Ejemplo n.º 1
0
    def __init__(self):

        self.gaia = Gaia()
        self.athena = Athena()
        self.theia = Theia()
        self.fs = FileSystemStorage()
        self.PLANET_API_KEY = getattr(settings, "PLANET_API_KEY", None)
Ejemplo n.º 2
0
def get_clipped_asset(params, asset_activation):
    '''
    Second step is to download the item to the desired path
    '''
    gaia = Gaia()
    filepath = params['filepath']
    print('filepath ', str(filepath))
    success = gaia.get_clipped_asset(asset_activation, filepath)
    if success == 0:
        get_clipped_asset.apply_async((params, asset_activation), countdown=20)
        return False
    elif success == 1:

        if params['pixels_usability_test_pass'] == 0:
            udm_filename = glob.glob(filepath + '*udm_clip.tif')[0]
            athena = Athena()
            is_cloudy_udm = athena.is_cloudy_udm(udm_filename)
            if is_cloudy_udm > 0:
                # remove that asset and end the process for this asset
                shutil.rmtree(filepath)
                print('Fail cloud test ')
                return  # if udm is > 2 % cloudy then skip processing
            else:
                # remove the current content <croped UDM>and download the remaining asset
                # and then Start the analysis Process

                print('Successfully pass the Cloudy Test')
                params['pixels_usability_test_pass'] = 1
                params['pixels_ratio'] = is_cloudy_udm

                # Gather directory contents
                contents = [os.path.join(filepath, i) for i in os.listdir(filepath)]
                # Iterate and remove each item in the appropriate manner
                [os.remove(i) if os.path.isfile(i) or os.path.islink(i) else shutil.rmtree(i) for i in contents]

                # Update the params['asset_type'] to  analytic
                params['asset_type'] = 'analytic'
                activate_clipped_asset.apply_async((params,), countdown=1)

        elif params['pixels_usability_test_pass'] == 1:
            generate_analytic_assets.delay(params)
        return True
    else:
        return False
Ejemplo n.º 3
0
    def populate_alert_table(self, params):
        '''
        if percentage of '1' pixels is
        more than 10% of total number of valid pixels
        then ==>  Create Alert in  Alert Model
        '''
        try:
            # pixels_ratio = params['pixels_ratio']
            # print('pixels_ratio', str(pixels_ratio))
            filepath = params['filepath']

            udm_filename = glob.glob(filepath + '*udm_clip.tif')[0]
            weed_alert_array = params['weed_alert_array']
            athena = Athena()
            '''
            Create an Weed Alert in the Alerts data base
            if percentage of '1' pixels is more than 10%
            of total number of valid pixels (as per the udm)
            '''
            is_qualify_create_alert = athena.qualify_create_alert(
                udm_filename, weed_alert_array)
            if is_qualify_create_alert:
                # fill this parameters
                geojson_file_path = params['geojson_file']
                type = params['type']
                aoi = Aoi.objects.get(id=params['aoi_id'])
                plot = Plots.objects.get(id=aoi.plot.id)
                area = aoi.coordinates
                status = params['status']
                # Create  into Alert table

                Alert.objects.create(alert_date=date.today(),
                                     file_path=geojson_file_path,
                                     type=type,
                                     plot=plot,
                                     status=status,
                                     notes='',
                                     area=area)
                return 1
        except:
            return 'No path for asset '
Ejemplo n.º 4
0
 def __init__(self):
     self.gaia = Gaia()
     self.athena = Athena()
     self.theia = Theia()
     self.fs = FileSystemStorage()
Ejemplo n.º 5
0
def generate_analytic_assets(params):
    '''
    Third step is to do calculation, generate the asset, store it S3 and our DB
    '''
    gaia = Gaia()
    theia = Theia()
    athena = Athena()

    date = params['date']
    aoi_id = params['aoi_id']
    filepath = params['filepath']
    planet_item_id = params['planet_item_id']

    aoi = Aoi.objects.get_by_id(aoi_id)

    udm_filename = glob.glob(filepath + '*udm_clip.tif')[0]
    raw_filename = glob.glob(filepath + '*_AnalyticMS_clip.tif')[0]
    metadata = glob.glob(filepath + '*_AnalyticMS_metadata_clip.xml')[0]

    udm, err = gaia.read_band(udm_filename)
    metadata_xml, err = gaia.parse_xml(metadata)
    band_file, err = gaia.read_band(raw_filename)
    clip_udm = athena.create_unusable_clip_mask(band_file, udm)

    is_hazy = athena.is_hazy(band_file, metadata_xml, clip_udm)

    ndvi, err = athena.calculate_NDVI(band_file, metadata_xml)
    ndwi, err = athena.calculate_NDWI(band_file, metadata_xml)
    bai, err = athena.calculate_BAI(band_file, metadata_xml)
    rvi, err = athena.calculate_RVI(band_file, metadata_xml)
    gndvi, err = athena.calculate_GNDVI(band_file, metadata_xml)
    msavi, err = athena.calculate_MSAVI(band_file, metadata_xml)
    dirt, err = athena.calculate_DIRT(band_file, metadata_xml)
    evi, err = athena.calculate_EVI(band_file, metadata_xml)
    usability_score = athena.calculate_usability_score(udm)

    ndvi = np.where(clip_udm, -1, ndvi)
    ndwi = np.where(clip_udm, -1, ndwi)
    bai = np.where(clip_udm, -1, bai)
    rvi = np.where(clip_udm, -1, rvi)
    gndvi = np.where(clip_udm, -1, gndvi)
    msavi = np.where(clip_udm, -1, msavi)
    dirt = np.where(clip_udm, -1, dirt)
    evi = np.where(clip_udm, -1, evi)

    mean_ndvi = np.ma.array(data = ndvi, mask = clip_udm).mean()
    mean_ndwi = np.ma.array(data = ndwi, mask = clip_udm).mean()
    mean_bai = np.ma.array(data = bai, mask = clip_udm).mean()
    mean_rvi = np.ma.array(data = rvi, mask = clip_udm).mean()
    mean_gndvi = np.ma.array(data = gndvi, mask = clip_udm).mean()
    mean_msavi = np.ma.array(data = msavi, mask = clip_udm).mean()
    mean_dirt = np.ma.array(data = dirt, mask = clip_udm).mean()
    mean_evi = np.ma.array(data = evi, mask = clip_udm).mean()

    print('-----')
    print(date)
    print("ndvi : " + str(mean_ndvi))
    print("ndwi : " + str(mean_ndwi))
    print("bai : " + str(mean_bai))
    print("rvi : " + str(mean_rvi))
    print("gndvi : " + str(mean_gndvi))
    print("msavi : " + str(mean_msavi))
    print("dirt : " + str(mean_dirt))
    print("evi : " + str(mean_evi))
    print('-----')

    bands_arr = (ndvi, ndwi, bai, rvi, gndvi, msavi, dirt, evi)
    file_profile = band_file.profile
    file_profile['count'] = len(bands_arr)
    file_profile['dtype'] = 'float64'
    gaia.write_band_to_tiff({
        'bands' : bands_arr,
        'profile' : file_profile,
        'filepath' : filepath,
        'filename' : 'output-analytics.tif'
    })

    theia.create_cmap_asset(ndvi, filepath, 'output-cmap-ndvi')
    theia.create_cmap_asset(ndwi, filepath, 'output-cmap-ndwi', cmap_name='NDWI')
    theia.create_cmap_asset(bai, filepath, 'output-cmap-bai')
    theia.create_cmap_asset(rvi, filepath, 'output-cmap-rvi', cmap_name='RVI', vmin=-3, vmax=3)
    theia.create_cmap_asset(gndvi, filepath, 'output-cmap-gndvi')
    theia.create_cmap_asset(msavi, filepath, 'output-cmap-msavi', cmap_name='MSAVI')
    theia.create_cmap_asset(dirt, filepath, 'output-cmap-dirt', cmap_name='DIRT')
    theia.create_cmap_asset(evi, filepath, 'output-cmap-evi')

    ## Dump to csv; pls remove if not needed. The size is huge
    np.savetxt(filepath + "ndvi_dump.csv", ndvi, delimiter=",")
    np.savetxt(filepath + "ndwi_dump.csv", ndwi, delimiter=",")
    np.savetxt(filepath + "bai_dump.csv", bai, delimiter=",")
    np.savetxt(filepath + "rvi_dump.csv", rvi, delimiter=",")
    np.savetxt(filepath + "gndvi_dump.csv", gndvi, delimiter=",")
    np.savetxt(filepath + "msavi_dump.csv", msavi, delimiter=",")
    np.savetxt(filepath + "dirt_dump.csv", dirt, delimiter=",")
    np.savetxt(filepath + "evi_dump.csv", evi, delimiter=",")
    ##

    storage_url = gaia.store_asset_to_s3(filepath)

    asset = Asset.objects.create_asset(aoi, {
        'type': 'ANALYTIC',
        'date': date,
        'storage_url': storage_url,
        'planet_item_id': planet_item_id,
        'usability_score': usability_score,
        'note': json.dumps({
            'mean_ndvi': mean_ndvi,
            'mean_ndwi': mean_ndwi,
            'mean_bai': mean_bai,
            'mean_rvi': mean_rvi,
            'mean_gndvi': mean_gndvi,
            'mean_msavi': mean_msavi,
            'haze': is_hazy
        })
    })

    return asset.id