Ejemplo n.º 1
0
    ### Cosmo
    cosmo = constants.cosmo(args.fid_Om)

    ### Read deltas
    dels, ndels, zmin_pix, zmax_pix = io.read_deltas(args.in_dir, args.nside, xcf.lambda_abs, args.z_evol_del, args.z_ref, cosmo=cosmo,nspec=args.nspec)
    for p,delsp in dels.items():
        for d in delsp:
            d.fname = 'D1'
            for k in ['co','de','order','iv','diff','m_SNR','m_reso','m_z','dll']:
                setattr(d,k,None)
    xcf.npix = len(dels)
    xcf.dels = dels
    xcf.ndels = ndels
    sys.stderr.write("\n")
    print("done, npix = {}, ndels = {}".format(xcf.npix,xcf.ndels))
    sys.stderr.write("\n")

    ### Find the redshift range
    if (args.z_min_obj is None):
        dmin_pix = cosmo.r_comoving(zmin_pix)
        dmin_obj = max(0.,dmin_pix+xcf.rp_min)
        args.z_min_obj = cosmo.r_2_z(dmin_obj)
        sys.stderr.write("\r z_min_obj = {}\r".format(args.z_min_obj))
    if (args.z_max_obj is None):
        dmax_pix = cosmo.r_comoving(zmax_pix)
        dmax_obj = max(0.,dmax_pix+xcf.rp_max)
        args.z_max_obj = cosmo.r_2_z(dmax_obj)
        sys.stderr.write("\r z_max_obj = {}\r".format(args.z_max_obj))

    ### Read objects
Ejemplo n.º 2
0
Archivo: cf.py Proyecto: joselotl/picca
def metal_dmat(pix, abs_igm1="LYA", abs_igm2="SiIII(1207)"):

    dm = sp.zeros(np * nt * ntm * npm)
    wdm = sp.zeros(np * nt)
    rpeff = sp.zeros(ntm * npm)
    rteff = sp.zeros(ntm * npm)
    zeff = sp.zeros(ntm * npm)
    weff = sp.zeros(ntm * npm)

    npairs = 0
    npairs_used = 0
    for p in pix:
        for d1 in data[p]:
            print("\rcomputing metal dmat {} {}: {}%".format(
                abs_igm1, abs_igm2, round(counter.value * 100. / ndata, 3)),
                  end="")
            with lock:
                counter.value += 1

            r = sp.random.rand(len(d1.dneighs))
            w = r > rej
            npairs += len(d1.dneighs)
            npairs_used += w.sum()
            for d2 in sp.array(d1.dneighs)[w]:
                r1 = d1.r_comov
                rdm1 = d1.rdm_comov
                z1_abs1 = 10**d1.ll / constants.absorber_IGM[abs_igm1] - 1
                r1_abs1 = cosmo.r_comoving(z1_abs1)
                rdm1_abs1 = cosmo.dm(z1_abs1)
                w1 = d1.we

                wzcut = z1_abs1 < d1.zqso
                r1 = r1[wzcut]
                rdm1 = rdm1[wzcut]
                w1 = w1[wzcut]
                r1_abs1 = r1_abs1[wzcut]
                rdm1_abs1 = rdm1_abs1[wzcut]
                z1_abs1 = z1_abs1[wzcut]

                same_half_plate = (d1.plate == d2.plate) and\
                        ( (d1.fid<=500 and d2.fid<=500) or (d1.fid>500 and d2.fid>500) )
                ang = d1 ^ d2
                r2 = d2.r_comov
                rdm2 = d2.rdm_comov
                z2_abs2 = 10**d2.ll / constants.absorber_IGM[abs_igm2] - 1
                r2_abs2 = cosmo.r_comoving(z2_abs2)
                rdm2_abs2 = cosmo.dm(z2_abs2)
                w2 = d2.we

                wzcut = z2_abs2 < d2.zqso
                r2 = r2[wzcut]
                rdm2 = rdm2[wzcut]
                w2 = w2[wzcut]
                r2_abs2 = r2_abs2[wzcut]
                rdm2_abs2 = rdm2_abs2[wzcut]
                z2_abs2 = z2_abs2[wzcut]

                rp = (r1[:, None] - r2) * sp.cos(ang / 2)
                if not x_correlation:
                    rp = abs(rp)

                rt = (rdm1[:, None] + rdm2) * sp.sin(ang / 2)
                w12 = w1[:, None] * w2

                bp = sp.floor(
                    (rp - rp_min) / (rp_max - rp_min) * np).astype(int)
                bt = (rt / rt_max * nt).astype(int)

                if remove_same_half_plate_close_pairs and same_half_plate:
                    wp = abs(rp) < (rp_max - rp_min) / np
                    w12[wp] = 0.

                bA = bt + nt * bp
                wA = (bp < np) & (bt < nt) & (bp >= 0)
                c = sp.bincount(bA[wA], weights=w12[wA])
                wdm[:len(c)] += c

                rp_abs1_abs2 = (r1_abs1[:, None] - r2_abs2) * sp.cos(ang / 2)

                if not x_correlation:
                    rp_abs1_abs2 = abs(rp_abs1_abs2)

                rt_abs1_abs2 = (rdm1_abs1[:, None] + rdm2_abs2) * sp.sin(
                    ang / 2)
                zwe12 = (1 + z1_abs1[:, None])**(alpha_abs[abs_igm1] - 1) * (
                    1 + z2_abs2)**(alpha_abs[abs_igm2] - 1) / (1 + zref)**(
                        alpha_abs[abs_igm1] + alpha_abs[abs_igm2] - 2)

                bp_abs1_abs2 = sp.floor((rp_abs1_abs2 - rp_min) /
                                        (rp_max - rp_min) * npm).astype(int)
                bt_abs1_abs2 = (rt_abs1_abs2 / rt_max * ntm).astype(int)
                bBma = bt_abs1_abs2 + ntm * bp_abs1_abs2
                wBma = (bp_abs1_abs2 < npm) & (bt_abs1_abs2 <
                                               ntm) & (bp_abs1_abs2 >= 0)
                wAB = wA & wBma
                c = sp.bincount(bBma[wAB] + npm * ntm * bA[wAB],
                                weights=w12[wAB] * zwe12[wAB])
                dm[:len(c)] += c
                c = sp.bincount(bBma[wAB],
                                weights=rp_abs1_abs2[wAB] * w12[wAB] *
                                zwe12[wAB])
                rpeff[:len(c)] += c
                c = sp.bincount(bBma[wAB],
                                weights=rt_abs1_abs2[wAB] * w12[wAB] *
                                zwe12[wAB])
                rteff[:len(c)] += c
                c = sp.bincount(bBma[wAB],
                                weights=(z1_abs1[:, None] + z2_abs2)[wAB] / 2 *
                                w12[wAB] * zwe12[wAB])
                zeff[:len(c)] += c
                c = sp.bincount(bBma[wAB], weights=w12[wAB] * zwe12[wAB])
                weff[:len(c)] += c

                if ((not x_correlation) and
                    (abs_igm1 != abs_igm2)) or (x_correlation and
                                                (lambda_abs == lambda_abs2)):
                    r1 = d1.r_comov
                    rdm1 = d1.rdm_comov
                    w1 = d1.we
                    z1_abs2 = 10**d1.ll / constants.absorber_IGM[abs_igm2] - 1
                    r1_abs2 = cosmo.r_comoving(z1_abs2)
                    rdm1_abs2 = cosmo.dm(z1_abs2)

                    wzcut = z1_abs2 < d1.zqso
                    r1 = r1[wzcut]
                    rdm1 = rdm1[wzcut]
                    w1 = w1[wzcut]
                    z1_abs2 = z1_abs2[wzcut]
                    r1_abs2 = r1_abs2[wzcut]
                    rdm1_abs2 = rdm1_abs2[wzcut]

                    r2 = d2.r_comov
                    rdm2 = d2.rdm_comov
                    w2 = d2.we
                    z2_abs1 = 10**d2.ll / constants.absorber_IGM[abs_igm1] - 1
                    r2_abs1 = cosmo.r_comoving(z2_abs1)
                    rdm2_abs1 = cosmo.dm(z2_abs1)

                    wzcut = z2_abs1 < d2.zqso
                    r2 = r2[wzcut]
                    rdm2 = rdm2[wzcut]
                    w2 = w2[wzcut]
                    z2_abs1 = z2_abs1[wzcut]
                    r2_abs1 = r2_abs1[wzcut]
                    rdm2_abs1 = rdm2_abs1[wzcut]

                    rp = (r1[:, None] - r2) * sp.cos(ang / 2)
                    if not x_correlation:
                        rp = abs(rp)

                    rt = (rdm1[:, None] + rdm2) * sp.sin(ang / 2)
                    w12 = w1[:, None] * w2

                    bp = sp.floor(
                        (rp - rp_min) / (rp_max - rp_min) * np).astype(int)
                    bt = (rt / rt_max * nt).astype(int)
                    if remove_same_half_plate_close_pairs and same_half_plate:
                        wp = abs(rp) < (rp_max - rp_min) / np
                        w12[wp] = 0.
                    bA = bt + nt * bp
                    wA = (bp < np) & (bt < nt) & (bp >= 0)
                    c = sp.bincount(bA[wA], weights=w12[wA])
                    wdm[:len(c)] += c
                    rp_abs2_abs1 = (r1_abs2[:, None] - r2_abs1) * sp.cos(
                        ang / 2)
                    if not x_correlation:
                        rp_abs2_abs1 = abs(rp_abs2_abs1)

                    rt_abs2_abs1 = (rdm1_abs2[:, None] + rdm2_abs1) * sp.sin(
                        ang / 2)
                    zwe21 = (1 + z1_abs2[:, None])**(
                        alpha_abs[abs_igm2] - 1) * (1 + z2_abs1)**(
                            alpha_abs[abs_igm1] - 1) / (1 + zref)**(
                                alpha_abs[abs_igm1] + alpha_abs[abs_igm2] - 2)

                    bp_abs2_abs1 = sp.floor(
                        (rp_abs2_abs1 - rp_min) / (rp_max - rp_min) *
                        npm).astype(int)
                    bt_abs2_abs1 = (rt_abs2_abs1 / rt_max * ntm).astype(int)
                    bBam = bt_abs2_abs1 + ntm * bp_abs2_abs1
                    wBam = (bp_abs2_abs1 < npm) & (bt_abs2_abs1 <
                                                   ntm) & (bp_abs2_abs1 >= 0)
                    wAB = wA & wBam

                    c = sp.bincount(bBam[wAB],
                                    weights=rp_abs2_abs1[wAB] * w12[wAB] *
                                    zwe21[wAB])
                    rpeff[:len(c)] += c
                    c = sp.bincount(bBam[wAB],
                                    weights=rt_abs2_abs1[wAB] * w12[wAB] *
                                    zwe21[wAB])
                    rteff[:len(c)] += c
                    c = sp.bincount(bBam[wAB],
                                    weights=(z1_abs2[:, None] + z2_abs1)[wAB] /
                                    2 * w12[wAB] * zwe21[wAB])
                    zeff[:len(c)] += c
                    c = sp.bincount(bBam[wAB], weights=w12[wAB] * zwe21[wAB])
                    weff[:len(c)] += c

                    c = sp.bincount(bBam[wAB] + npm * ntm * bA[wAB],
                                    weights=w12[wAB] * zwe21[wAB])
                    dm[:len(c)] += c
            setattr(d1, "neighs", None)

    return wdm, dm.reshape(np * nt, npm *
                           ntm), rpeff, rteff, zeff, weff, npairs, npairs_used
Ejemplo n.º 3
0
Archivo: cf.py Proyecto: joselotl/picca
def wickT(pix):

    T1 = sp.zeros((np * nt, np * nt))
    T2 = sp.zeros((np * nt, np * nt))
    T3 = sp.zeros((np * nt, np * nt))
    T4 = sp.zeros((np * nt, np * nt))
    T5 = sp.zeros((np * nt, np * nt))
    T6 = sp.zeros((np * nt, np * nt))
    wAll = sp.zeros(np * nt)
    nb = sp.zeros(np * nt, dtype=sp.int64)
    npairs = 0
    npairs_used = 0

    for ipix in pix:

        r = sp.random.rand(len(data[ipix]))
        w = r > rej
        npairs += len(data[ipix])
        npairs_used += w.sum()
        if w.sum() == 0: continue

        for d1 in [td for ti, td in enumerate(data[ipix]) if w[ti]]:
            print("\rcomputing xi: {}%".format(
                round(counter.value * 100. / ndata / (1. - rej), 3)),
                  end="")
            with lock:
                counter.value += 1
            if len(d1.dneighs) == 0: continue

            v1 = v1d[d1.fname](d1.ll)
            w1 = d1.we
            c1d_1 = (w1 * w1[:, None]) * c1d[d1.fname](
                abs(d1.ll - d1.ll[:, None])) * sp.sqrt(v1 * v1[:, None])
            r1 = d1.r_comov
            z1 = d1.z

            for i2, d2 in enumerate(d1.dneighs):
                ang12 = d1 ^ d2

                v2 = v1d[d2.fname](d2.ll)
                w2 = d2.we
                c1d_2 = (w2 * w2[:, None]) * c1d[d2.fname](
                    abs(d2.ll - d2.ll[:, None])) * sp.sqrt(v2 * v2[:, None])
                r2 = d2.r_comov
                z2 = d2.z

                fill_wickT123(r1, r2, ang12, w1, d2.we, z1, z2, c1d_1, c1d_2,
                              wAll, nb, T1, T2, T3)
                if max_diagram <= 3: continue

                ### d3 and d2 have the same 'fname'
                for d3 in d1.dneighs[:i2]:
                    ang13 = d1 ^ d3
                    ang23 = d2 ^ d3

                    v3 = v1d[d3.fname](d3.ll)
                    w3 = d3.we
                    c1d_3 = (w3 * w3[:, None]) * c1d[d3.fname](
                        abs(d3.ll - d3.ll[:, None])) * sp.sqrt(
                            v3 * v3[:, None])
                    r3 = d3.r_comov
                    z3 = d3.z

                    fill_wickT45(r1, r2, r3, ang12, ang13, ang23, w1, w2, w3,
                                 z1, z2, z3, c1d_1, c1d_2, c1d_3, d1.fname,
                                 d2.fname, d3.fname, T4, T5)

                ### TODO: when there is two different catalogs
                ### d3 and d1 have the same 'fname'

    return wAll, nb, npairs, npairs_used, T1, T2, T3, T4, T5, T6
Ejemplo n.º 4
0
def wickT(pix):
    """Compute the Wick covariance matrix for the object-pixel
        cross-correlation

    Args:
        pix (lst): list of HEALpix pixels

    Returns:
        (tuple): results of the Wick computation

    """
    T1 = sp.zeros((np * nt, np * nt))
    T2 = sp.zeros((np * nt, np * nt))
    T3 = sp.zeros((np * nt, np * nt))
    T4 = sp.zeros((np * nt, np * nt))
    T5 = sp.zeros((np * nt, np * nt))
    T6 = sp.zeros((np * nt, np * nt))
    wAll = sp.zeros(np * nt)
    nb = sp.zeros(np * nt, dtype=sp.int64)
    npairs = 0
    npairs_used = 0

    for ipix in pix:

        npairs += len(dels[ipix])
        r = sp.random.rand(len(dels[ipix]))
        w = r > rej
        npairs_used += w.sum()
        if w.sum() == 0: continue

        for d1 in [td for ti, td in enumerate(dels[ipix]) if w[ti]]:
            print("\rcomputing xi: {}%".format(
                round(counter.value * 100. / ndels / (1. - rej), 3)),
                  end="")
            with lock:
                counter.value += 1
            if d1.qneighs.size == 0: continue

            v1 = v1d[d1.fname](d1.ll)
            w1 = d1.we
            c1d_1 = (w1 * w1[:, None]) * c1d[d1.fname](
                abs(d1.ll - d1.ll[:, None])) * sp.sqrt(v1 * v1[:, None])
            r1 = d1.r_comov
            z1 = d1.z

            neighs = d1.qneighs
            ang12 = d1 ^ neighs
            r2 = sp.array([q2.r_comov for q2 in neighs])
            z2 = sp.array([q2.zqso for q2 in neighs])
            w2 = sp.array([q2.we for q2 in neighs])

            fill_wickT1234(ang12, r1, r2, z1, z2, w1, w2, c1d_1, wAll, nb, T1,
                           T2, T3, T4)

            ### Higher order diagrams
            if (cfWick is None) or (max_diagram <= 4): continue
            thid2 = sp.array([q2.thid for q2 in neighs])
            for d3 in sp.array(d1.dneighs):
                if d3.qneighs.size == 0: continue

                ang13 = d1 ^ d3

                r3 = d3.r_comov
                w3 = d3.we

                neighs = d3.qneighs
                ang34 = d3 ^ neighs
                r4 = sp.array([q4.r_comov for q4 in neighs])
                w4 = sp.array([q4.we for q4 in neighs])
                thid4 = sp.array([q4.thid for q4 in neighs])

                if max_diagram == 5:
                    w = sp.in1d(d1.qneighs, d3.qneighs)
                    if w.sum() == 0: continue
                    t_ang12 = ang12[w]
                    t_r2 = r2[w]
                    t_w2 = w2[w]
                    t_thid2 = thid2[w]

                    w = sp.in1d(d3.qneighs, d1.qneighs)
                    if w.sum() == 0: continue
                    ang34 = ang34[w]
                    r4 = r4[w]
                    w4 = w4[w]
                    thid4 = thid4[w]

                fill_wickT56(t_ang12, ang34, ang13, r1, t_r2, r3, r4, w1, t_w2,
                             w3, w4, t_thid2, thid4, T5, T6)

    return wAll, nb, npairs, npairs_used, T1, T2, T3, T4, T5, T6
Ejemplo n.º 5
0
    cf.n1d = int((cf.lmax-cf.lmin)/cf.dll+1)
    cf.x_correlation = False

    cf.lambda_abs = constants.absorber_IGM[args.lambda_abs]
    if args.lambda_abs2:
        cf.lambda_abs2 = constants.absorber_IGM[args.lambda_abs2]
    else:
        cf.lambda_abs2 = constants.absorber_IGM[args.lambda_abs]


    ### Read data 1
    data, ndata, zmin_pix, zmax_pix = io.read_deltas(args.in_dir, cf.nside, cf.lambda_abs,args.z_evol, args.z_ref, cosmo=None,nspec=args.nspec,no_project=args.no_project)
    cf.npix  = len(data)
    cf.data  = data
    cf.ndata = ndata
    print("")
    print("done, npix = {}\n".format(cf.npix))

    ### Read data 2
    if args.in_dir2:
        cf.x_correlation = True
        data2, ndata2, zmin_pix2, zmax_pix2 = io.read_deltas(args.in_dir2, cf.nside, cf.lambda_abs2,args.z_evol2, args.z_ref, cosmo=None,nspec=args.nspec,no_project=args.no_project)
        cf.data2  = data2
        cf.ndata2 = ndata2
        print("")
        print("done, npix = {}\n".format(len(data2)))
    elif cf.lambda_abs != cf.lambda_abs2:
        cf.x_correlation = True
        data2, ndata2, zmin_pix2, zmax_pix2 = io.read_deltas(args.in_dir, cf.nside, cf.lambda_abs2,args.z_evol2, args.z_ref, cosmo=None,nspec=args.nspec,no_project=args.no_project)
        cf.data2  = data2
        cf.ndata2 = ndata2
Ejemplo n.º 6
0
    cosmo = constants.cosmo(args.fid_Om)

    ### Read deltas
    dels, ndels, zmin_pix, zmax_pix = io.read_deltas(
        args.in_dir,
        args.nside,
        constants.absorber_IGM[args.lambda_abs],
        args.z_evol_del,
        args.z_ref,
        cosmo=cosmo,
        nspec=args.nspec,
        no_project=args.no_project)
    xcf.npix = len(dels)
    xcf.dels = dels
    xcf.ndels = ndels
    print("")
    print("done, npix = {}".format(xcf.npix))

    ### Remove <delta> vs. lambda_obs
    if not args.no_remove_mean_lambda_obs:
        forest.dll = None
        for p in xcf.dels:
            for d in xcf.dels[p]:
                dll = sp.asarray([
                    d.ll[ii] - d.ll[ii - 1] for ii in range(1, d.ll.size)
                ]).min()
                if forest.dll is None:
                    forest.dll = dll
                else:
                    forest.dll = min(dll, forest.dll)
        forest.lmin = sp.log10(
Ejemplo n.º 7
0
def metal_dmat(pix, abs_igm="SiII(1526)"):

    dm = sp.zeros(np * nt * ntm * npm)
    wdm = sp.zeros(np * nt)
    rpeff = sp.zeros(ntm * npm)
    rteff = sp.zeros(ntm * npm)
    zeff = sp.zeros(ntm * npm)
    weff = sp.zeros(ntm * npm)

    npairs = 0
    npairs_used = 0
    for p in pix:
        for d in dels[p]:
            with lock:
                print("\rcomputing metal dmat {}: {}%".format(
                    abs_igm, round(counter.value * 100. / ndels, 3)),
                      end="")
                counter.value += 1

            r = sp.random.rand(len(d.qneighs))
            w = r > rej
            npairs += len(d.qneighs)
            npairs_used += w.sum()

            rd = d.r_comov
            rdm = d.rdm_comov
            wd = d.we
            zd_abs = 10**d.ll / constants.absorber_IGM[abs_igm] - 1
            rd_abs = cosmo.r_comoving(zd_abs)
            rdm_abs = cosmo.dm(zd_abs)

            wzcut = zd_abs < d.zqso
            rd = rd[wzcut]
            rdm = rdm[wzcut]
            wd = wd[wzcut]
            zd_abs = zd_abs[wzcut]
            rd_abs = rd_abs[wzcut]
            rdm_abs = rdm_abs[wzcut]
            if rd.size == 0: continue

            for q in sp.array(d.qneighs)[w]:
                ang = d ^ q

                rq = q.r_comov
                rqm = q.rdm_comov
                wq = q.we
                zq = q.zqso
                rp = (rd - rq) * sp.cos(ang / 2)
                rt = (rdm + rqm) * sp.sin(ang / 2)
                wdq = wd * wq

                wA = (rp > rp_min) & (rp < rp_max) & (rt < rt_max)
                bp = ((rp - rp_min) / (rp_max - rp_min) * np).astype(int)
                bt = (rt / rt_max * nt).astype(int)
                bA = bt + nt * bp
                c = sp.bincount(bA[wA], weights=wdq[wA])
                wdm[:len(c)] += c

                rp_abs = (rd_abs - rq) * sp.cos(ang / 2)
                rt_abs = (rdm_abs + rqm) * sp.sin(ang / 2)

                bp_abs = ((rp_abs - rp_min) / (rp_max - rp_min) *
                          npm).astype(int)
                bt_abs = (rt_abs / rt_max * ntm).astype(int)
                bBma = bt_abs + ntm * bp_abs
                wBma = (rp_abs > rp_min) & (rp_abs < rp_max) & (rt_abs <
                                                                rt_max)
                wAB = wA & wBma
                c = sp.bincount(bBma[wAB] + npm * ntm * bA[wAB],
                                weights=wdq[wAB])
                dm[:len(c)] += c

                c = sp.bincount(bBma[wAB], weights=rp_abs[wAB] * wdq[wAB])
                rpeff[:len(c)] += c
                c = sp.bincount(bBma[wAB], weights=rt_abs[wAB] * wdq[wAB])
                rteff[:len(c)] += c
                c = sp.bincount(bBma[wAB],
                                weights=(zd_abs + zq)[wAB] / 2 * wdq[wAB])
                zeff[:len(c)] += c
                c = sp.bincount(bBma[wAB], weights=wdq[wAB])
                weff[:len(c)] += c
            setattr(d, "qneighs", None)

    return wdm, dm.reshape(np * nt, npm *
                           ntm), rpeff, rteff, zeff, weff, npairs, npairs_used
Ejemplo n.º 8
0
    ### Read data 1
    data, ndata, zmin_pix, zmax_pix = io.read_deltas(
        args.in_dir,
        cf.nside,
        cf.lambda_abs,
        cf.alpha,
        cf.zref,
        cosmo,
        nspec=args.nspec,
        no_project=args.no_project)
    cf.npix = len(data)
    cf.data = data
    cf.ndata = ndata
    cf.angmax = utils.compute_ang_max(cosmo, cf.rt_max, zmin_pix)
    print("")
    print("done, npix = {}".format(cf.npix))

    ### Read data 2
    if args.in_dir2 or args.lambda_abs2:
        if args.lambda_abs2 or args.unfold_cf:
            cf.x_correlation = True
        cf.alpha2 = args.z_evol2
        if args.in_dir2 is None:
            args.in_dir2 = args.in_dir
        if args.lambda_abs2:
            cf.lambda_abs2 = constants.absorber_IGM[args.lambda_abs2]
        else:
            cf.lambda_abs2 = cf.lambda_abs

        data2, ndata2, zmin_pix2, zmax_pix2 = io.read_deltas(
Ejemplo n.º 9
0
        '--cov',
        type=str,
        default=None,
        required=False,
        help=
        'Path to a covariance matrix file (if not provided it will be calculated by subsampling or from Poisson statistics)'
    )

    args = parser.parse_args()

    ### Auto or cross correlation?
    if (args.DD_file is None and args.xDD_file is None) or (
            not args.DD_file is None and not args.xDD_file is None) or (
                not args.cov is None and not args.get_cov_from_poisson):
        print(
            'ERROR: No data files, or both auto and cross data files, or two different method for covariance'
        )
        sys.exit()
    elif not args.DD_file is None:
        corr = 'AUTO'
        lst_file = {
            'DD': args.DD_file,
            'RR': args.RR_file,
            'DR': args.DR_file,
            'RD': args.RD_file
        }
    elif not args.xDD_file is None:
        # TODO: Test if picca_co.py and export_co.py work for cross
        corr = 'CROSS'
        lst_file = {
            'xDD': args.xDD_file,
Ejemplo n.º 10
0
    parser.add_argument('--error-on-mean', action='store_true', default=False,
        help='Divide the covairance by the number of realizations')

    parser.add_argument('--do-not-smooth-cov', action='store_true', default=False,
        help='Do not smooth the covariance matrix')

    parser.add_argument('--out', type=str, default=None, required=True,
        help='Output file name')

    args = parser.parse_args()

    ###
    head = {'RPMIN':None, 'RPMAX':None, 'RTMAX':None, 'NP':None, 'NT':None}
    dic = {'RP':[], 'RT':[], 'Z':[], 'NB':[], 'DA':[]}
    for i,f in enumerate(args.data):
        print('INFO: file {}: {} over {} files'.format(i,f,len(args.data)))
        h = fitsio.FITS(f)

        for k in head.keys():
            if head[k] is None:
                head[k] = h[1].read_header()[k]
            else:
                assert head[k]==h[1].read_header()[k]

        for k in [ el for el in dic.keys() if el!='DA']:
            dic[k] += [h[1][k][:]]

        if h[1].read_header()['EXTNAME'].strip()=='ATTRI':
            da = np.array(h['COR']['DA'][:])
            we = np.array(h['COR']['WE'][:])
            da = (da*we).sum(axis=0)
Ejemplo n.º 11
0
for f in args.data:
    if not (os.path.isfile(f.replace('cf', 'dmat')) or args.no_dmat):
        continue
    h = fitsio.FITS(f)
    we_aux = h[2]["WE"][:]
    wet_aux = we_aux.sum(axis=0)
    rp += h[1]['RP'][:] * wet_aux
    rt += h[1]['RT'][:] * wet_aux
    z += h[1]['Z'][:] * wet_aux
    nb += h[1]['NB'][:]
    wet += wet_aux

    hid = h[2]['HEALPID'][:]
    for i, p in enumerate(hid):
        print("\rcoadding healpix {} in file {}".format(p, f), end="")
        if p in da:
            da[p] += h[2]["DA"][:][i] * we_aux[i]
            we[p] += we_aux[i, :]
        else:
            da[p] = h[2]["DA"][:][i] * we_aux[i]
            we[p] = we_aux[i]
    h.close()

    if not args.no_dmat:
        h = fitsio.FITS(f.replace('cf', 'dmat'))
        dm += h[1]['DM'][:] * wet_aux[:, None]
        if 'dmrp' in locals():
            ## TODO: get the weights
            dmrp += h[2]['RP'][:]
            dmrt += h[2]['RT'][:]
Ejemplo n.º 12
0
                        help='Maximum number of spectra to read')

    parser.add_argument(
        '--unfold-cf',
        action='store_true',
        required=False,
        help=
        'rp can be positive or negative depending on the relative position between absorber1 and absorber2'
    )

    args = parser.parse_args()

    if args.nproc is None:
        args.nproc = cpu_count() // 2

    print("nproc", args.nproc)

    cf.rp_max = args.rp_max
    cf.rp_min = args.rp_min
    cf.rt_max = args.rt_max
    cf.z_cut_max = args.z_cut_max
    cf.z_cut_min = args.z_cut_min
    # npb = number of parallel bins (to avoid collision with numpy np)
    cf.npb = args.np
    cf.ntb = args.nt
    cf.npm = args.np * args.coef_binning_model
    cf.ntm = args.nt * args.coef_binning_model
    cf.nside = args.nside
    cf.zref = args.z_ref
    cf.alpha = args.z_evol
    cf.rej = args.rej
Ejemplo n.º 13
0
    rp_max = head['RPMAX']
    h.close()

    if not args.remove_shuffled_correlation is None:
        th = fitsio.FITS(args.remove_shuffled_correlation)
        da_s = th['COR']['DA'][:]
        we_s = th['COR']['WE'][:]
        da_s = (da_s*we_s).sum(axis=1)
        we_s = we_s.sum(axis=1)
        w = we_s>0.
        da_s[w] /= we_s[w]
        th.close()
        da -= da_s[:,None]

    if args.cov is not None:
        print('INFO: The covariance-matrix will be read from file: {}'.format(args.cov))
        hh = fitsio.FITS(args.cov)
        co = hh[1]['CO'][:]
        hh.close()
    elif args.cor is not None:
        print('INFO: The correlation-matrix will be read from file: {}'.format(args.cor))
        hh = fitsio.FITS(args.cor)
        cor = hh[1]['CO'][:]
        hh.close()
        if (cor.min()<-1.) | (cor.min()>1.) | (cor.max()<-1.) | (cor.max()>1.) | sp.any(np.diag(cor)!=1.):
            print('WARNING: The correlation-matrix has some incorrect values')
        tvar = np.diagonal(cor)
        cor = cor/np.sqrt(tvar*tvar[:,None])
        co = cov(da,we)
        var = np.diagonal(co)
        co = cor * np.sqrt(var*var[:,None])
Ejemplo n.º 14
0
def var_lss(data, eta_lim=(0.5, 1.5), vlss_lim=(0., 0.3)):
    nlss = 20
    eta = sp.zeros(nlss)
    vlss = sp.zeros(nlss)
    fudge = sp.zeros(nlss)
    err_eta = sp.zeros(nlss)
    err_vlss = sp.zeros(nlss)
    err_fudge = sp.zeros(nlss)
    nb_pixels = sp.zeros(nlss)
    ll = forest.lmin + (sp.arange(nlss) + .5) * (forest.lmax -
                                                 forest.lmin) / nlss

    nwe = 100
    vpmin = sp.log10(1e-5)
    vpmax = sp.log10(2.)
    var = 10**(vpmin + (sp.arange(nwe) + .5) * (vpmax - vpmin) / nwe)

    var_del = sp.zeros(nlss * nwe)
    mdel = sp.zeros(nlss * nwe)
    var2_del = sp.zeros(nlss * nwe)
    count = sp.zeros(nlss * nwe)
    nqso = sp.zeros(nlss * nwe)

    for p in sorted(list(data.keys())):
        for d in data[p]:

            var_pipe = 1 / d.iv / d.co**2
            w = (sp.log10(var_pipe) > vpmin) & (sp.log10(var_pipe) < vpmax)

            bll = ((d.ll - forest.lmin) / (forest.lmax - forest.lmin) *
                   nlss).astype(int)
            bwe = sp.floor((sp.log10(var_pipe) - vpmin) / (vpmax - vpmin) *
                           nwe).astype(int)

            bll = bll[w]
            bwe = bwe[w]

            de = (d.fl / d.co - 1)
            de = de[w]

            bins = bwe + nwe * bll

            c = sp.bincount(bins, weights=de)
            mdel[:len(c)] += c

            c = sp.bincount(bins, weights=de**2)
            var_del[:len(c)] += c

            c = sp.bincount(bins, weights=de**4)
            var2_del[:len(c)] += c

            c = sp.bincount(bins)
            count[:len(c)] += c
            nqso[sp.unique(bins)] += 1

    w = count > 0
    var_del[w] /= count[w]
    mdel[w] /= count[w]
    var_del -= mdel**2
    var2_del[w] /= count[w]
    var2_del -= var_del**2
    var2_del[w] /= count[w]

    bin_chi2 = sp.zeros(nlss)
    fudge_ref = 1e-7
    for i in range(nlss):

        def chi2(eta, vlss, fudge):
            v = var_del[i * nwe:(i + 1) * nwe] - variance(
                var, eta, vlss, fudge * fudge_ref)
            dv2 = var2_del[i * nwe:(i + 1) * nwe]
            w = nqso[i * nwe:(i + 1) * nwe] > 100
            return sp.sum(v[w]**2 / dv2[w])

        mig = iminuit.Minuit(chi2,
                             forced_parameters=("eta", "vlss", "fudge"),
                             eta=1.,
                             vlss=0.1,
                             fudge=1.,
                             error_eta=0.05,
                             error_vlss=0.05,
                             error_fudge=0.05,
                             errordef=1.,
                             print_level=0,
                             limit_eta=eta_lim,
                             limit_vlss=vlss_lim,
                             limit_fudge=(0, None))
        mig.migrad()

        if mig.migrad_ok():
            mig.hesse()
            eta[i] = mig.values["eta"]
            vlss[i] = mig.values["vlss"]
            fudge[i] = mig.values["fudge"] * fudge_ref
            err_eta[i] = mig.errors["eta"]
            err_vlss[i] = mig.errors["vlss"]
            err_fudge[i] = mig.errors["fudge"] * fudge_ref
        else:
            eta[i] = 1.
            vlss[i] = 0.1
            fudge[i] = 1. * fudge_ref
            err_eta[i] = 0.
            err_vlss[i] = 0.
            err_fudge[i] = 0.
        nb_pixels[i] = count[i * nwe:(i + 1) * nwe].sum()
        bin_chi2[i] = mig.fval
        print(eta[i], vlss[i], fudge[i], mig.fval, nb_pixels[i], err_eta[i],
              err_vlss[i], err_fudge[i])

    return ll, eta, vlss, fudge, nb_pixels, var, var_del.reshape(
        nlss,
        -1), var2_del.reshape(nlss, -1), count.reshape(nlss, -1), nqso.reshape(
            nlss, -1), bin_chi2, err_eta, err_vlss, err_fudge
Ejemplo n.º 15
0
    xcf.rt_max = args.rt_max
    xcf.np = args.np
    xcf.nt = args.nt
    xcf.nside = args.nside
    xcf.lambda_abs = constants.absorber_IGM[args.lambda_abs]

    cosmo = constants.cosmo(args.fid_Om)

    ### Read deltas
    dels, ndels, zmin_pix, zmax_pix = io.read_deltas(args.in_dir, args.nside, xcf.lambda_abs,
        args.z_evol_del, args.z_ref, cosmo=cosmo,nspec=args.nspec,no_project=args.no_project,
        from_image=args.from_image)
    xcf.npix = len(dels)
    xcf.dels = dels
    xcf.ndels = ndels
    print("")
    print("done, npix = {}\n".format(xcf.npix))

    ### Remove <delta> vs. lambda_obs
    if not args.no_remove_mean_lambda_obs:
        forest.dll = None
        for p in xcf.dels:
            for d in xcf.dels[p]:
                dll = sp.asarray([d.ll[ii]-d.ll[ii-1] for ii in range(1,d.ll.size)]).min()
                if forest.dll is None:
                    forest.dll = dll
                else:
                    forest.dll = min(dll,forest.dll)
        forest.lmin  = sp.log10( (zmin_pix+1.)*xcf.lambda_abs )-forest.dll/2.
        forest.lmax  = sp.log10( (zmax_pix+1.)*xcf.lambda_abs )+forest.dll/2.
        ll,st, wst   = prep_del.stack(xcf.dels,delta=True)
Ejemplo n.º 16
0
    parser.add_argument('--nside', type=int, default=16, required=False,
        help='Healpix nside')

    parser.add_argument('--nproc', type=int, default=None, required=False,
        help='Number of processors')

    parser.add_argument('--nspec', type=int, default=None, required=False,
        help='Maximum number of spectra to read')


    args = parser.parse_args()

    if args.nproc is None:
        args.nproc = cpu_count()//2

    print("nproc",args.nproc)

    cf.rp_max = args.rp_max
    cf.rt_max = args.rt_max
    cf.rp_min = args.rp_min
    cf.z_cut_max = args.z_cut_max
    cf.z_cut_min = args.z_cut_min
    # npb = number of parallel bins (to avoid collision with numpy np)
    cf.npb = args.np
    cf.ntb = args.nt
    cf.nside = args.nside
    cf.zref = args.z_ref
    cf.alpha = args.z_evol
    cf.alpha2 = args.z_evol
    cf.lambda_abs = constants.absorber_IGM[args.lambda_abs]
    cf.rej = args.rej
Ejemplo n.º 17
0
    parser.add_argument('--nproc', type=int, default=None, required=False,
        help='Number of processors')

    parser.add_argument('--nspec', type=int, default=None, required=False,
        help='Maximum number of spectra to read')

    parser.add_argument('--unfold-cf', action='store_true', required=False,
        help='rp can be positive or negative depending on the relative position between absorber1 and absorber2')

    args = parser.parse_args()

    if args.nproc is None:
        args.nproc = cpu_count()//2

    print("nproc",args.nproc)


    cf.rp_max = args.rp_max
    cf.rt_max = args.rt_max
    cf.rp_min = args.rp_min
    cf.z_cut_max = args.z_cut_max
    cf.z_cut_min = args.z_cut_min
    # npb = number of parallel bins (to avoid collision with numpy np)
    cf.npb = args.np*args.coef_binning_model
    cf.ntb = args.nt*args.coef_binning_model
    cf.npm = args.np*args.coef_binning_model
    cf.ntm = args.nt*args.coef_binning_model
    cf.nside = args.nside
    cf.zref = args.z_ref
    cf.alpha = args.z_evol
Ejemplo n.º 18
0
                        default=None,
                        required=False,
                        help='Number of processors')

    parser.add_argument('--nspec',
                        type=int,
                        default=None,
                        required=False,
                        help='Maximum number of spectra to read')

    args = parser.parse_args()

    if args.nproc is None:
        args.nproc = cpu_count() // 2

    print("nproc", args.nproc)

    cf.rp_max = args.rp_max
    cf.rt_max = args.rt_max
    cf.rp_min = args.rp_min
    cf.z_cut_max = args.z_cut_max
    cf.z_cut_min = args.z_cut_min
    cf.np = args.np
    cf.nt = args.nt
    cf.nside = args.nside
    cf.zref = args.z_ref
    cf.alpha = args.z_evol
    cf.alpha2 = args.z_evol
    cf.lambda_abs = constants.absorber_IGM[args.lambda_abs]
    cf.rej = args.rej
    cf.max_diagram = args.max_diagram