Ejemplo n.º 1
0
def multivariate_qmol_transform_elementwise_params(
        x_lower,
        x_upper,
        logit_weights,
        means,
        log_scales,
        unnormalized_corr,
        K=256,
        mean_lambd=lambda x: 2 * x - 1):
    '''
    Quantized multivariate mixture of logistics forward transform.

    Args:
        x_lower: torch.Tensor, shape (shape,)
        x_upper: torch.Tensor, shape (shape,)
        logit_weights: torch.Tensor, shape (shape, num_mixtures)
        means: torch.Tensor, shape (shape, num_mixtures)
        log_scales: torch.Tensor, shape (shape, num_mixtures)
        unnormalized_corr: torch.Tensor, shape (shape, num_mixtures*c*(c-1)//2)
        K: int, the number of bins
    '''

    log_weights = F.log_softmax(logit_weights, dim=-1)
    log_scales = log_scales.clamp(min=-7.0)
    corr = torch.tanh(unnormalized_corr)

    adjusted_means = adjust_means(
        means, corr, x_lower,
        in_lambd=mean_lambd)  # Correlate means for each component
    component_cdf_lower = cmol_cdf(x_lower, adjusted_means, log_scales, K)
    component_cdf_upper = cmol_cdf(x_upper, adjusted_means, log_scales, K)
    component_log_probs = torch.log(
        (component_cdf_upper - component_cdf_lower).clamp(1e-12))
    adjusted_log_weights = adjust_log_weights(
        log_weights, component_log_probs
    )  # Adjust log_weights for autoregressive transformation
    return adjusted_log_weights, adjusted_means, log_scales, component_cdf_lower, component_cdf_upper
 def _mix_cdf(self, x, adjusted_means, log_scales, adjusted_log_weights):
     return torch.sum(
         adjusted_log_weights.exp() *
         cmol_cdf(x, adjusted_means, log_scales, self.num_bins),
         dim=-1)
Ejemplo n.º 3
0
 def mix_cdf(x):
     return torch.sum(log_weights.exp() * cmol_cdf(x, means, log_scales, K),
                      dim=-1)
 def mix_cdf(x, adjusted_log_weights, adjusted_means, log_scales):
     return torch.sum(adjusted_log_weights.exp() *
                      cmol_cdf(x, adjusted_means, log_scales, K),
                      dim=-1)