Ejemplo n.º 1
0
def _scatterhist_help(
    axes=None,
    top_height=0,
    left_width=0,
    right_width=0,
    bottom_height=0,
):
    """Create a scatter plot with the marginal distribution for `x`
    plotted in a separate pain as a kernel density estimate.

    Parameters
    ----------
    color : matplotlib colorspec, or None, optional
        Color to plot data series

    axes : :class:`matplotlib.axes.Axes`, dict, or `None`, optional
        If a :class:`matplotlib.axes.Axes`, an axes in which to place plot.
        This axes will be split into relevant panels.

        If a dict, this is expected to be a group of pre-split axes.

        If `None`, a new figure is generated, and axes are split.
        (Default: `None`)
      
    top_height, left_width, right_width, bottom_height : float, optional
        If not `None`, a panel on the corresponding side of the `ax` will
        be created, using whatever fraction is specified (e.g. 0.1 to use
        10% of total height).    


    Returns
    -------
    :class:`matplotlib.figure.Figure`
        Parent figure of axes
    
    dict of :class:`matplotlib.axes.Axes`
        axes containing plot space
    """
    if axes is None:
        fig = plt.figure()
        axes = plt.gca()
    if isinstance(axes, matplotlib.axes.Axes):
        fig = axes.figure
        axes = split_axes(axes,
                          top_height=top_height,
                          left_width=left_width,
                          right_width=right_width,
                          bottom_height=bottom_height)
    elif isinstance(axes, dict):
        fig = axes["main"].figure
        if left_width > 0:
            assert "left" in axes
        if right_width > 0:
            assert "right" in axes
        if bottom_height > 0:
            assert "bottom" in axes
        if top_height > 0:
            assert "top" in axes

    return fig, axes
Ejemplo n.º 2
0
def _scatterhist_help(axes=None,
                      top_height=0,left_width=0,right_width=0,bottom_height=0,
                      ):
    """Create a scatter plot with the marginal distribution for `x`
    plotted in a separate pain as a kernel density estimate.

    Parameters
    ----------
    color : matplotlib colorspec, or None, optional
        Color to plot data series

    axes : :class:`matplotlib.axes.Axes`, dict, or `None`, optional
        If a :class:`matplotlib.axes.Axes`, an axes in which to place plot.
        This axes will be split into relevant panels.

        If a dict, this is expected to be a group of pre-split axes.

        If `None`, a new figure is generated, and axes are split.
        (Default: `None`)
      
    top_height, left_width, right_width, bottom_height : float, optional
        If not `None`, a panel on the corresponding side of the `ax` will
        be created, using whatever fraction is specified (e.g. 0.1 to use
        10% of total height).    


    Returns
    -------
    :class:`matplotlib.figure.Figure`
        Parent figure of axes
    
    dict of :class:`matplotlib.axes.Axes`
        axes containing plot space
    """
    if axes is None:
        fig = plt.figure()
        axes = plt.gca()
    if isinstance(axes,matplotlib.axes.Axes):
        fig = axes.figure
        axes = split_axes(axes,top_height=top_height,left_width=left_width,
                          right_width=right_width,bottom_height=bottom_height)
    elif isinstance(axes,dict):
        fig = axes["main"].figure
        if left_width > 0:
            assert "left" in axes
        if right_width > 0:
            assert "right" in axes
        if bottom_height > 0:
            assert "bottom" in axes
        if top_height > 0:
            assert "top" in axes

    return fig, axes
Ejemplo n.º 3
0
def profile_heatmap(data,
                    profile=None,
                    x=None,
                    axes=None,
                    sort_fn=sort_max_position,
                    cmap=None,
                    nancolor="#666666",
                    im_args={},
                    plot_args={}):
    """Create a dual-paned plot in which `profile` is displayed in a top
    panel, above a heatmap showing the intensities of each row of `data`,
    optionally sorted top-to-bottom by `sort_fn`.

    Parameters
    ----------
    data : :class:`numpy.ndarray`
        Array of data, in which each row is an individual aligned vector of data
        for region of interest, and each column a position in that vector

    profile : :class:`numpy.ndarray` or None
        Reduced profile of data, often a column-wise median. If not
        supplied, it will be calculated.

    x : :class:`numpy.ndarray`
        Array of values for X-axis

    axes : :class:`matplotlib.axes.Axes` or `None`, optional
        Axes in which to place plot. If `None`, a new figure is generated.
        (Default: `None`)
       
    sort_fn : function, optional
        Sort rows in `data` by this function before plotting. Function must
        return a :class:`numpy.ndarray` of indices corresponding to rows in `data`
        (Default: sort by ascending argmax of each row)

    cmap : :class:`~matplotlib.colors.Colormap`, optional
        Colormap to use in heatmap. It not `None`, overrides any value
        in `im_args`. (Default: `None`) 

    nancolor : str or matplotlib colorspec
        Color used for plotting `nan` and other illegal or masked values
        
    im_args : dict
        Keyword arguments to pass to :func:`matplotlib.pyplot.imshow`

    plot_args : dict
        Keyword arguments to pass to :func:`matplotlib.pyplot.plot`
        for plotting metagene average


    Returns
    -------
    :class:`matplotlib.figure.Figure`
        Parent figure of axes
    
    dict
        Dictionary of :class:`matplotlib.axes.Axes`. "top" refers to the 
        panel containing the summary profile. "main" refers to the heatmap
        of individual values
    """
    fig, ax = get_fig_axes(axes)
    axes = split_axes(ax, top_height=0.2)

    if sort_fn is None:
        sort_indices = numpy.arange(data.shape[0])
    else:
        sort_indices = sort_fn(data)

    if x is None:
        x = numpy.arange(0, data.shape[1])

    if profile is None:
        profile = numpy.nanmedian(data, axis=0)

    im_args = copy.deepcopy(im_args)

    # populate with defaults
    for k, v in _heatmap_defaults.items():
        if k not in im_args:
            im_args[k] = v

    if "extent" not in im_args:
        im_args["extent"] = [x.min(), x.max(), 0, data.shape[0]]  #,0]
    if "vmin" not in im_args:
        im_args["vmin"] = numpy.nanmin(data)
    if "vmax" not in im_args:
        im_args["vmax"] = numpy.nanmax(data)

    if cmap is not None:
        im_args["cmap"] = cmap
    elif "cmap" in im_args:
        cmap = matplotlib.cm.get_cmap(im_args["cmap"])
    else:
        cmap = matplotlib.cm.get_cmap()

    cmap.set_bad(nancolor, 1.0)

    axes["top"].plot(x, profile, **plot_args)
    axes["top"].set_ylim(0, profile.max())
    axes["top"].set_xlim(x.min(), x.max())
    #axes["top"].set_yticks([])
    axes["top"].set_yticks([0, profile.max()])
    axes["top"].xaxis.tick_bottom()
    axes["top"].grid(True, which="both")

    axes["main"].xaxis.tick_bottom()
    axes["main"].imshow(data[sort_indices, :], **im_args)

    return fig, axes
Ejemplo n.º 4
0
def profile_heatmap(data,profile=None,x=None,axes=None,sort_fn=sort_max_position,
                    cmap=None,nancolor="#666666",im_args={},plot_args={}):
    """Create a dual-paned plot in which `profile` is displayed in a top
    panel, above a heatmap showing the intensities of each row of `data`,
    optionally sorted top-to-bottom by `sort_fn`.

    Parameters
    ----------
    data : :class:`numpy.ndarray`
        Array of data, in which each row is an individual aligned vector of data
        for region of interest, and each column a position in that vector

    profile : :class:`numpy.ndarray` or None
        Reduced profile of data, often a column-wise median. If not
        supplied, it will be calculated.

    x : :class:`numpy.ndarray`
        Array of values for X-axis

    axes : :class:`matplotlib.axes.Axes` or `None`, optional
        Axes in which to place plot. If `None`, a new figure is generated.
        (Default: `None`)
       
    sort_fn : function, optional
        Sort rows in `data` by this function before plotting. Function must
        return a :class:`numpy.ndarray` of indices corresponding to rows in `data`
        (Default: sort by ascending argmax of each row)

    cmap : :class:`~matplotlib.colors.Colormap`, optional
        Colormap to use in heatmap. It not `None`, overrides any value
        in `im_args`. (Default: `None`) 

    nancolor : str or matplotlib colorspec
        Color used for plotting `nan` and other illegal or masked values
        
    im_args : dict
        Keyword arguments to pass to :func:`matplotlib.pyplot.imshow`

    plot_args : dict
        Keyword arguments to pass to :func:`matplotlib.pyplot.plot`
        for plotting metagene average


    Returns
    -------
    :class:`matplotlib.figure.Figure`
        Parent figure of axes
    
    dict
        Dictionary of :class:`matplotlib.axes.Axes`. "top" refers to the 
        panel containing the summary profile. "main" refers to the heatmap
        of individual values
    """
    fig, ax = get_fig_axes(axes)
    axes = split_axes(ax,top_height=0.2)

    if sort_fn is None:
        sort_indices = numpy.arange(data.shape[0])
    else:
        sort_indices = sort_fn(data)

    if x is None:
        x = numpy.arange(0,data.shape[1])

    if profile is None:
        profile = numpy.nanmedian(data,axis=0)
    
    im_args     = copy.deepcopy(im_args)
    
    # populate with defaults
    for k,v in _heatmap_defaults.items():
        if k not in im_args:
            im_args[k] = v

    if "extent" not in im_args:            
        im_args["extent"] = [x.min(),x.max(),0,data.shape[0]]#,0]
    if "vmin" not in im_args:
        im_args["vmin"] = numpy.nanmin(data)
    if "vmax" not in im_args:
        im_args["vmax"] = numpy.nanmax(data)

    if cmap is not None:
        im_args["cmap"] = cmap
    elif "cmap" in im_args:
        cmap = matplotlib.cm.get_cmap(im_args["cmap"])
    else:
        cmap = matplotlib.cm.get_cmap()
    
    cmap.set_bad(nancolor,1.0)
    
    axes["top"].plot(x,profile,**plot_args)
    axes["top"].set_ylim(0,profile.max())
    axes["top"].set_xlim(x.min(),x.max())
    #axes["top"].set_yticks([])
    axes["top"].set_yticks([0,profile.max()])
    axes["top"].xaxis.tick_bottom()
    axes["top"].grid(True,which="both")

    axes["main"].xaxis.tick_bottom()
    axes["main"].imshow(data[sort_indices,:],**im_args)

    return fig, axes