Ejemplo n.º 1
0
    def test_FitPredictWithDictionaryOutput__predict(self):
        X = self.X
        y = self.y.astype(int)
        gm = GaussianNB()
        wrapped_gm = add_mixins_to_step(gm)
        double_wrap = add_mixins_to_step(wrapped_gm)

        double_wrap.fit(X=X, y=y)
        result = double_wrap.predict_dict(X=X)
        self.assertEqual(
            sorted(list(result.keys())),
            sorted(['predict', 'predict_proba', 'predict_log_proba']))
        self.assertEqual(result['predict'].shape[0], self.size)
        self.assertEqual(result['predict_proba'].shape[0], self.size)
        self.assertEqual(result['predict_log_proba'].shape[0], self.size)
Ejemplo n.º 2
0
 def test_Pipegraph__step__predict_lm(self):
     X = self.X
     y = self.y
     lm = LinearRegression()
     lm_step = add_mixins_to_step(lm)
     lm_step.pg_fit(X=X, y=y)
     assert_array_equal(lm.predict(X), lm_step.pg_predict(X=X)['predict'])
Ejemplo n.º 3
0
    def test_wrap_adaptee_in_process__right_classes(self):
        tests_table = [{
            'model': LinearRegression(),
            'expected_class': FitPredictMixin
        }, {
            'model': MinMaxScaler(),
            'expected_class': FitTransformMixin
        }, {
            'model': DBSCAN(),
            'expected_class': AtomicFitPredictMixin
        }, {
            'model':
            Demultiplexer(),
            'expected_class':
            CustomFitPredictWithDictionaryOutputMixin
        }]

        for test_dict in tests_table:
            model = test_dict['model']
            step = add_mixins_to_step(model)
            self.assertEqual(isinstance(step, test_dict['expected_class']),
                             True)
Ejemplo n.º 4
0
 def test_wrap_adaptee_in_process__wrap_process_does_nothing(self):
     lm = LinearRegression()
     wrapped_lm = add_mixins_to_step(lm)
     double_wrap = add_mixins_to_step(wrapped_lm)
     self.assertEqual(double_wrap, lm)
Ejemplo n.º 5
0
 def test_FitPredictWithDictionaryOutput__get_predict_signature(self):
     lm = LinearRegression()
     wrapped_lm = add_mixins_to_step(lm)
     double_wrap = add_mixins_to_step(wrapped_lm)
     result = double_wrap._get_predict_signature()
     self.assertEqual(result, ['X'])
Ejemplo n.º 6
0
 def test_FitPredictWithDictionaryOutput__get_fit_signature(self):
     lm = LinearRegression()
     wrapped_lm = add_mixins_to_step(lm)
     double_wrap = add_mixins_to_step(wrapped_lm)
     result = double_wrap._get_fit_signature()
     self.assertEqual(sorted(result), sorted(['X', 'y', 'sample_weight']))