Ejemplo n.º 1
0
def extractTracesFromSinglePKL(TrainingSetConfigurations, TrainingConfSize,
                               TrainingConfFilename, OutputFilenamem,
                               verboseDebug):
    """    
    Receive Encoding of traces for each  configuration    
    """

    allTracesAutonomoose = loadObjectFromPickle(
        getSingleFilenameWithAllTraces())

    GlobalTmpArray = []

    for configurationId in TrainingSetConfigurations:
        print("Processing {0}".format(configurationId))
        #        print ("Configuration {0}, Number of Traces {1} ".format(configurationId, len(allTracesAutonomoose[configurationId])))

        lstAllTracesForConf = allTracesAutonomoose[configurationId]

        dctTransitionsToExecutions = {}

        for anAutonomoseExecutionTrace in lstAllTracesForConf:
            #Each trace is AutonomooseTraces.ExecutionTraceAutonomoose
            anAutonomoseExecutionTrace.addExecutedTransitionsToDictionary(
                dctTransitionsToExecutions)


#            print ("After processing an  execution of type {0}, we have a dicitonary with {1} elements".format(type(anAutonomoseExecutionTrace), \
#                   sum([len(dctTransitionsToExecutions[x]) for x in dctTransitionsToExecutions.keys()])))

        print(dctTransitionsToExecutions.keys())

        GlobalTmpArray.append(dctTransitionsToExecutions)

    saveObjectToPickleFile(OutputFilename, GlobalTmpArray)
def summarizeTracesX264SpecialFromResults(
        pklOuptputFilename,
        baseFilenameTemplate="news/results/rq2_predictions_rep_{0}.csv"):
    """
    Summarize Traces X264 from both results and from reading through traces (for the configurations in the training set)
    
    
    Get Input data for files News and Container.
    """

    dctAllTracesExecutionTimes = {}
    showNextInserts = False
    for testTrainSplit in range(1, 11):
        fdFilename = baseFilenameTemplate.format(testTrainSplit)
        print("Starting openning {0}".format(fdFilename))
        fdAll = open(fdFilename, "r")
        lineIndex = 0

        seenConfigurations = 0

        for line in fdAll:
            if lineIndex == 0:
                lineIndex = lineIndex + 1
                continue

            splitInParts = line.strip().split(",")
            if lineIndex == 18440 and testTrainSplit == 1:
                print(splitInParts)

            confId, timeTaken = splitInParts[0], splitInParts[1]

            if (int(confId), (seenConfigurations +
                              1)) not in dctAllTracesExecutionTimes.keys():
                seenConfigurations = seenConfigurations + 1
                if showNextInserts:
                    print("Will insert {0}--{1}".format(
                        confId, seenConfigurations))
                dctAllTracesExecutionTimes[(
                    int(confId), seenConfigurations)] = float(timeTaken)
                if seenConfigurations == 10:
                    seenConfigurations = 0

            lineIndex = lineIndex + 1
            if lineIndex == 18441:
                break

        print("After full search we have  {0} keys".format(
            len(dctAllTracesExecutionTimes.keys())))

        if len(dctAllTracesExecutionTimes.keys()) >= 23030:
            showNextInserts = True
    for a, b in dctAllTracesExecutionTimes.keys():
        if (a not in range(0, 2304)) and (b not in range(1, 11)):
            print("a={0} b={1}".format(a, b))

    pickleFacade.saveObjectToPickleFile(pklOuptputFilename,
                                        dctAllTracesExecutionTimes)
Ejemplo n.º 3
0
def summarizeTracesX264(pklOuptputFilename,
                        pklOuptputPerTransitionFilename,
                        onlyPerTransition=False):
    """
    Read all traces from the source folder (already set) and summarize their overall execution time, # of counts per transition, and total time per transition.


    Creates two PKL Files. First one is dictionary mapping confId, repetitionId to overal execution time. 
    Second one is Chained Dictionary mapping Conf -- > rep --> transitionId --> (Count, TimeTakenTotal)
    
    Parameters
    ----------
    pklOutput : string
    Filename where to store results.
    onlyPerTransition: special flag to indicate not to save per trace totals 
    """
    allConfigurationsIds = range(0, 2304)

    dctAllTracesExecutionTimes = {}
    dctConfTodctRepTodctTransitionToTimes = {}

    for aConfId in allConfigurationsIds:
        print("Summarizing Configuration {0}".format(aConfId))
        dctConfTodctRepTodctTransitionToTimes[aConfId] = {}
        for repetitionId in range(1, 11):

            dctTransitionToTimeTamekn = sumTimeTakenPerTransitionFromConfigurationAndRep(
                aConfId, repetitionId)

            if (not onlyPerTransition):

                timeTakenByTraceAddition = sum([
                    dctTransitionToTimeTamekn[x][MLConstants.tupleTimeOffset]
                    for x in dctTransitionToTimeTamekn.keys()
                ])

                dctAllTracesExecutionTimes[(
                    aConfId, repetitionId)] = timeTakenByTraceAddition

            dctConfTodctRepTodctTransitionToTimes[aConfId][
                repetitionId] = dctTransitionToTimeTamekn


#            print(timeTakenByTraceAddition)

#    print (dctAllTracesExecutionTimes.keys())
#    print (dctConfTodctRepTodctTransitionToTimes.keys())

    if (onlyPerTransition):
        pickleFacade.saveObjectToPickleFile(
            pklOuptputPerTransitionFilename,
            dctConfTodctRepTodctTransitionToTimes)
    else:
        pickleFacade.saveObjectToPickleFile(pklOuptputFilename,
                                            dctAllTracesExecutionTimes)
        pickleFacade.saveObjectToPickleFile(
            pklOuptputPerTransitionFilename,
            dctConfTodctRepTodctTransitionToTimes)
Ejemplo n.º 4
0
        loadObjectFromPickle(confTrainFilename)
        
    if SubjectSystem == MLConstants.x264Name:
 
        listTransitionToSample = getAllTransitionsIdsList()
        
    elif SubjectSystem == MLConstants.autonomooseName:
        
        listTransitionToSample = getListOfAvailableTransitionsAutonomoose(trainDataset)
        
    RegressorList = []
    for transitionId in listTransitionToSample:
        if transitionId in bestRegressorPerTransition.keys():
            newRegressor = crateRegressorWrapperFromTuple(transitionId, bestRegressorPerTransition[transitionId])
        else:
            continue
        
        if SubjectSystem == MLConstants.x264Name:
             
            YSet = extractLinearArrayTimeTakenForSingleTransition(trainDataset, newRegressor.getTransitionId())
             
        else:
             
            YSet = getSetOfExecutionTimesAutonomoose(trainDataset, newRegressor.getTransitionId(), trainOrderedConfs)
             
        FitTrainDataFroRegressor(newRegressor, trainOrderedConfs, YSet, SubjectSystem)
         
        RegressorList.append(newRegressor)
    
    saveObjectToPickleFile(RegressorOutputFilename, RegressorList)
Ejemplo n.º 5
0
def extractAndSampleBySectionsFromTraces(TrainingSetConfigurations,
                                         TrainingConfSize,
                                         TrainingConfFilename, OutputFilenamem,
                                         verboseDebug):
    """
    Generate a file that includes up to 500 000 executions of each transition for each configuraiton in TrainingSetConfigurations.
    """
    if verboseDebug:
        # free only exists in linux
        print("Memory Information at Program Launch ")
        call(["free", "-h"])

    globalCounts = {}

    for outerPart in range(0, NUM_TEMPORARY_PARTS):

        transitionArrayOfDictionary = []

        smallSet = TrainingSetConfigurations[outerPart * 20:(outerPart * 20) +
                                             20]

        if verboseDebug:
            print("At subloop {0}, memory status :".format(outerPart))
            call(["free", "-h"])

        for configurationId in smallSet:

            for repId in range(1, NUM_REPETITIONS_PER_TRACE + 1):

                traceFilename = getFilenameFromConfigurationAndRepetition(
                    configurationId, repId)

                AllTransitions = extractTransitionToBagOfTimesDictionaryFromTraceFile(
                    traceFilename)

                transitionArrayOfDictionary.append(AllTransitions)

        if verboseDebug:
            print(
                "Possible Peak subloop memory at loop  {0}".format(outerPart))
            call(["free", "-h"])

        mergedDictionary = conjoinRepetedDictionaries(
            transitionArrayOfDictionary)

        transitionArrayOfDictionary = []

        if verboseDebug:
            print(
                "Possible Peak subloop memory at loop  {0}".format(outerPart))
            call(["free", "-h"])

        allCounts = calculatePerTransitionsCounts(mergedDictionary)

        if verboseDebug:
            print(allCounts)

        addCountDictionaries(globalCounts, allCounts)

        if verboseDebug:
            print("Will save Dict of length = {0}".format(
                len(mergedDictionary)))

        saveObjectToPickleFile(temporaryFilenameTemplate.format(outerPart),
                               mergedDictionary)

        transitionArrayOfDictionary = []
        AllTransitions = []
        mergedDictionary = []
        allCounts = {}

        if verboseDebug:
            print("Memory After Clean Up")
            call(["free", "-h"])

    if verboseDebug:
        print("Completed")
        print("globalCounts: {0}".format(globalCounts))

    if verboseDebug:
        print("Final Memory Before Shutdown")
        call(["free", "-h"])

    GlobalTmpFinalArray = []
    for outerIndex in range(0, NUM_TEMPORARY_PARTS):
        if verboseDebug:
            print("Memory Start Loading Loop at {0}".format(outerIndex))
            call(["free", "-h"])

        unsampledMergedDictArray = loadObjectFromPickle(
            temporaryFilenameTemplate.format(outerIndex))

        if verboseDebug:
            print("Loading Memory Peak I at {0}".format(outerIndex))
            call(["free", "-h"])

        TmpFinalArrayDict = downSampleToNewMaxExecutions(
            unsampledMergedDictArray, actualCountsDictionary=globalCounts)

        if verboseDebug:
            print("Loading Memory Peak II at {0}".format(outerIndex))
            call(["free", "-h"])

        unsampledMergedDictArray = []

        GlobalTmpFinalArray.extend(TmpFinalArrayDict)

        TmpFinalArrayDict = []

        if verboseDebug:
            print("Reloading Memory Final at {0}".format(outerIndex))
            call(["free", "-h"])

    if verboseDebug:
        print("Saving Final Dictionary of length {0}".format(
            len(GlobalTmpFinalArray)))

    saveObjectToPickleFile(OutputFilename, GlobalTmpFinalArray)
Ejemplo n.º 6
0
    setBaseTracesSourceFolder(TraceSourceFolder)

    if SubjectSystem == MLConstants.x264Name:

        TestsetConfigurationSize = 2304 - TrainingConfSize

        TrainingSetConfigurations = train_test_split(getAllPossibleIds(MLConstants.x264Id), getAllPossibleIds(MLConstants.x264Id),\
                                                                                                      train_size=TrainingConfSize, test_size=TestsetConfigurationSize)[0]
    elif SubjectSystem == MLConstants.autonomooseName:

        TestsetConfigurationSize = 32 - TrainingConfSize

        TrainingSetConfigurations = train_test_split(getAllPossibleIds(MLConstants.autonomooseId), getAllPossibleIds(MLConstants.autonomooseId),\
                                                 train_size=TrainingConfSize, test_size=TestsetConfigurationSize)[0]

    saveObjectToPickleFile(TrainingConfFilename, TrainingSetConfigurations)

    if SubjectSystem == MLConstants.x264Name:

        extractAndSampleBySectionsFromTraces(TrainingSetConfigurations,
                                             TrainingConfSize,
                                             TrainingConfFilename,
                                             OutputFilename, verboseDebug)

    elif SubjectSystem == MLConstants.autonomooseName:

        extractTracesFromSinglePKL(TrainingSetConfigurations, TrainingConfSize,
                                   TrainingConfFilename, OutputFilename,
                                   verboseDebug)
            ConfsAleadySampledExtra = loadObjectFromPickle(
                preExistingSampledConfsFilenameExtra)

            DatasetAlreadySampledExtra = loadObjectFromPickle(
                preExistingSampledDatasetFilenameExtra)

    else:

        allTracesAutonomoose = loadObjectFromPickle(
            getSingleFilenameWithAllTraces())

        confsTest = getComplementSet(
            confsTrain, totalEleements=MLConstants.AutonomooseConfCount)

    saveObjectToPickleFile(assesmentConfsFilename, confsTest)

    DictionaryArray = []
    counter = 0

    for confId in confsTest:
        if SubjectSystem == MLConstants.x264Name:
            if counter % 10 == 0:
                print("Sampling  {0} out of {1}".format(
                    counter, len(confsTest)))

            if (useDifferentialSampling and confId in ConfsAleadySampled):

                indexOfConfid = ConfsAleadySampled.index(confId)

                DictionaryArray.append(DatasetAlreadySampled[indexOfConfid])
Ejemplo n.º 8
0
        OutputFilename = sys.argv[2]

    else:
        print(
            "Requires two arguments: source folder with traces, and filename to store pkl of traces."
        )

        exit()

    dictConfToTraces = {}

    for confId in range(0, 32):
        print("Conf {0}".format(confId))
        for rep in range(0, 10):
            rosbagFilename = "{0}track_transition_counts-configuration-{1}-repetition-{2}.bag".format(
                InputFolder, confId, rep)

            executionTraceBag = rosbag.Bag(rosbagFilename, 'r')

            newTrace = AutonomooseTraces.ExecutionTraceAutonomoose(
                executionTraceBag, confId)

            if confId in dictConfToTraces.keys():
                dictConfToTraces[confId].append(newTrace)
            else:
                dictConfToTraces[confId] = [newTrace]

    print(dictConfToTraces.keys())

    saveObjectToPickleFile(OutputFilename, dictConfToTraces)