def glass(): pipe.process('glass', skip_frames=200, n_frames=800, resize=.5, tracking_box=[55, 485, 82, 530], warp_mode='t', fps=30)
def foosball(): pipe.process('foosball', skip_frames=566, n_frames=1600, resize=.5, deanimate_mask_path='input/foosball/deanimate_mask.png', warp_mode='h', fps=30)
def work(self, item): """ Feed jobs from the queue into the pipeline """ try: data = json.loads(item) process(source(self.item_collection, data['id']), self.pipeline) except Exception, e: import traceback logger.error("Problem! " + str(e)) logger.error(traceback.format_exc())
def run(offset=0): docs = item_collection.find(search_params, offset=offset) for doc in docs['docs']: #pass process(lambda: doc, pipeline) offset += len(docs['docs']) if offset < docs['total']: run(offset=offset) else: print 'done'
def run(offset=0): docs = item_collection.find(search_params, offset=offset) for doc in docs["docs"]: # pass process(lambda: doc, pipeline) offset += len(docs["docs"]) # print "Running for " + str(docs['total']) + " docs" if offset < docs["total"]: run(offset=offset) else: print "done"
def main(): """Parse stream of requests and insert into MongoDB collection. This script will accept input from either stdin or one or more files as arguments. Two loggers control logging--one general purpose logger for the application and one for logging requests that fail to make it through the pipeline. The latter is configured to route different kinds of failures to different streams as configured. The failed requests will be logged unmodified, as they entered the pipeline, to make later attempts at processing easier. Failure to send any requests through the pipeline will result in an exit status of 1. """ req_buffer = [] for line in fileinput.input(): try: request = process(line) except apachelog.ApacheLogParserError: # log unparseable requests req_log.error(line.strip(), extra={'err_type': 'REQUEST_ERROR'}) continue except requests.exceptions.RequestException: req_log.error(line.strip(), extra={'err_type': 'DSPACE_ERROR'}) continue except Exception, e: log.error(e, extra={'inputfile': fileinput.filename(), 'inputline': fileinput.filelineno()}) continue if request: req_buffer.append(request) if len(req_buffer) > 999: insert(collection, req_buffer) req_buffer = []
def execute(self, REQUEST=None, RESPONSE=None): """ """ if not self.isActive(): return if getattr(REQUEST, 'reset_date', False): self.setResetDate(True) histories = self.getDeploymentHistory() history = histories.makeHistory() Log.attachLogMonitor(history) try: try: pipeline = self.getPipeline() pipeline.process( self ) except: if not DefaultConfiguration.DEPLOYMENT_DEBUG: raise import sys, pdb, traceback ec, e, tb = sys.exc_info() print ec, e print traceback.print_tb( tb ) #pdb.post_mortem( tb ) raise finally: Log.detachLogMonitor(history) #history.recordStatistics(display) histories.attachHistory(history) self.getDeploymentPolicy().setResetDate(False) #Uncomment if/when you want to have users with Manager role receive email #when a deployment completes. Helpful, for large sites with long-running #deployments. #self.exportNotify(REQUEST) if RESPONSE: return RESPONSE.redirect('manage_workspace') return True
def execute(self, REQUEST=None, RESPONSE=None): """ """ if not self.isActive(): return if getattr(REQUEST, 'reset_date', False): self.setResetDate(True) histories = self.getDeploymentHistory() history = histories.makeHistory() Log.attachLogMonitor(history) try: try: pipeline = self.getPipeline() pipeline.process( self ) except: if not DefaultConfiguration.DEPLOYMENT_DEBUG: raise import sys, pdb, traceback ec, e, tb = sys.exc_info() print ec, e print traceback.print_tb( tb ) #pdb.post_mortem( tb ) raise finally: Log.detachLogMonitor(history) #history.recordStatistics(display) histories.attachHistory(history) self.getDeploymentPolicy().setResetDate(False) if RESPONSE: return RESPONSE.redirect('manage_workspace') return True
def calculate(): directory = directory_entry.get() threshold = threshold_entry.get() save = save_loc_entry.get() include = included_check.get() search = subdirs_check.get() error_list = check_inputs(directory, save, threshold) if len(error_list) > 0: error_popup(error_list) else: result = process(directory, save, threshold, include, search) if result == "Success": messagebox.showinfo("Success", "Report generated!") else: messagebox.showerror("Error", result)
drawer_sr = comicolorization_sr.drawer.Drawer( path_result_directory=args.super_resolution_model_directory, gpu=args.gpu, colorization_class=comicolorization_sr.colorization_task. ComicolorizationTask, ) drawer_sr.load_model(iteration=args.super_resolution_model_iteration) # prepare datas image = Image.open(args.input_image).convert('RGB') rects = json.load(open(args.panel_rectangle)) reference_images = [ Image.open(path).convert('RGB') for path in args.reference_images ] assert len(rects) == len(reference_images) # prepare pipeline pipeline = pipeline.PagePipeline( drawer=drawer, drawer_sr=drawer_sr, image=image, reference_images=reference_images, threshold_binary=190, threshold_line=130, panel_rects=rects, ) # draw drawn_image = pipeline.process() drawn_image.save(args.output)
def run_for_single(item_collection, doc_id): pipeline = set_pipeline_steps(item_collection=item_collection) process(source(item_collection, doc_id), pipeline)
filemenu.add_separator() filemenu.add_command(label="Exit", command=exit_prog) helpmenu = Menu(menu) menu.add_cascade(label="Help", menu=helpmenu) helpmenu.add_command(label="About...", command=launch_about_window) if __name__ == "__main__": # read path provided if len(sys.argv) > 1: # write path provided if len(sys.argv) > 2: # threshold provided if len(sys.argv) > 3: # include inoffensive provided if len(sys.argv) > 4: # include sub directories provided if len(sys.argv) > 5: process(sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4], sys.argv[5]) else: process(sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4]) else: process(sys.argv[1], sys.argv[2], sys.argv[3]) else: process(sys.argv[1], sys.argv[2]) else: process(sys.argv[1]) # path not provided else: mainloop()
import pipeline import exporter import sklearn if __name__ == "__main__": if len(sys.argv) == 2: filepath = str(sys.argv[1]) if os.path.isfile(filepath) and filepath.endswith('.json'): print("Import Google Takout data (can be long)... ", end='') df = parser.importJson(filepath) print("Done !") print("Process trajectories... ", end='') data = pipeline.process(df) print("Done !") print("Export to json... ", end='') json = exporter.generateJson(data) print("Done !") print("Write to file... ", end='') file = open("output.json", "w") file.write(json) file.close() print("Done !") elif not filepath.endswith('.json'): print("File must be in JSON format.")