, threshold, notrim, proportion, divergence, min_len = opts fasta = create_locus_specific_fasta(sequences) aln = Align(fasta) aln.run_alignment() if notrim: aln.trim_alignment( method="notrim" ) else: aln.trim_alignment( method="running", window_size=window, proportion=proportion, threshold=threshold, max_divergence=divergence, min_len=min_len ) if aln.trimmed: sys.stdout.write(".") else: sys.stdout.write("X") sys.stdout.flush() return (name, aln)
def align(params): locus, opts = params name, sequences = locus # get additional params from params tuple window, threshold, notrim, proportion = opts fasta = create_locus_specific_fasta(sequences) aln = Align(fasta) aln.run_alignment() if notrim: aln.trim_alignment(method='notrim') else: aln.trim_alignment(method='running', window_size=window, threshold=threshold, proportion=proportion) sys.stdout.write(".") sys.stdout.flush() return (name, aln)
def align(params): locus, opts = params name, sequences = locus # get additional params from params tuple window, threshold, notrim, proportion = opts fasta = create_locus_specific_fasta(sequences) aln = Align(fasta) aln.run_alignment() if notrim: aln.trim_alignment( method='notrim' ) else: aln.trim_alignment( method='running', window_size=window, threshold=threshold, proportion=proportion ) sys.stdout.write(".") sys.stdout.flush() return (name, aln)
def main(): args = get_args() # compile some regular expressions we'll use later stripnum = re.compile("s_[0-9]+$") manyn = re.compile("[N,n]{20,}") # get names of loci and taxa uces = get_uce_names_from_probes(args.probes) taxa = get_taxa_names_from_fastas(args.fasta) print "\n" if not args.extend: if args.db is None: db = os.path.join(args.output, "probe.matches.sqlite") else: db = args.db # create db to hold results conn, c = create_probe_database(db, taxa, uces, True) else: conn, c = extend_probe_database(args.db, taxa) # get duplicate probe sequences for filtering if args.dupefile: print "Determining duplicate probes..." dupes = get_dupes(args.dupefile, longfile=False) else: dupes = None # iterate over LASTZ files for each taxon for lz in glob.glob(os.path.join(args.lastz, "*")): # get fasta name from lastz file ff = get_fasta_name_from_lastz_pth(lz, args.fasta, args.pattern) # get taxon name from lastz file taxon = get_taxon_from_filename(ff) print "\n{0}\n{1}\n{0}".format("=" * 30, taxon) # get lastz matches print "\tGetting LASTZ matches from GENOME alignments..." matches, probes = get_matches(lz) # remove bad loci (dupes) print "\tGetting bad (potentially duplicate) GENOME matches..." loci_to_skip = [] for k, v in matches.iteritems(): # check matches to makes sure all is well - keep names lc loci_to_skip.extend(quality_control_matches(matches, probes, dupes, k, v, False)) # pdb.set_trace() # convert to set, to keep only uniques loci_to_skip = set(loci_to_skip) print "\tSkipping {} bad (duplicate hit) loci...".format(len(loci_to_skip)) # get (and possibly assemble) non-skipped seqdict = defaultdict(list) # determine those contigs to skip and group those to assemble for contig in fasta.FastaReader(ff): # make sure all names are lowercase contig.identifier = contig.identifier.lower() name = contig.identifier.split("|")[-4].strip() locus = name.split("_")[0] # skip what we identified as bad loci if locus not in loci_to_skip: seqdict[locus].append(contig) output_name = "{}.fasta".format(taxon.replace("_", "-")) fout_name = os.path.join(args.output, output_name) print "\tOutput filename is {}".format(output_name) fout = fasta.FastaWriter(fout_name) # this tracks "fake" contig number count = 0 # this tracks loci kept kept = 0 # when > 1 contig, assemble contigs across matches sys.stdout.write("\tWriting and Aligning/Assembling UCE loci with multiple probes (dot/1000 loci)") for k, v in seqdict.iteritems(): bad = False contig_names = [] if count % 1000 == 0: sys.stdout.write(".") sys.stdout.flush() if len(v) == 1: # trim ambiguous bases on flanks record = v[0] orient = [matches[k][0][1]] if args.flank: record = trim_uce_reads(record, args.flank) contig_names.append(record.identifier) record.sequence = record.sequence.strip("N") # trim many ambiguous bases within contig result = manyn.search(record.sequence) if result: uce_start, uce_end = get_probe_positions(record) uce = record.sequence[uce_start:uce_end] record.sequence = snip_if_many_N_bases(manyn, k, record.sequence, uce, verbose=False) # change header record.identifier = ">Node_{0}_length_{1}_cov_1000".format(count, len(record.sequence)) fout.write(v[0]) else: orient = list(set([m[1] for m in matches[k]])) # skip any loci having matches of mixed orientation # ['+', '-'] if len(orient) == 1: # create tempfile for the reads fd, temp = tempfile.mkstemp(suffix=".fasta") os.close(fd) temp_out = fasta.FastaWriter(temp) # write all slices to outfile, trimming if we want # pdb.set_trace() for record in v: if args.flank: record = trim_uce_reads(record, args.flank) # keep names of contigs we assembled to store in db assoc # w/ resulting assembled contig name contig_names.append(record.identifier) record.sequence = record.sequence.strip("N") # trim many ambiguous bases within contig result = manyn.search(record.sequence) if result: uce_start, uce_end = get_probe_positions(record) uce = record.sequence[uce_start:uce_end] record.sequence = snip_if_many_N_bases(manyn, k, record.sequence, uce, verbose=False) temp_out.write(record) # make sure to close the file temp_out.close() # assemble aln = Align(temp) aln.run_alignment() record = fasta.FastaSequence() record.sequence = aln._alignment_consensus(aln.alignment) record.identifier = ">Node_{0}_length_{1}_cov_1000".format(count, len(record.sequence)) # ensure that resulting consensus has no gaps or # other odd characters (e.g. X) if re.match("[ACGTNacgtn]", record.sequence): fout.write(record) else: bad = True else: bad = True if not bad: # track contig assembly and renaming data in db q = "UPDATE matches SET {0} = 1 WHERE uce = '{1}'".format(taxon, k) c.execute(q) # generate db match and match map tables for data orient_key = "node_{0}({1})".format(count, orient[0]) q = "UPDATE match_map SET {0} = '{1}' WHERE uce = '{2}'".format(taxon, orient_key, k) c.execute(q) # keep track of new name :: old name mapping for old_name in contig_names: q = "INSERT INTO contig_map VALUES ('{0}', '{1}', '{2}', '{3}')".format( taxon, k, old_name, record.identifier ) c.execute(q) kept += 1 # tracking "fake" contig number count += 1 conn.commit() print "\n\t{0} loci of {1} matched ({2:.0f}%), {3} dupes dropped ({4:.0f}%), {5} ({6:.0f}%) kept".format( count, len(uces), float(count) / len(uces) * 100, len(loci_to_skip), float(len(loci_to_skip)) / len(uces) * 100, kept, float(kept) / len(uces) * 100, ) # conn.commit() c.close() conn.close()
def main(): args = get_args() # compile some regular expressions we'll use later stripnum = re.compile("s_[0-9]+$") manyn = re.compile("[N,n]{20,}") # get names of loci and taxa uces = get_uce_names_from_probes(args.probes) taxa = get_taxa_names_from_fastas(args.fasta) print "\n" if not args.extend: if args.db is None: db = os.path.join(args.output, 'probe.matches.sqlite') else: db = args.db # create db to hold results conn, c = create_probe_database( db, taxa, uces, True ) else: conn, c = extend_probe_database( args.db, taxa ) # get duplicate probe sequences for filtering if args.dupefile: print "Determining duplicate probes..." dupes = get_dupes(args.dupefile, longfile=False) else: dupes = None # iterate over LASTZ files for each taxon for lz in glob.glob(os.path.join(args.lastz, '*')): # get fasta name from lastz file ff = get_fasta_name_from_lastz_pth(lz, args.fasta, args.pattern) # get taxon name from lastz file taxon = get_taxon_from_filename(ff) print "\n{0}\n{1}\n{0}".format('=' * 30, taxon) # get lastz matches print "\tGetting LASTZ matches from GENOME alignments..." matches, probes = get_matches(lz) # remove bad loci (dupes) print "\tGetting bad (potentially duplicate) GENOME matches..." loci_to_skip = [] for k, v in matches.iteritems(): # check matches to makes sure all is well - keep names lc loci_to_skip.extend(quality_control_matches(matches, probes, dupes, k, v, False)) #pdb.set_trace() # convert to set, to keep only uniques loci_to_skip = set(loci_to_skip) print "\tSkipping {} bad (duplicate hit) loci...".format(len(loci_to_skip)) # get (and possibly assemble) non-skipped seqdict = defaultdict(list) # determine those contigs to skip and group those to assemble for contig in fasta.FastaReader(ff): # make sure all names are lowercase contig.identifier = contig.identifier.lower() name = contig.identifier.split('|')[-4].strip() locus = name.split('_')[0] # skip what we identified as bad loci if locus not in loci_to_skip: seqdict[locus].append(contig) output_name = "{}.fasta".format(taxon.replace('_', '-')) fout_name = os.path.join(args.output, output_name) print "\tOutput filename is {}".format(output_name) fout = fasta.FastaWriter(fout_name) # this tracks "fake" contig number count = 0 # this tracks loci kept kept = 0 # when > 1 contig, assemble contigs across matches sys.stdout.write("\tWriting and Aligning/Assembling UCE loci with multiple probes (dot/1000 loci)") for k, v in seqdict.iteritems(): bad = False contig_names = [] if count % 1000 == 0: sys.stdout.write('.') sys.stdout.flush() if len(v) == 1: # trim ambiguous bases on flanks record = v[0] orient = [matches[k][0][1]] if args.flank: record = trim_uce_reads(record, args.flank) contig_names.append(record.identifier) record.sequence = record.sequence.strip('N') # trim many ambiguous bases within contig result = manyn.search(record.sequence) if result: uce_start, uce_end = get_probe_positions(record) uce = record.sequence[uce_start:uce_end] record.sequence = snip_if_many_N_bases(manyn, k, record.sequence, uce, verbose=False) # change header record.identifier = ">Node_{0}_length_{1}_cov_1000".format( count, len(record.sequence) ) fout.write(v[0]) else: orient = list(set([m[1] for m in matches[k]])) # skip any loci having matches of mixed orientation # ['+', '-'] if len(orient) == 1: # create tempfile for the reads fd, temp = tempfile.mkstemp(suffix='.fasta') os.close(fd) temp_out = fasta.FastaWriter(temp) # write all slices to outfile, trimming if we want #pdb.set_trace() for record in v: if args.flank: record = trim_uce_reads(record, args.flank) # keep names of contigs we assembled to store in db assoc # w/ resulting assembled contig name contig_names.append(record.identifier) record.sequence = record.sequence.strip('N') # trim many ambiguous bases within contig result = manyn.search(record.sequence) if result: uce_start, uce_end = get_probe_positions(record) uce = record.sequence[uce_start:uce_end] record.sequence = snip_if_many_N_bases(manyn, k, record.sequence, uce, verbose=False) temp_out.write(record) # make sure to close the file temp_out.close() # assemble aln = Align(temp) aln.run_alignment() record = fasta.FastaSequence() record.sequence = aln.alignment_consensus.tostring() record.identifier = ">Node_{0}_length_{1}_cov_1000".format( count, len(record.sequence) ) fout.write(record) else: bad = True if not bad: # track contig assembly and renaming data in db q = "UPDATE matches SET {0} = 1 WHERE uce = '{1}'".format(taxon, k) c.execute(q) # generate db match and match map tables for data orient_key = "node_{0}({1})".format(count, orient[0]) q = "UPDATE match_map SET {0} = '{1}' WHERE uce = '{2}'".format(taxon, orient_key, k) c.execute(q) # keep track of new name :: old name mapping for old_name in contig_names: q = "INSERT INTO contig_map VALUES ('{0}', '{1}', '{2}', '{3}')".format(taxon, k, old_name, record.identifier) c.execute(q) kept += 1 # tracking "fake" contig number count += 1 conn.commit() print "\n\t{0} loci of {1} matched ({2:.0f}%), {3} dupes dropped ({4:.0f}%), {5} ({6:.0f}%) kept".format( count, len(uces), float(count) / len(uces) * 100, len(loci_to_skip), float(len(loci_to_skip)) / len(uces) * 100, kept, float(kept) / len(uces) * 100 ) #conn.commit() c.close() conn.close()