Ejemplo n.º 1
0
def inaccurate_physics():
    physics = scene_if.Physics()
    physics.friction = 0.1
    physics.restitution = 0.5
    physics.density = 0.5
    physics.gravity = -5
    return physics
Ejemplo n.º 2
0
def simulate_task(
    task: task_if.Task,
    steps: int = DEFAULT_MAX_STEPS,
    stride: int = DEFAULT_STRIDE,
    physics: scene_if.Physics = scene_if.Physics()
) -> task_if.TaskSimulation:
    result = simulator_bindings.simulate_task(serialize(task), steps, stride,
                                              serialize(physics))
    return deserialize(task_if.TaskSimulation(), result)
Ejemplo n.º 3
0
def convert_scenes_to_task_simulation(
        task: task_if.Task,
        scenes: List[scene_if.Scene],
        physics: scene_if.Physics = scene_if.Physics(),
        px_threshold: float = 0.1):
    threshold = px_threshold / PIXELS_IN_METER
    result = simulator_bindings.convert_scenes_to_task_simulation(
        serialize(task), serialize(scenes), serialize(physics), threshold)
    return deserialize(task_if.TaskSimulation(), result)
Ejemplo n.º 4
0
def simulate_scene(
    scene: scene_if.Scene,
    steps: int = DEFAULT_MAX_STEPS,
    stride: int = 1,
    physics: scene_if.Physics = scene_if.Physics()
) -> List[scene_if.Scene]:
    serialized_scenes = simulator_bindings.simulate_scene(
        serialize(scene), steps, stride, serialize(physics))
    scenes = [deserialize(scene_if.Scene(), b) for b in serialized_scenes]
    return scenes
Ejemplo n.º 5
0
def inaccurate_noisy_physics(rng=np.random.default_rng()):
    physics = scene_if.Physics()
    physics.friction = sample_gaussian(0.1, 0.05, rng=rng)
    physics.restitution = sample_gaussian(1, 0.05, rng=rng)
    physics.density = sample_gaussian(0.5, 0.05, rng=rng)
    physics.angularDamping = sample_gaussian(0.1, 0.01, rng=rng)
    physics.linearDamping = sample_gaussian(0.1, 0.01, rng=rng)
    physics.gravity = sample_gaussian(-9.8, 0.05, rng=rng)

    return physics
Ejemplo n.º 6
0
def default_noisy_physics(rng=np.random.default_rng()):
    physics = scene_if.Physics()
    physics.friction = sample_gaussian(physics.friction, 0.1, rng=rng)
    physics.angularDamping = sample_gaussian(physics.angularDamping,
                                             0.05,
                                             rng=rng)
    physics.linearDamping = sample_gaussian(physics.linearDamping,
                                            0.05,
                                            rng=rng)
    physics.density = sample_gaussian(physics.density, 0.1, rng=rng)
    physics.restitution = sample_gaussian(physics.restitution, 0.1, rng=rng)
    physics.gravity = sample_gaussian(physics.gravity, 0.1, rng=rng)
    return physics
Ejemplo n.º 7
0
def simulate_task_with_input(task,
                             user_input,
                             steps=DEFAULT_MAX_STEPS,
                             stride=DEFAULT_STRIDE,
                             keep_space_around_bodies=True,
                             physics=scene_if.Physics()):
    """Check a solution for a task and return SimulationResult.

    This is un-optimized version of magic_ponies that should be used for
    debugging or vizualization purposes only.
    """
    if not isinstance(user_input, scene_if.UserInput):
        user_input = build_user_input(*user_input)

    # Creating a shallow copy.
    task = copy.copy(task)
    task.scene = add_user_input_to_scene(task.scene, user_input,
                                         keep_space_around_bodies)
    return simulate_task(task, steps, stride, physics)
Ejemplo n.º 8
0
    def simulate_single(self,
                        task_index: int,
                        action: ActionLike,
                        need_images: bool = True,
                        stride: int = phyre.simulator.DEFAULT_STRIDE,
                        stable: bool = False,
                        physics:scene_if.Physics=scene_if.Physics()
                       ) -> Tuple[SimulationStatus, MaybeImages]:
        """Deprecated in version 0.2.0 in favor of simulate_action.
        Runs simluation for the action.

        Args:
            task_index: index of the task.
            action: numpy array or list of self.action_space_dim floats in
                [0, 1].
            need_images: whether simulation images are needed.
            stride: int, defines the striding for the simulation images
                array. Higher striding will result in less images and less
                compute. Note, that this parameter doesn't affect simulation
                FPS. Ignored if need_images is False.
            stable: if True, will simulate a few actions in the neigborhood
                of the actions and return STABLY_SOLVED status iff all
                neigbour actions are either SOLVED or INVALID. Otherwise
                UNSTABLY_SOLVED is returned. SOLVED is never returned if
                stable is set.

        Returns:
             * If need_images is True, returns a pair (status, images).
                * If status is INVALID_INPUT images is None.
                * Otherwise images is an array contains intermediate observations.
             * If need_images is False: returns (status, None).
        """
        simulation = self.simulate_action(task_index,
                                          action,
                                          need_images=need_images,
                                          need_featurized_objects=False,
                                          stride=stride,
                                          stable=stable,physics=physics)
        return simulation.status, simulation.images
Ejemplo n.º 9
0
def batched_magic_ponies(tasks,
                         user_inputs,
                         num_workers,
                         steps=DEFAULT_MAX_STEPS,
                         stride=DEFAULT_STRIDE,
                         keep_space_around_bodies=True,
                         with_times=False,
                         need_images=False,
                         need_featurized_objects=False,
                         physics=scene_if.Physics()):
    del num_workers  # Not used.
    return tuple(
        zip(*[
            magic_ponies(t,
                         ui,
                         steps=steps,
                         stride=stride,
                         keep_space_around_bodies=keep_space_around_bodies,
                         with_times=with_times,
                         need_images=need_images,
                         need_featurized_objects=need_featurized_objects,
                         physics=physics) for t, ui in zip(tasks, user_inputs)
        ]))
Ejemplo n.º 10
0
def magic_ponies(task,
                 user_input,
                 steps=DEFAULT_MAX_STEPS,
                 stride=DEFAULT_STRIDE,
                 keep_space_around_bodies=True,
                 with_times=False,
                 need_images=False,
                 need_featurized_objects=False,
                 physics=scene_if.Physics()):
    """Check a solution for a task and return intermidiate images.

    Args:
        task: task_if.Task or bytes, in the latter case a serialzed task is
            expected.
        user_input: scene_if.UserInput or a triple(points, rectangulars, balls)
            points: None or a list or an array of points. Should be of shape
                (N, 2). In the latter case is assumed to be in
                row-major format.
            rectangulars: A list of lists of 4 verticies. Each
                vertix should be a pair of floats. Vertices must be on positive
                order and must form a convex polygon. Otherwise the input
                will be deemed invalid.
            balls: A list of triples (x, y, radius).
        steps: Maximum number of steps to simulate for.
        stride: Stride for the returned image array. Negative values will
            produce not images.
        keep_space_around_bodies: bool, if True extra empty space will be
            enforced around scene bodies.
        with_times: A boolean flag indicating whether timing info is required.
        need_images: A boolean flag indicating whether images should be returned.
        need_featurized_objects: A boolean flag indicating whether objects should be returned.

    Returns:
        A tuple (is_solved, had_occlusions, images, objects) if with_times is False.
            is_solved: bool.
            had_occlusions: bool.
            images a numpy arrays of shape (num_steps, height, width).
            objects is a numpy array of shape (num_steps, num_objects, feature_size).
        A tuple (is_solved, had_occlusions, images, scenes, simulation_time, pack_time)
                if with_times is set.
            simulation_time: time spent inside C++ code to unpack and simulate.
            pack_time: time spent inside C++ code to pack the result.
    """
    if isinstance(task, bytes):
        serialized_task = task
        height, width = creator.SCENE_HEIGHT, creator.SCENE_WIDTH
    else:
        serialized_task = serialize(task)
        height, width = task.scene.height, task.scene.width
    if isinstance(user_input, scene_if.UserInput):
        is_solved, had_occlusions, packed_images, packed_featurized_objects, number_objects, sim_time, pack_time = (
            simulator_bindings.magic_ponies_general(serialized_task,
                                                    serialize(user_input),
                                                    keep_space_around_bodies,
                                                    steps, stride, need_images,
                                                    need_featurized_objects,
                                                    serialize(physics)))
    else:
        points, rectangulars, balls = _prepare_user_input(*user_input)
        is_solved, had_occlusions, packed_images, packed_featurized_objects, number_objects, sim_time, pack_time = (
            simulator_bindings.magic_ponies(serialized_task, points,
                                            rectangulars, balls,
                                            keep_space_around_bodies, steps,
                                            stride, need_images,
                                            need_featurized_objects,
                                            serialize(physics)))

    packed_images = np.array(packed_images, dtype=np.uint8)

    images = packed_images.reshape((-1, height, width))
    packed_featurized_objects = np.array(packed_featurized_objects,
                                         dtype=np.float32)
    if packed_featurized_objects.size == 0:
        # Custom task without any known objects.
        packed_featurized_objects = np.zeros(
            (0, number_objects, OBJECT_FEATURE_SIZE))
    else:
        packed_featurized_objects = packed_featurized_objects.reshape(
            (-1, number_objects, OBJECT_FEATURE_SIZE))
    packed_featurized_objects = phyre.simulation.finalize_featurized_objects(
        packed_featurized_objects)
    if with_times:
        return is_solved, had_occlusions, images, packed_featurized_objects, sim_time, pack_time
    else:
        return is_solved, had_occlusions, images, packed_featurized_objects
Ejemplo n.º 11
0
def default_physics():
    # all noise params set to 0, and physics params set to default values
    physics = scene_if.Physics()
    return physics
Ejemplo n.º 12
0
    def simulate_action(self,
                        task_index: int,
                        action: ActionLike,
                        *,
                        need_images: bool = True,
                        need_featurized_objects: bool = False,
                        stride: int = phyre.simulator.DEFAULT_STRIDE,
                        stable: bool = False,
                        physics:scene_if.Physics=scene_if.Physics()) -> phyre.simulation.Simulation:
        """Runs simluation for the action.

        Args:
            task_index: index of the task.
            action: numpy array or list of self.action_space_dim floats in
                [0, 1].
            need_images: whether simulation images are needed.
            need_featurized_objects: whether simulation featurized_objects are needed.
            stride: int, defines the striding for the simulation images
                array. Higher striding will result in less images and less
                compute. Note, that this parameter doesn't affect simulation
                FPS. Ignored if need_images is False.
            stable: if True, will simulate a few actions in the neigborhood
                of the actions and return STABLY_SOLVED status iff all
                neigbour actions are either SOLVED or INVALID. Otherwise
                UNSTABLY_SOLVED is returned. SOLVED is never returned if
                stable is set.

        Returns:
             * phyre.simulation.Simulation object containing the result of
                the simulation. 
             * SimulationStatus, images, and featurized_objects are easily
                 accesible with simulation.simulation_status, simulation.images,
                 and simulation.featurized_objects.
        """
        user_input, is_valid = self._get_user_input(action)
        if not is_valid:
            return phyre.simulation.Simulation(
                status=SimulationStatus.INVALID_INPUT)

        main_status, images, objects = self._simulate_user_input(
            task_index, user_input, need_images, need_featurized_objects,
            stride,physics)
        if not stable or not main_status.is_solved():
            return phyre.simulation.Simulation(status=main_status,
                                               images=images,
                                               featurized_objects=objects)

        for modified_user_input in _yield_user_input_neighborhood(user_input):
            status, _, _ = self._simulate_user_input(
                task_index,
                modified_user_input,
                need_images=False,
                need_featurized_objects=False,
                stride=stride,physics=physics)
            if status.is_not_solved():
                return phyre.simulation.Simulation(
                    status=SimulationStatus.UNSTABLY_SOLVED,
                    images=images,
                    featurized_objects=objects)
        return phyre.simulation.Simulation(
            status=SimulationStatus.STABLY_SOLVED,
            images=images,
            featurized_objects=objects)