Ejemplo n.º 1
0
def main():

    ### command line args defintions #########################################
    parser = argparse.ArgumentParser(
        description='Calculate plane of best fit for molecules')
    utils.add_default_io_args(parser)
    args = parser.parse_args()
    utils.log("PBFEV args: ", args)
    input, output, suppl, writer, output_base = utils.default_open_input_output(
        args.input, args.informat, args.output, 'PBFEV', args.outformat)
    i = 0
    count = 0
    errors = 0
    out_results = []
    for mol in suppl:
        i += 1
        AllChem.EmbedMolecule(mol)
        if mol is None: continue
        out_vector = PBFev(mol)
        if out_vector is None: continue
        rd = PBFRD(mol)
        mol.SetDoubleProp("distance", rd)
        for j, angle in enumerate(out_vector):
            mol.SetDoubleProp("angle" + "_" + str(j), angle)
        out_results.append(mol)
    count = write_out(out_results, count, writer, args.outformat)
    utils.log("Handled " + str(i) + " molecules, resulting in " + str(count) +
              " outputs")
    writer.flush()
    writer.close()
    input.close()
    output.close()
Ejemplo n.º 2
0
def main():

    ### command line args defintions #########################################

    parser = argparse.ArgumentParser(description='RDKit Sdf2Json')
    parser.add_argument('-i', '--input', help="Input SD file, if not defined the STDIN is used")
    parser.add_argument('-o', '--output', help="Base name for output json file (no extension). If not defined then SDTOUT is used for the structures and output is used as base name of the other files.")
    parser.add_argument('--exclude', help="Optional list of fields (comma separated) to exclude from the output.")


    args = parser.parse_args()
    utils.log("Screen Args: ", args)

    if args.input:
        if args.input.lower().endswith(".sdf"):
            base = args.input[:-4]
        elif args.input.lower().endswith(".sdf.gz"):
            base = args.input[:-7]
        else:
            base = "json"
    utils.log("Base:", base)


    input,output,suppl,writer,output_base = utils.default_open_input_output(args.input, "sdf", args.output, base, "json")
    if args.exclude:
        excludes = args.exclude.split(",")
        utils.log("Excluding", excludes)
    else:
        excludes = None

    i=0
    count = 0
    for mol in suppl:
        i +=1
        if mol is None: continue
        if excludes:
            for exclude in excludes:
                if mol.HasProp(exclude): mol.ClearProp(exclude)
        writer.write(mol)
        count += 1

    utils.log("Converted", count, " molecules")

    writer.flush()
    writer.close()
    input.close()
    output.close()

    utils.write_metrics(output_base, {'__InputCount__':i, '__OutputCount__':count, 'RDKitSdf2Json':count})

    return count
Ejemplo n.º 3
0
def main():

    ### command line args defintions #########################################

    parser = argparse.ArgumentParser(
        description='RDKit molecule standardiser / enumerator')
    utils.add_default_io_args(parser)
    parser.add_argument('-et',
                        '--enumerate_tauts',
                        action='store_true',
                        help='Enumerate all tautomers')
    parser.add_argument('-es',
                        '--enumerate_stereo',
                        action='store_true',
                        help='Enumerate all stereoisomers')
    parser.add_argument(
        '-st',
        '--standardize',
        action='store_true',
        help='Standardize molecules. Cannot  be true if enumerate is on.')
    parser.add_argument('-stm',
                        '--standardize_method',
                        default="molvs",
                        choices=STANDARD_MOL_METHODS.keys(),
                        help="Chose the method to standardize.")

    args = parser.parse_args()

    if args.standardize and args.enumerate_tauts:
        raise ValueError("Cannot Enumerate Tautomers and Standardise")

    if args.standardize and args.enumerate_stereo:
        raise ValueError("Cannot Enumerate Stereo and Standardise")

    if args.standardize:
        getStandardMolecule = STANDARD_MOL_METHODS[args.standardize_method]

    input, output, suppl, writer, output_base = utils.default_open_input_output(
        args.input, args.informat, args.output, 'sanify', args.outformat)
    i = 0
    count = 0
    errors = 0
    for mol in suppl:
        i += 1
        if mol is None: continue

        if args.standardize:
            # we keep the original UUID as there is still a 1-to-1 relationship between the input and outputs
            oldUUID = mol.GetProp("uuid")
            inputCanSmiles = Chem.MolToSmiles(mol,
                                              isomericSmiles=True,
                                              canonical=True)
            try:
                std = getStandardMolecule(mol)
                outputCanSmiles = Chem.MolToSmiles(std,
                                                   isomericSmiles=True,
                                                   canonical=True)
                if oldUUID:
                    std.SetProp("uuid", oldUUID)
                #utils.log("Standardized", i, inputCanSmiles, ">>", outputCanSmiles)
                if inputCanSmiles == outputCanSmiles:
                    std.SetProp("Standardised", "False")
                else:
                    std.SetProp("Standardised", "True")
            except:
                errors += 1
                utils.log("Error standardizing", sys.exc_info()[0])
                std = mol
                std.SetProp("Standardised", "Error")

            count = write_out([std], count, writer)
        else:
            # we want a new UUID generating as we are generating new molecules
            parentUuid = mol.GetProp("uuid")

            results = []
            results.append(mol)

            if args.enumerate_tauts:
                utils.log("Enumerating tautomers")
                results = enumerateTautomers(mol)

            if args.enumerate_stereo:
                utils.log("Enumerating steroisomers")
                mols = results
                results = []
                for m in mols:
                    enumerated = enumerateStereoIsomers(m)
                    results.extend(enumerated)

            for m in results:
                m.ClearProp("uuid")
                m.SetIntProp("SourceMolNum", i)
                if parentUuid:
                    m.SetProp("SourceMolUUID", parentUuid)

            count = write_out(results, count, writer)

    utils.log("Handled " + str(i) + " molecules, resulting in " + str(count) +
              " outputs")

    writer.flush()
    writer.close()
    input.close()
    output.close()

    if args.meta:
        utils.write_metrics(
            output_base, {
                '__InputCount__': i,
                '__OutputCount__': count,
                '__ErrorCount__': errors,
                'RDKitSanify': count
            })

    return count
Ejemplo n.º 4
0
def main():

    parser = argparse.ArgumentParser(description='Open3DAlign with RDKit')
    parser.add_argument('query', help='query molfile')
    parser.add_argument(
        '--qmolidx',
        help="Query molecule index in SD file if not the first",
        type=int,
        default=1)
    parser.add_argument(
        '-t',
        '--threshold',
        type=float,
        help='score cuttoff relative to alignment of query to itself')
    parser.add_argument(
        '-n',
        '--num',
        default=0,
        type=int,
        help=
        'number of conformers to generate, if None then input structures are assumed to already be 3D'
    )
    parser.add_argument('-a',
                        '--attempts',
                        default=0,
                        type=int,
                        help='number of attempts to generate conformers')
    parser.add_argument('-r',
                        '--rmsd',
                        type=float,
                        default=1.0,
                        help='prune RMSD threshold for excluding conformers')
    parser.add_argument(
        '-e',
        '--emin',
        type=int,
        default=0,
        help=
        'energy minimisation iterations for generated confomers (default of 0 means none)'
    )
    utils.add_default_io_args(parser)

    args = parser.parse_args()
    utils.log("o3dAlign Args: ", args)

    qmol = utils.read_single_molecule(args.query, index=args.qmolidx)
    qmol = Chem.RemoveHs(qmol)
    qmol2 = Chem.Mol(qmol)

    source = "conformers.py"
    datasetMetaProps = {
        "source": source,
        "description": "Open3DAlign using RDKit " + rdBase.rdkitVersion
    }
    clsMappings = {"O3DAScore": "java.lang.Float"}
    fieldMetaProps = [{
        "fieldName": "O3DAScore",
        "values": {
            "source": source,
            "description": "Open3DAlign alignment score"
        }
    }]
    if args.num > 0:
        # we generate the conformers so will add energy info
        clsMappings["EnergyDelta"] = "java.lang.Float"
        clsMappings["EnergyAbs"] = "java.lang.Float"
        fieldMetaProps.append({
            "fieldName": "EnergyDelta",
            "values": {
                "source": source,
                "description": "Energy difference to lowest energy conformer"
            }
        })
        fieldMetaProps.append({
            "fieldName": "EnergyAbs",
            "values": {
                "source": source,
                "description": "Absolute energy"
            }
        })

    input, output, suppl, writer, output_base = utils.default_open_input_output(
        args.input,
        args.informat,
        args.output,
        'o3dAlign',
        args.outformat,
        valueClassMappings=clsMappings,
        datasetMetaProps=datasetMetaProps,
        fieldMetaProps=fieldMetaProps)

    pyO3A = rdMolAlign.GetO3A(qmol2, qmol)
    perfect_align = pyO3A.Align()
    perfect_score = pyO3A.Score()
    utils.log('Perfect score:', perfect_align, perfect_score,
              Chem.MolToSmiles(qmol, isomericSmiles=True), qmol.GetNumAtoms())

    i = 0
    count = 0
    total = 0
    for mol in suppl:
        if mol is None: continue
        if args.num > 0:
            mol.RemoveAllConformers()
            conformerProps, minEnergy = conformers.process_mol_conformers(
                mol, i, args.num, args.attempts, args.rmsd, None, None, 0)
            mol = Chem.RemoveHs(mol)
            count += doO3Dalign(i,
                                mol,
                                qmol,
                                args.threshold,
                                perfect_score,
                                writer,
                                conformerProps=conformerProps,
                                minEnergy=minEnergy)
        else:
            mol = Chem.RemoveHs(mol)
            count += doO3Dalign(i, mol, qmol, args.threshold, perfect_score,
                                writer)
        i += 1
        total += mol.GetNumConformers()

    input.close()
    writer.flush()
    writer.close()
    output.close()

    if args.meta:
        utils.write_metrics(output_base, {
            '__InputCount__': i,
            '__OutputCount__': count,
            'RDKitO3DAlign': total
        })
Ejemplo n.º 5
0
def main():

    ### command line args defintions #########################################

    parser = argparse.ArgumentParser(description='RDKit conformers')
    parser.add_argument('-n',
                        '--num',
                        type=int,
                        default=1,
                        help='number of conformers to generate')
    parser.add_argument('-a',
                        '--attempts',
                        type=int,
                        default=0,
                        help='number of attempts')
    parser.add_argument('-r',
                        '--rmsd',
                        type=float,
                        default=1.0,
                        help='prune RMSD threshold')
    parser.add_argument(
        '-c',
        '--cluster',
        type=str.lower,
        choices=['rmsd', 'tdf'],
        help='Cluster method (RMSD or TFD). If None then no clustering')
    parser.add_argument(
        '-t',
        '--threshold',
        type=float,
        help='cluster threshold (default of 2.0 for RMSD and 0.3 for TFD)')
    parser.add_argument(
        '-e',
        '--emin',
        type=int,
        default=0,
        help='energy minimisation iterations (default of 0 means none)')
    utils.add_default_io_args(parser)
    parser.add_argument(
        '--smiles',
        help=
        'input structure as smiles (incompatible with using files or stdin for input)'
    )

    args = parser.parse_args()

    if not args.threshold:
        if args.cluster == 'tfd':
            args.threshold = 0.3
        else:
            args.threshold = 2.0

    utils.log("Conformers Args: ", args)

    source = "conformers.py"
    datasetMetaProps = {
        "source": source,
        "description":
        "Conformer generation using RDKit " + rdBase.rdkitVersion
    }
    clsMappings = {
        "RMSToCentroid": "java.lang.Float",
        "EnergyDelta": "java.lang.Float",
        "EnergyAbs": "java.lang.Float",
        "ConformerNum": "java.lang.Integer",
        "ClusterCentroid": "java.lang.Integer",
        "ClusterNum": "java.lang.Integer",
        "StructureNum": "java.lang.Integer"
    }
    fieldMetaProps = [{
        "fieldName": "RMSToCentroid",
        "values": {
            "source": source,
            "description": "RMS distance to the cluster centroid"
        }
    }, {
        "fieldName": "EnergyDelta",
        "values": {
            "source": source,
            "description": "Energy difference to lowest energy structure"
        }
    }, {
        "fieldName": "EnergyAbs",
        "values": {
            "source": source,
            "description": "Absolute energy"
        }
    }, {
        "fieldName": "ConformerNum",
        "values": {
            "source": source,
            "description": "Conformer number"
        }
    }, {
        "fieldName": "ClusterCentroid",
        "values": {
            "source": source,
            "description": "Conformer number of the cluster centroid"
        }
    }, {
        "fieldName": "ClusterNum",
        "values": {
            "source": source,
            "description": "Cluster number"
        }
    }, {
        "fieldName": "StructureNum",
        "values": {
            "source": source,
            "description": "Structure number this conformer was generated from"
        }
    }]

    if args.smiles:
        mol = Chem.MolFromSmiles(args.smiles)
        suppl = [mol]
        input = None
        output, writer, output_base = utils.default_open_output(
            args.output,
            'conformers',
            args.outformat,
            valueClassMappings=clsMappings,
            datasetMetaProps=datasetMetaProps,
            fieldMetaProps=fieldMetaProps)
    else:
        input, output, suppl, writer, output_base = utils.default_open_input_output(
            args.input,
            args.informat,
            args.output,
            'conformers',
            args.outformat,
            valueClassMappings=clsMappings,
            datasetMetaProps=datasetMetaProps,
            fieldMetaProps=fieldMetaProps)

    # OK, all looks good so we can hope that things will run OK.
    # But before we start lets write the metadata so that the results can be handled.
    #if args.meta:
    #    t = open(output_base + '_types.txt', 'w')
    #    t.write(field_StructureNum + '=integer\n')
    #    t.write(field_StructureNum + '=integer\n')
    #    t.write(field_ConformerNum + '=integer\n')
    #    t.write(field_EnergyAbs + '=double\n')
    #    t.write(field_EnergyDelta + '=double\n')
    #    if args.emin > 0:
    #        t.write(field_MinimizationConverged + '=boolean\n')
    #    if args.cluster:
    #        t.write(field_RMSToCentroid + '=double\n')
    #        t.write(field_ClusterNum + '=integer\n')
    #        t.write(field_ClusterCentroid + '=integer\n')
    #    t.flush()
    #    t.close()

    i = 0
    count = 0
    for mol in suppl:
        if mol is None: continue
        m = Chem.AddHs(mol)
        conformerPropsDict, minEnergy = process_mol_conformers(
            m, i, args.num, args.attempts, args.rmsd, args.cluster,
            args.threshold, args.emin)
        m = Chem.RemoveHs(m)
        write_conformers(m, i, conformerPropsDict, minEnergy, writer)
        count = count + m.GetNumConformers()
        i += 1

    if input:
        input.close()
    writer.flush()
    writer.close()
    output.close()

    if args.meta:
        utils.write_metrics(output_base, {
            '__InputCount__': i,
            '__OutputCount__': count,
            'RDKitConformer': count
        })
Ejemplo n.º 6
0
def main():

    ### command line args defintions #########################################

    parser = argparse.ArgumentParser(description='RDKit Butina Cluster')
    parser.add_argument(
        '-t',
        '--threshold',
        type=float,
        default=0.7,
        help='similarity clustering threshold (1.0 means identical)')
    parser.add_argument('-d',
                        '--descriptor',
                        type=str.lower,
                        choices=list(descriptors.keys()),
                        default='rdkit',
                        help='descriptor or fingerprint type (default rdkit)')
    parser.add_argument('-m',
                        '--metric',
                        type=str.lower,
                        choices=list(metrics.keys()),
                        default='tanimoto',
                        help='similarity metric (default tanimoto)')
    parser.add_argument(
        '-n',
        '--num',
        type=int,
        help='maximum number to pick for diverse subset selection')
    parser.add_argument(
        '-e',
        '--exclude',
        type=float,
        default=0.9,
        help=
        'threshold for excluding structures in diverse subset selection (1.0 means identical)'
    )
    parser.add_argument(
        '--fragment-method',
        choices=['hac', 'mw'],
        default='hac',
        help=
        'Approach to find biggest fragment if more than one (hac = biggest by heavy atom count, mw = biggest by mol weight)'
    )
    parser.add_argument(
        '--output-fragment',
        action='store_true',
        help='Output the biggest fragment rather than the original molecule')
    parser.add_argument(
        '-f',
        '--field',
        help='field to use to optimise diverse subset selection')
    group = parser.add_mutually_exclusive_group()
    group.add_argument(
        '--min',
        action='store_true',
        help='pick lowest value specified by the --field option')
    group.add_argument(
        '--max',
        action='store_true',
        help='pick highest value specified by the --field option')

    utils.add_default_io_args(parser)
    parser.add_argument('-q',
                        '--quiet',
                        action='store_true',
                        help='Quiet mode')
    parser.add_argument('--thin', action='store_true', help='Thin output mode')

    args = parser.parse_args()
    utils.log("Cluster Args: ", args)

    descriptor = descriptors[args.descriptor]
    if descriptor is None:
        raise ValueError('Invalid descriptor name ' + args.descriptor)

    if args.field and not args.num:
        raise ValueError(
            '--num argument must be specified for diverse subset selection')
    if args.field and not (args.min or args.max):
        raise ValueError(
            '--min or --max argument must be specified for diverse subset selection'
        )

    # handle metadata
    source = "cluster_butina.py"
    datasetMetaProps = {
        "source": source,
        "description": "Butina clustering using RDKit " + rdBase.rdkitVersion
    }
    clsMappings = {"Cluster": "java.lang.Integer"}
    fieldMetaProps = [{
        "fieldName": "Cluster",
        "values": {
            "source": source,
            "description": "Cluster number"
        }
    }]

    input, output, suppl, writer, output_base = utils.default_open_input_output(
        args.input,
        args.informat,
        args.output,
        'cluster_butina',
        args.outformat,
        thinOutput=args.thin,
        valueClassMappings=clsMappings,
        datasetMetaProps=datasetMetaProps,
        fieldMetaProps=fieldMetaProps)

    ### generate fingerprints
    #mols = [x for x in suppl if x is not None]
    #fps = [descriptor(x) for x in mols]

    mols = []
    fps = []
    errs = mol_utils.fragmentAndFingerprint(
        suppl,
        mols,
        fps,
        descriptor,
        fragmentMethod=args.fragment_method,
        outputFragment=args.output_fragment,
        quiet=args.quiet)

    input.close()

    ### do clustering
    utils.log("Clustering with descriptor", args.descriptor, "metric",
              args.metric, "and threshold", args.threshold)
    clusters, dists, matrix = ClusterFps(fps, args.metric,
                                         1.0 - args.threshold)

    utils.log("Found", len(clusters), "clusters")

    ### generate diverse subset if specified
    if args.num:
        utils.log("Generating diverse subset")
        # diverse subset selection is specified
        finalClusters = SelectDiverseSubset(mols, clusters, dists, args.num,
                                            args.field, args.max, args.exclude,
                                            args.quiet)
    else:
        finalClusters = clusters

    utils.log("Found", len(finalClusters), "clusters")
    lookup = ClustersToMap(finalClusters)

    if not args.quiet:
        utils.log("Final Clusters:", finalClusters)

    ### write the results
    i = 0
    result_count = 0
    for mol in mols:
        if lookup.has_key(i):
            if args.thin:
                utils.clear_mol_props(mol, ["uuid"])
            cluster = lookup[i]
            mol.SetIntProp(field_Cluster, cluster)
            writer.write(mol)
            result_count += 1
        i += 1

    writer.flush()
    writer.close()
    output.close()

    if args.meta:
        status_str = str(result_count) + ' results from ' + str(
            len(finalClusters)) + ' clusters'
        utils.write_metrics(
            output_base, {
                '__StatusMessage__': status_str,
                '__InputCount__': i,
                '__OutputCount__': result_count,
                'RDKitCluster': i
            })
Ejemplo n.º 7
0
def main():

    ### command line args defintions #########################################

    parser = argparse.ArgumentParser(description='RDKit screen')
    group = parser.add_mutually_exclusive_group()
    group.add_argument(
        '--qsmiles',
        help='query structure as smiles (incompatible with -qmolfile arg)')
    group.add_argument(
        '--qmolfile',
        help=
        'query structure as filename in molfile format (incompatible with -qsmiles arg)'
    )
    parser.add_argument('--simmin',
                        type=float,
                        default=0.7,
                        help='similarity lower cutoff (1.0 means identical)')
    parser.add_argument('--simmax',
                        type=float,
                        default=1.0,
                        help='similarity upper cutoff (1.0 means identical)')
    parser.add_argument('-d',
                        '--descriptor',
                        type=str.lower,
                        choices=list(descriptors.keys()),
                        default='rdkit',
                        help='descriptor or fingerprint type (default rdkit)')
    parser.add_argument('-m',
                        '--metric',
                        type=str.lower,
                        choices=list(metrics.keys()),
                        default='tanimoto',
                        help='similarity metric (default tanimoto)')
    parser.add_argument(
        '-f',
        '--fragment',
        choices=['hac', 'mw'],
        help=
        'Find single fragment if more than one (hac = biggest by heavy atom count, mw = biggest by mol weight )'
    )
    parser.add_argument('--hacmin', type=int, help='Min heavy atom count')
    parser.add_argument('--hacmax', type=int, help='Max heavy atom count')
    parser.add_argument('--mwmin', type=float, help='Min mol weight')
    parser.add_argument('--mwmax', type=float, help='Max mol weight')
    utils.add_default_io_args(parser)
    parser.add_argument('--thin', action='store_true', help='Thin output mode')
    parser.add_argument('-q',
                        '--quiet',
                        action='store_true',
                        help='Quiet mode')

    args = parser.parse_args()
    utils.log("Screen Args: ", args)

    descriptor = descriptors[args.descriptor.lower()]
    metric = metrics[args.metric.lower()]

    if args.qsmiles:
        query_rdkitmol = Chem.MolFromSmiles(args.qsmiles)
    elif args.qmolfile:
        query_rdkitmol = Chem.MolFromMolFile(args.qmolfile)
    else:
        raise ValueError('No query structure specified')

    query_fp = descriptor(query_rdkitmol)

    input, output, suppl, writer, output_base = utils.default_open_input_output(
        args.input,
        args.informat,
        args.output,
        'screen',
        args.outformat,
        thinOutput=args.thin)

    i = 0
    count = 0
    for mol in suppl:
        i += 1
        if mol is None: continue
        if args.fragment:
            mol = filter.fragment(mol, args.fragment, quiet=args.quiet)
        if not filter.filter(mol,
                             minHac=args.hacmin,
                             maxHac=args.hacmax,
                             minMw=args.mwmin,
                             maxMw=args.mwmax,
                             quiet=args.quiet):
            continue
        target_fp = descriptor(mol)
        sim = metric(query_fp, target_fp)

        if sim >= args.simmin and sim <= args.simmax:
            count += 1
            if not args.quiet:
                utils.log(i, sim)
            mol.SetDoubleProp(field_Similarity, sim)
            writer.write(mol)

    utils.log("Found", count, "similar molecules")

    writer.flush()
    writer.close()
    input.close()
    output.close()

    if args.meta:
        utils.write_metrics(output_base, {
            '__InputCount__': i,
            '__OutputCount__': count,
            'RDKitScreen': i
        })

    return count
Ejemplo n.º 8
0
def main():

    ### command line args defintions #########################################

    parser = argparse.ArgumentParser(description='RDKit screen')
    group = parser.add_mutually_exclusive_group()
    group.add_argument(
        '--qsmiles',
        help=
        'filename of query structures as smiles (incompatible with --sdf and --qjson args)'
    )
    group.add_argument(
        '--qsdf',
        help=
        'filename of query structures as sdfile (incompatible with --smiles and --qjson args)'
    )
    group.add_argument(
        '--qjson',
        help=
        'filename of query structures as MoleculeObject JSON (incompatible with --qsmiles and --qsdf args)'
    )
    parser.add_argument('--qsmilesTitleLine',
                        action='store_true',
                        help='the smiles file has a title line')
    parser.add_argument('--qsmilesDelimiter',
                        default='\t',
                        help='delimiter for smiles file (default is tab)')
    parser.add_argument(
        '--qsmilesColumn',
        type=int,
        default=0,
        help='column in smiles file with the smiles (default is first column)')
    parser.add_argument(
        '--qsmilesNameColumn',
        type=int,
        default=1,
        help='column in smiles file with ID (default is second column)')
    parser.add_argument(
        '--qprop',
        help=
        'property name in query molecules to report. If not defined (or property is not present) '
        +
        'then name property is not written. JSON format uses the UUID as default'
    )

    parser.add_argument('--simmin',
                        type=float,
                        default=0.7,
                        help='similarity lower cutoff (1.0 means identical)')
    parser.add_argument('--simmax',
                        type=float,
                        default=1.0,
                        help='similarity upper cutoff (1.0 means identical)')
    parser.add_argument('-d',
                        '--descriptor',
                        type=str.lower,
                        choices=list(descriptors.keys()),
                        default='rdkit',
                        help='descriptor or fingerprint type (default rdkit)')
    parser.add_argument('-m',
                        '--metric',
                        type=str.lower,
                        choices=list(metrics.keys()),
                        default='tanimoto',
                        help='similarity metric (default tanimoto)')
    parser.add_argument(
        '-f',
        '--fragment',
        choices=['hac', 'mw'],
        help=
        'Find single fragment if more than one (hac = biggest by heavy atom count, mw = biggest by mol weight )'
    )
    parser.add_argument('--hacmin', type=int, help='Min heavy atom count')
    parser.add_argument('--hacmax', type=int, help='Max heavy atom count')
    parser.add_argument('--mwmin', type=float, help='Min mol weight')
    parser.add_argument('--mwmax', type=float, help='Max mol weight')
    utils.add_default_io_args(parser)
    parser.add_argument('--thin', action='store_true', help='Thin output mode')
    parser.add_argument('-q',
                        '--quiet',
                        action='store_true',
                        help='Quiet mode')

    args = parser.parse_args()
    utils.log("Screen Args: ", args)

    descriptor = descriptors[args.descriptor.lower()]
    metric = metrics[args.metric.lower()]

    propName = args.qprop
    if args.qsmiles:
        queryMolsupplier = utils.default_open_input_smiles(
            args.qsmiles,
            delimiter=args.qsmilesDelimiter,
            smilesColumn=args.qsmilesColumn,
            nameColumn=args.qsmilesNameColumn,
            titleLine=args.qsmilesTitleLine)
        queryInput = None
    elif args.qsdf:
        queryInput, queryMolsupplier = utils.default_open_input_sdf(args.qsdf)
    elif args.qjson:
        queryInput, queryMolsupplier = utils.default_open_input_json(
            args.qjson, lazy=False)
        if not propName:
            propName = "uuid"
    else:
        raise ValueError('No query structure specified')

    queryFps = {}
    utils.log("Preparing query fingerprints")
    count = 0
    for q in queryMolsupplier:
        count += 1
        if q:
            queryFps[q] = descriptor(q)
        else:
            utils.log("WARNING: Failed to parse Molecule", count)
    if queryInput:
        queryInput.close()

    input, output, suppl, writer, output_base = utils.default_open_input_output(
        args.input, args.informat, args.output, 'screen_multi', args.outformat)

    # OK, all looks good so we can hope that things will run OK.
    # But before we start lets write the metadata so that the results can be handled.
    #if args.meta:
    #    t = open(output_base + '_types.txt', 'w')
    #    t.write(field_Similarity + '=integer\n')
    #    t.flush()
    #    t.close()

    i = 0
    count = 0
    for mol in suppl:
        i += 1
        if mol is None: continue
        if args.fragment:
            mol = filter.fragment(mol, args.fragment, quiet=args.quiet)
        if not filter.filter(mol,
                             minHac=args.hacmin,
                             maxHac=args.hacmax,
                             minMw=args.mwmin,
                             maxMw=args.mwmax,
                             quiet=args.quiet):
            continue
        targetFp = descriptor(mol)
        idx = 0
        hits = 0
        bestScore = 0
        bestName = None
        for queryMol in queryFps:
            idx += 1
            sim = metric(queryFps[queryMol], targetFp)
            if propName:
                name = str(queryMol.GetProp(propName))
            else:
                name = None
            if sim >= args.simmin and sim <= args.simmax:
                hits += 1
                if not args.quiet:
                    utils.log(i, idx, sim)
                if sim > bestScore:
                    bestScore = sim
                    bestIdx = idx
                    if name:
                        bestName = name
                if name:
                    mol.SetDoubleProp(field_Similarity + "_" + name, sim)
                else:
                    mol.SetDoubleProp(
                        field_Similarity + "_" + str(idx) + "_Score", sim)

        if hits > 0:
            count += 1
            mol.SetDoubleProp(field_Similarity + "_BestScore", bestScore)
            if bestName:
                mol.SetProp(field_Similarity + "_BestName", bestName)
            else:
                mol.SetIntProp(field_Similarity + "_BestIndex", bestIdx)
            mol.SetIntProp(field_Similarity + "_Count", hits)
            writer.write(mol)

    utils.log("Found", count, "similar molecules")

    writer.flush()
    writer.close()
    input.close()
    output.close()

    if args.meta:
        utils.write_metrics(output_base, {
            '__InputCount__': i,
            '__OutputCount__': count,
            'RDKitScreen': count
        })

    return count
Ejemplo n.º 9
0
def main():

    ### command line args defintions #########################################

    parser = argparse.ArgumentParser(description='RDKit Butina Cluster')
    parser.add_argument('-t', '--threshold', type=float, default=0.0, help='similarity threshold (1.0 means identical)')
    parser.add_argument('-d', '--descriptor', type=str.lower, choices=list(descriptors.keys()), default='morgan2', help='descriptor or fingerprint type (default rdkit)')
    parser.add_argument('-q', '--quiet', action='store_true', help='Quiet mode')
    parser.add_argument('-n', '--num', type=int, help='maximum number to pick for diverse subset selection')
    parser.add_argument('-s', '--seed-molecules', help='optional file containing any seed molecules that have already been picked')
    parser.add_argument('--fragment-method', choices=['hac', 'mw'], default='hac', help='Approach to find biggest fragment if more than one (hac = biggest by heavy atom count, mw = biggest by mol weight)')
    parser.add_argument('--output-fragment', action='store_true', help='Output the biggest fragment rather than the original molecule')
    utils.add_default_io_args(parser)

    args = parser.parse_args()
    utils.log("MaxMinPicker Args: ", args)

    descriptor = descriptors[args.descriptor]
    if descriptor is None:
        raise ValueError('No descriptor specified')

    if not args.num and not args.threshold:
        raise ValueError('--num or --threshold arguments must be specified, or both')

    # handle metadata
    source = "max_min_picker.py"
    datasetMetaProps = {"source":source, "description": "MaxMinPicker using RDKit " + rdBase.rdkitVersion}

    ### generate fingerprints
    fps = []
    mols = []
    errors = 0

    # first the initial seeds, if specified
    firstPicks = []
    num_seeds = 0
    if args.seed_molecules:
        seedsInput,seedsSuppl = utils.default_open_input(args.seed_molecules, None)
        start = time.time()
        errors += mol_utils.fragmentAndFingerprint(seedsSuppl, mols, fps, descriptor, fragmentMethod=args.fragment_method, outputFragment=args.output_fragment, quiet=args.quiet)
        end = time.time()
        seedsInput.close()
        num_seeds = len(fps)
        utils.log("Read", len(fps), "fingerprints for seeds in", end-start, "secs,", errors, "errors")
        firstPicks = list(range(num_seeds))

    # now the molecules to pick from
    input,output,suppl,writer,output_base = utils.default_open_input_output(args.input, args.informat, args.output, 'cluster_butina',
                                                                            args.outformat, datasetMetaProps=datasetMetaProps)
    # reset the mols list as we don't need the seeds, only the candidates
    mols = []
    start = time.time()
    errs = mol_utils.fragmentAndFingerprint(suppl, mols, fps, descriptor, fragmentMethod=args.fragment_method, outputFragment=args.output_fragment, quiet=args.quiet)
    end = time.time()
    errors += errs

    input.close()
    num_fps = len(fps)
    num_candidates = num_fps - num_seeds
    utils.log("Read", num_candidates, "fingerprints for candidates in", end-start, "secs,", errs, "errors")

    if not args.num:
        num_to_pick = num_candidates
    elif args.num > num_candidates:
        num_to_pick = num_candidates
        utils.log("WARNING: --num argument (", args.num, ") is larger than the total number of candidates (", num_candidates, ") - resetting to", num_candidates)
    else:
        num_to_pick = args.num

    ### do picking
    utils.log("MaxMinPicking with descriptor", args.descriptor, "and threshold", args.threshold, ",", num_seeds, "seeds,", num_candidates, "candidates", num_fps, "total")
    start = time.time()
    picks, thresh = performPick(fps, num_to_pick + num_seeds, args.threshold, firstPicks)
    end = time.time()
    num_picks = len(picks)

    utils.log("Found", num_picks, "molecules in", end-start, "secs, final threshold", thresh)
    utils.log("Picks:", list(picks[num_seeds:]))
    del fps

    # we want to return the results in the order they were in the input so first we record the order in the pick list
    indices = {}
    i = 0
    for idx in picks[num_seeds:]:
        indices[idx] = i
        i += 1
    # now do the sort
    sorted_picks = sorted(picks[num_seeds:])
    # now write out the mols in the correct order recording the value in the pick list as the PickIndex property
    i = 0
    for idx in sorted_picks:
        mol = mols[idx - num_seeds] # mols array only contains the candidates
        mol.SetIntProp("PickIndex", indices[idx] + 1)
        writer.write(mol)
        i += 1
    utils.log("Output", i, "molecules")

    writer.flush()
    writer.close()
    output.close()

    if args.meta:
        metrics = {}
        status_str = "{} compounds picked. Final threshold was {}.".format(i, thresh)
        if errors > 0:
            metrics['__ErrorCount__'] = errors
            status_str = status_str + " {} errors.".format(errors)

        metrics['__StatusMessage__'] = status_str
        metrics['__InputCount__'] = num_fps
        metrics['__OutputCount__'] = i
        metrics['RDKitMaxMinPicker'] = num_picks

        utils.write_metrics(output_base, metrics)
Ejemplo n.º 10
0
def main():
    ### command line args defintions #########################################

    parser = argparse.ArgumentParser(description='RDKit rxn smarts filter')
    utils.add_default_io_args(parser)
    parser.add_argument('-q', '--quiet', action='store_true', help='Quiet mode')
    parser.add_argument('-m', '--multi', action='store_true', help='Output one file for each reaction')
    parser.add_argument('--thin', action='store_true', help='Thin output mode')

    args = parser.parse_args()
    utils.log("Screen Args: ", args)

    if not args.output and args.multi:
        raise ValueError("Must specify output location when writing individual result files")


    ### Define the filter chooser - lots of logic possible
    # SMARTS patterns are defined in poised_filter.py. Currently this is hardcoded.
    # Should make this configurable so that this can be specified by the user at some stage.
    poised_filter = True
    if poised_filter == True:
        from poised_filter import Filter
        filter_to_use = Filter()
    rxn_names = filter_to_use.get_rxn_names()
    utils.log("Using", len(rxn_names), "reaction filters")

    # handle metadata
    source = "rxn_smarts_filter.py"
    datasetMetaProps = {"source":source, "description": "Reaction SMARTS filter"}
    clsMappings = {}
    fieldMetaProps = []

    for name in rxn_names:
        # this is the Java class type for an array of MoleculeObjects
        clsMappings[name] = "[Lorg.squonk.types.MoleculeObject;"
        fieldMetaProps.append({"fieldName":name, "values": {"source":source, "description":"Sythons from " + name + " reaction"}})

    input, output, suppl, writer, output_base = utils.default_open_input_output(
        args.input, args.informat, args.output,
        'rxn_smarts_filter', args.outformat, thinOutput=args.thin, valueClassMappings=clsMappings, datasetMetaProps=datasetMetaProps, fieldMetaProps=fieldMetaProps)

    i = 0
    count = 0



    if args.multi:
        dir_base = os.path.dirname(args.output)
        writer_dict = filter_to_use.get_writers(dir_base)
    else:
        writer_dict = None
        dir_base = None

    for mol in suppl:
        i += 1
        if mol is None: continue
        # Return a dict/class here - indicating which filters passed
        filter_pass = filter_to_use.pass_filter(mol)
        utils.log("Found", str(len(filter_pass)), "matches")

        if filter_pass:
            props = {}
            count += 1
            for reaction in filter_pass:
                molObjList = []
                # Write the reaction name as a newline separated list of the synthons to the mol object
                # this is used in SDF output
                mol.SetProp(reaction, "\n".join(filter_pass[reaction]))
                # now write to the props is a way that can be used for the JSON output
                for smiles in filter_pass[reaction]:
                    # generate a dict that generates MoleculeObject JSON
                    mo = utils.generate_molecule_object_dict(smiles, "smiles", None)
                    molObjList.append(mo)
                props[reaction] = molObjList

                if args.multi:
                    writer_dict[reaction].write(mol)
                    writer_dict[reaction].flush()
            # write the output.
            # In JSON format the props will override values set on the mol
            # In SDF format the props are ignored so the values in the mol are used
            writer.write(mol, props)
            writer.flush()
    utils.log("Matched", count, "molecules from a total of", i)
    if dir_base:
        utils.log("Individual SD files found in: " + dir_base)

    writer.flush()
    writer.close()
    if input:
        input.close()
    if output:
        output.close()
    # close the individual writers
    if writer_dict:
        for key in writer_dict:
            writer_dict[key].close()

    if args.meta:
        utils.write_metrics(output_base, {'__InputCount__': i, '__OutputCount__': count, 'RxnSmartsFilter': count})