Ejemplo n.º 1
0
 def test_friedman(self):
     """Test function friedman"""
     df = pd.DataFrame({'DV': np.r_[x, y, z],
                        'Time': np.repeat(['A', 'B', 'C'], 100),
                        'Subject': np.tile(np.arange(100), 3)})
     friedman(data=df, dv='DV', subject='Subject', within='Time')
     summary = friedman(data=df, dv='DV', within='Time', subject='Subject')
     # Compare with SciPy built-in function
     from scipy import stats
     Q, p = stats.friedmanchisquare(x, y, z)
     assert np.isclose(Q, summary.at['Friedman', 'Q'])
     assert np.isclose(p, summary.at['Friedman', 'p-unc'])
     # Test with NaN
     df.at[10, 'DV'] = np.nan
     friedman(data=df, dv='DV', subject='Subject', within='Time')
Ejemplo n.º 2
0
    def test_friedman(self):
        """Test function friedman"""
        df = pd.DataFrame({
            'white': {
                0: 10,
                1: 8,
                2: 7,
                3: 9,
                4: 7,
                5: 4,
                6: 5,
                7: 6,
                8: 5,
                9: 10,
                10: 4,
                11: 7
            },
            'red': {
                0: 7,
                1: 5,
                2: 8,
                3: 6,
                4: 5,
                5: 7,
                6: 9,
                7: 6,
                8: 4,
                9: 6,
                10: 7,
                11: 3
            },
            'rose': {
                0: 8,
                1: 5,
                2: 6,
                3: 4,
                4: 7,
                5: 5,
                6: 3,
                7: 7,
                8: 6,
                9: 4,
                10: 4,
                11: 3
            }
        })

        # Compare R and SciPy
        # >>> friedman.test(data)
        Q, p = scipy.stats.friedmanchisquare(*df.to_numpy().T)
        assert np.isclose(Q, 2)
        assert np.isclose(p, 0.3678794)

        # Wide-format
        stats = friedman(df)
        assert np.isclose(stats.at['Friedman', 'Q'], Q)
        assert np.isclose(stats.at['Friedman', 'p-unc'], p)
        assert np.isclose(stats.at['Friedman', 'ddof1'], 2)

        # Long format
        df_long = df.melt(ignore_index=False).reset_index()
        stats = friedman(data=df_long,
                         dv="value",
                         within="variable",
                         subject="index")
        assert np.isclose(stats.at['Friedman', 'Q'], Q)
        assert np.isclose(stats.at['Friedman', 'p-unc'], p)
        assert np.isclose(stats.at['Friedman', 'ddof1'], 2)

        # Compare Kendall's W
        # WARNING: I believe that the value in JASP is wrong (as of Oct 2021), because the W is
        # calculated on the transposed dataset. Indeed, to get the correct W / Q / p, one must use:
        # >>> library(DescTools)
        # >>> KendallW(t(data), correct = T, test = T)
        # Which gives the following output:
        # Kendall chi - squared = 2, df = 2, subjects = 3, raters = 12, p - value = 0.3679
        # alternative hypothesis: Wt is greater 0
        # sample estimates: 0.08333333
        assert np.isclose(stats.at['Friedman', 'W'], 0.08333333)

        # Using the F-test method, which is more conservative
        stats_f = friedman(df, method="f")
        assert stats_f.at['Friedman', 'p-unc'] > stats.at['Friedman', 'p-unc']
Ejemplo n.º 3
0
 def test_friedman(self):
     """Test function friedman"""
     df = pd.DataFrame({
         'DV': np.r_[x, y, z],
         'Time': np.repeat(['A', 'B', 'C'], 100),
         'Subject': np.tile(np.arange(100), 3)
     })
     summary = friedman(data=df,
                        dv='DV',
                        within='Time',
                        subject='Subject',
                        method='chisq')
     friedman(data=df,
              dv='DV',
              within='Time',
              subject='Subject',
              method='f')
     # Compare with SciPy built-in function
     from scipy import stats
     Q, p = stats.friedmanchisquare(x, y, z)
     assert np.isclose(Q, summary.at['Friedman', 'Q'])
     assert np.isclose(p, summary.at['Friedman', 'p-unc'])
     # With Categorical
     df['Time'] = df['Time'].astype('category')
     df['Time'] = df['Time'].cat.add_categories("Unused")
     summary = friedman(data=df,
                        dv='DV',
                        within='Time',
                        subject='Subject',
                        method='chisq')
     friedman(data=df,
              dv='DV',
              within='Time',
              subject='Subject',
              method='f')
     Q, p = stats.friedmanchisquare(x, y, z)
     assert np.isclose(Q, summary.at['Friedman', 'Q'])
     assert np.isclose(p, summary.at['Friedman', 'p-unc'])
     # Test with NaN
     df.at[10, 'DV'] = np.nan
     friedman(data=df,
              dv='DV',
              subject='Subject',
              within='Time',
              method='chisq')
     friedman(data=df,
              dv='DV',
              within='Time',
              subject='Subject',
              method='f')
     # test Kendall's W
     a = np.array([
         0.13, 0.51, 0.93, 0.97, 0.24, 0.44, 0.91, 0.15, 0.04, 0.5, 0.6,
         0.27, 0.37, 0.03, 0.74, 0.34
     ])
     df = pd.DataFrame({
         'DV': a,
         'Time': np.repeat(['A', 'B', 'C', 'D'], 4),
         'Subject': np.tile(np.arange(4), 4)
     })
     summary = friedman(data=df,
                        dv='DV',
                        subject='Subject',
                        within='Time',
                        method='chisq')
     assert summary.at['Friedman', 'W'] == 0.325  # R synchrony::kendall.w