Ejemplo n.º 1
0
def Plot_Social_Welfare(task_n, provider_n, max_value, max_alpha, max_deadline, max_task_size, max_mu, max_provider_bid, max_provider_skill, task_columns, provider_columns):
  
  tasks = TaskCreator(task_n, max_value, max_alpha, max_deadline, max_task_size)
  providers = ProviderCreator(provider_n, max_mu, max_provider_bid, max_provider_skill)
  
  pro_exp_social = []
  exp_social = []
  pro_real_social = []
  real_social = []
  
  for i in range(1,11):
    capacity = 20*i
    
    auctioneer = Platform(capacity)

  #platform에서 winners를 선택한다. 
    W_requesters, req_threshold = auctioneer.WinningRequesterSelection(tasks)
    W_providers, pro_threshold = auctioneer.WinningProviderSelection(providers)

  #혹시 모르니깐 requesters와 providers의 숫자를 맞춘다.
    W_requesters, W_providers = auctioneer.Trimming(W_requesters, W_providers)

  #requesters와 providers의 preference ordering을 만든다.
    requester_preference_ordering = auctioneer.ordering_matrix(W_providers,provider_columns)
    provider_preference_ordering = auctioneer.ordering_matrix(W_requesters,task_columns)

    b_rank, b_mean_rank = benchmark_satisfaction_level(requester_preference_ordering)
    b_pdf, b_cdf = bench_distribution(b_rank)

    match = auctioneer.SMA(requester_preference_ordering, provider_preference_ordering)
    #In match, requester: keys, providers: values

    #expected social welfare comparison
    social_welfare = SocialWelfare(W_requesters, W_providers, 0.01, match)
    benchmark = SystemExpectedSocialwelfare(W_requesters, W_providers, 0.01)
    
    pro_exp_social.append(social_welfare)
    exp_social.append(benchmark)
    
    rank, mean_rank = auctioneer.satisfaction_level(match, requester_preference_ordering)
    pdf, cdf = auctioneer.satisfaction_distribution(rank)
    
    #real social welfare
    welfare, t_sub = Proposed_SocialWelfare(W_requesters, W_providers, 0.01, match)
    bench_welfare = Existing_SocialWelfare(W_requesters, W_providers, 0.01)
    
    pro_real_social.append(welfare)
    real_social.append(bench_welfare)
  
  x_axis = np.array(range(1,11))*20
  bar_width = 10
  fig, ax = plt.subplots(nrows = 1, ncols = 2)
  ax[0].bar(x_axis, pro_exp_social, width = bar_width, label = 'proposed exp.SW', color = 'b')
  ax[0].bar(x_axis+bar_width, exp_social, width = bar_width, label = 'benchmark exp.SW', color = 'r')
  ax[0].legend(loc = 'best')
  
  ax[1].bar(x_axis, pro_real_social, width = bar_width, label = 'proposed real.SW', color = 'b')
  ax[1].bar(x_axis+bar_width, real_social, width = bar_width, label = 'benchmark real.SW', color = 'r')
  ax[1].legend(loc = 'best')
  plt.show()  
Ejemplo n.º 2
0
def SW2(tasks, providers, capacity_unit, capacity_range, power4requester, power4provider):

    result = []

    for idx in range(1, capacity_range + 1):

        #create an auctioneer
        capacity = capacity_unit*idx
        auctioneer = Platform(capacity)

        start_time = time.process_time()
        #winner selection process with consideration to alpha and mu
        W_requesters, req_threshold = auctioneer.New_WinningRequesterSelection(tasks, power4requester)
        W_providers, pro_threshold = auctioneer.New_WinningProviderSelection(providers, power4provider)

        #trimming process
        W_requesters, W_providers, req_threshold, pro_threshold = auctioneer.Trimming(W_requesters, W_providers, req_threshold, pro_threshold)

        #cost calculation
        task_size = TaskSizer(W_requesters)
        cost = CostCalculator(W_providers, task_size)

        #payment calculation
        payment = auctioneer.New_WPS_payment(W_providers, pro_threshold, power4provider)
        payment = payment*task_size

        #fee calculation
        fee = auctioneer.New_WRS_payment(W_requesters, req_threshold, power4requester)

        #mere social welfare
        mere_SW = MereSW(W_requesters) - cost

        #expected social welfare
        expected_SW = ExpectedSW(W_requesters, W_providers) - cost

        #actually realized social welfare
        realized_SW, t_sub = PostSW(W_requesters, W_providers)
        realized_SW = realized_SW - cost

        #budget balance check before submission
        pre_budget = BudgetBalanceCheck(fee, payment)

        #budget balance after submission
        changed_fee, changed_payment = TimeVariantMoney(t_sub, W_requesters, W_providers, fee, payment)

        post_budget = BudgetBalanceCheck(changed_fee, changed_payment)

        end_time = time.process_time()

        running_time = end_time - start_time

        #budget balance check
        if pre_budget < 0: #budget balance not met
            result.append([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, running_time]) #return all zeros
        else: #budget balance met
            result.append([mere_SW, expected_SW, realized_SW, pre_budget, post_budget, payment.sum(), fee.sum(), changed_payment.sum(), changed_fee.sum(), cost, running_time])#proposed heuristic approach

    return np.array(result)
Ejemplo n.º 3
0
def SW1(tasks, providers, capacity_unit, capacity_range): #simple greedy approach

    result = []

    for idx in range(1, capacity_range + 1):

        #create an auctioneer
        capacity = capacity_unit*idx
        auctioneer = Platform(capacity)

        start_time = time.process_time()
        #winner selection process
        W_requesters, req_threshold = auctioneer.WinningRequesterSelection(tasks)
        W_providers, pro_threshold = auctioneer.WinningProviderSelection(providers)

        #trimming process: make the # of selected requesters and providers equal
        W_requesters, W_providers, req_threshold, pro_threshold = auctioneer.Trimming(W_requesters, W_providers, req_threshold, pro_threshold)

        #cost calculation
        task_size = TaskSizer(W_requesters)
        cost = CostCalculator(W_providers, task_size)

        #calculate the payment to providers which guarantees truthfulness of providers
        payment = auctioneer.WPS_payment(W_providers, pro_threshold) #unit payment
        payment = payment*task_size #effective payment

        #calculate the fee for requesters which guarantees their truthfulness
        fee = auctioneer.WRS_payment(W_requesters, req_threshold)

        #mere social welfare: simple summation of task values without considering task depreciation after deadline
        mere_SW = MereSW(W_requesters) - cost

        #expected social welfare: summation of task values considering task depreciation after deadline
        expected_SW = ExpectedSW(W_requesters, W_providers) - cost

        #actually realized social welfare
        realized_SW, t_sub = PostSW(W_requesters, W_providers)
        realized_SW = realized_SW - cost

        #budget balance check before submission
        pre_budget = BudgetBalanceCheck(fee, payment)

        #budget balance after submission
        changed_fee, changed_payment = TimeVariantMoney(t_sub, W_requesters, W_providers, fee, payment)

        post_budget = BudgetBalanceCheck(changed_fee, changed_payment) #without consideration to alpha, mu and preference

        end_time = time.process_time()

        running_time = end_time - start_time

        #budget balance check
        if pre_budget < 0: #budget balance not met. Note that we can only check the budget balance before providers' actual submission
            result.append([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, running_time]) #return all zeros
        else: #budget balance met
            result.append([mere_SW, expected_SW, realized_SW, pre_budget, post_budget, payment.sum(), fee.sum(), changed_payment.sum(), changed_fee.sum(), cost, running_time])

    return np.array(result)
Ejemplo n.º 4
0
def SW(time_unit, task_n, provider_n, max_value, max_deadline, max_alpha, max_task_size, max_provider_bid, max_provider_skill, max_mu, task_columns, provider_columns, iteration, capacity, output):

#mere social welfare
  mere1 = []
  mere2 = []

#expected social welfare
  expected1 = []
  expected2 = []
  expected3 = []

#real social welfare
  real1 = []
  real2 = []
  real3 = []

#budget before submission
  before1 = []
  before2 = []
  before3 = []

#budget after submission
  after1 = []
  after2 = []
  after3 = []

#payment before submission
  p_before1 = []
  p_before2 = []
  
#fee before submission
  f_before1 = []
  f_before2 = []

#payment after submission
  p_after1 = []
  p_after2 = []
  p_after3 = []
  
#fee after submission 
  f_after1 = []
  f_after2 = []
  f_after3 = []

#cost
  cost1 = []
  cost2 = []
  
  
  for _ in range(iteration):
    
#participants creation
    tasks = TaskCreator(task_n, max_value, max_alpha, max_deadline, max_task_size)
    providers = ProviderCreator(provider_n, max_mu, max_provider_bid, max_provider_skill)

    auctioneer = Platform(capacity)

#winner selection
#without consideration to alpha and mu
    W_requesters, req_threshold = auctioneer.WinningRequesterSelection(tasks)
    W_providers, pro_threshold = auctioneer.WinningProviderSelection(providers)

#with consideration to alpha and mu
    New_W_requesters, New_req_threshold = auctioneer.New_WinningRequesterSelection(tasks)
    New_W_providers, New_pro_threshold = auctioneer.New_WinningProviderSelection(providers)

#trimming process
    W_requesters, W_providers = auctioneer.Trimming(W_requesters, W_providers)
    New_W_requesters, New_W_providers = auctioneer.Trimming(New_W_requesters, New_W_providers)

    c1 = cost_calculator(W_providers)
    c2 = cost_calculator(New_W_providers)
    
#payment
#temporary payment without consideration to alpha, mu
    payment1 = auctioneer.WPS_payment(W_providers, pro_threshold)
#temporary fee
    fee1 = auctioneer.WRS_payment(W_requesters, req_threshold)
    
    
    
    
    
#temporary payment with consideration to alpha, mu
    payment2 = auctioneer.New_WPS_payment(New_W_providers, New_pro_threshold)
#temporary fee
    fee2 = auctioneer.New_WRS_payment(New_W_requesters, New_req_threshold)



#1. preference ordering
    

#satisfaction level without consideration of preference but with alpha, mu: 2
    New_requester_preference_ordering = auctioneer.ordering_matrix(New_W_providers,provider_columns)
    New_provider_preference_ordering = auctioneer.ordering_matrix(New_W_requesters,task_columns)

    New_r_rank, New_r_mean_rank = benchmark_satisfaction_level(New_requester_preference_ordering)
    New_p_rank, New_p_mean_rank = benchmark_satisfaction_level(New_provider_preference_ordering)

    New_r_pdf, New_r_cdf = bench_distribution(New_r_rank)
    New_p_pdf, New_p_cdf = bench_distribution(New_p_rank)


#Run Stable Marriage Algorithm: In match, requester: keys, providers: values
    match = auctioneer.SMA(New_requester_preference_ordering, New_provider_preference_ordering)

#mere social welfare---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    result = mere_social_welfare(W_requesters) #without consideration to alpha, mu
    result1 = mere_social_welfare(New_W_requesters) #with consideration to alpha, mu
#print('mere social welfare 1: %f' %result)
#print('mere social welfare 2: %f' %result1)

#expected social welfare---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    social_welfare1 = SystemExpectedSocialwelfare(W_requesters, W_providers, time_unit) #without consideration to preference & alpha, mu
    social_welfare2 = SystemExpectedSocialwelfare(New_W_requesters, New_W_providers, time_unit) #with consideration to alpha, mu but without preference
    social_welfare3 = SocialWelfare(New_W_requesters, New_W_providers, time_unit, match) #With consideration to preference & alpha, mu

#print('expected social welfare 1: %f' %social_welfare1)
#print('expected social welfare 2: %f' %social_welfare2)
#print('expected social welfare 3: %f' %social_welfare3)

#print('D 1:%f' %(result-social_welfare1))
#print('D 2:%f' %(result1-social_welfare2))
#print('D 3:%f' %(result1-social_welfare3))


#real social welfare with submission time---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    post_social_welfare1, t_sub1 = Existing_SocialWelfare(W_requesters, W_providers, time_unit) #without consideration to preference, alpha, mu
    post_social_welfare2, t_sub2 = Existing_SocialWelfare(New_W_requesters, New_W_providers, time_unit) #with consideration to alpha, mu
    post_social_welfare3, t_sub3 = Proposed_SocialWelfare(New_W_requesters, New_W_providers, time_unit, match) #with consideration to preference & alpha, mu

#print('real social welfare 1:%f' %post_social_welfare1)
#print('real social welfare 2:%f' %post_social_welfare2)
#print('real social welfare 3:%f' %post_social_welfare3)


#difference between expected social welfare and real social welfare
#print('difference 1: %f' %(social_welfare1-post_social_welfare1))
#print('difference 2: %f' %(social_welfare2-post_social_welfare2))
#print('difference 3: %f' %(social_welfare3-post_social_welfare3))


#budget balance check before submission---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    net_budget1 = budget_balance_check(fee1, payment1) #without consideration to alpha, mu
    net_budget2 = budget_balance_check(fee2, payment2) #with consideration to alpha, mu
    net_budget3 = budget_balance_check(fee2, payment2) #with consideration to alpha, mu and preference

#print('budget before submission(without alpha, mu, preference): %f' %net_budget1)
#print('budget before submission(with alpha and mu): %f' %net_budget2)
#print('budget before submission(with alpha, mu and preference): %f' %net_budget3)

#budget balance after submission---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    changed_fee1, changed_payment1 = bench_time_variant_money(t_sub1, W_requesters, W_providers, fee1, payment1, time_unit)
    changed_fee2, changed_payment2 = bench_time_variant_money(t_sub2, New_W_requesters, New_W_providers, fee2, payment2, time_unit)
    changed_fee3, changed_payment3 = time_variant_money(t_sub3, New_W_requesters, New_W_providers, fee2, payment2, match, time_unit)
    
    
    
    changed_budget1 = budget_balance_check(changed_fee1, changed_payment1) #without consideration to alpha, mu and preference
    changed_budget2 = budget_balance_check(changed_fee2, changed_payment2) #with consideration to alpha, mu
    changed_budget3 = budget_balance_check(changed_fee3, changed_payment3) #with consideration to alpha, mu and preference

#print('budget after submission(without alpha,mu, preference): %f' %changed_budget1)
#print('budget after submission(with alpha,mu): %f' %changed_budget2)
#print('budget after submission(with alpha,mu, preference): %f' %changed_budget3)
 
    #print('iteration: %f, capacity: %f' %(it, unit*(ran+1))) 
 
#budget balance check 
    if net_budget1 < 0:
      result = 0
      social_welfare1 = 0
      post_social_welfare1 = 0
      net_budget1 = 0
      changed_budget1 = 0
      payment1 = 0
      fee1 = 0
      changed_payment1 = 0
      changed_fee1 = 0
      c1 = 0
    
    if net_budget2 < 0:
      result1 = 0
      social_welfare2 = 0; social_welfare3 = 0
      post_social_welfare2 = 0; post_social_welfare3 = 0
      net_budget2 = 0; net_budget3 = 0
      changed_budget2 = 0; changed_budget3 = 0 
      payment2 = 0; fee2 = 0
      changed_payment2 = 0; changed_payment3 = 0
      changed_fee2 = 0; changed_fee3 = 0 
      c2 = 0
      
#mere social welfare
    mere1.append(result)
    mere2.append(result1)

#expected social welfare
    expected1.append(social_welfare1)
    expected2.append(social_welfare2)
    expected3.append(social_welfare3)

#real social welfare
    real1.append(post_social_welfare1)
    real2.append(post_social_welfare2)
    real3.append(post_social_welfare3)

#budget before submission
    before1.append(net_budget1)
    before2.append(net_budget2)
    before3.append(net_budget3)

#budget after submission
    after1.append(changed_budget1)
    after2.append(changed_budget2)
    after3.append(changed_budget3) 
    
#payment before submission
    p_before1.append(np.sum(payment1))
    p_before2.append(np.sum(payment2))
    
#fee before submission   
    f_before1.append(np.sum(fee1))
    f_before2.append(np.sum(fee2))
    
#payment after submission   
    p_after1.append(np.sum(changed_payment1))
    p_after2.append(np.sum(changed_payment2))
    p_after3.append(np.sum(changed_payment3))

#fee after submission    
    f_after1.append(np.sum(changed_fee1))  
    f_after2.append(np.sum(changed_fee2))   
    f_after3.append(np.sum(changed_fee3)) 
    
#cost 
    cost1.append(c1)
    cost2.append(c2)
  
  
  
  
  
  
  #mere social welfare
  mere1 = [x for x in mere1 if x != 0]
  mere2 = [x for x in mere2 if x != 0]#
  if len(mere2) == 0:
    mere2 = 0
#expected social welfare
  expected1 = [x for x in expected1 if x != 0]
  expected2 = [x for x in expected2 if x != 0]#
  expected3 = [x for x in expected3 if x != 0]#
  if len(expected2) == 0:
    expected2 = 0
  if len(expected3) == 0:
    expected3 = 0    
#real social welfare
  real1 = [x for x in real1 if x != 0]
  real2 = [x for x in real2 if x != 0]#
  real3 = [x for x in real3 if x != 0]#
  if len(real2) == 0:
    real2 = 0
  if len(real3) == 0:
    real3 = 0    
#budget before submission
  before1 = [x for x in before1 if x != 0]
  before2 = [x for x in before2 if x != 0]#
  before3 = [x for x in before3 if x != 0]#
  if len(before2) == 0:
    before2 = 0
  if len(before3) == 0:
    before3 = 0    
#budget after submission
  after1 = [x for x in after1 if x != 0]
  after2 = [x for x in after2 if x != 0]#
  after3 = [x for x in after3 if x != 0]#
  if len(after2) == 0:
    after2 = 0
  if len(after3) == 0:
    after3 = 0    
#payment before submission
  p_before1 = [x for x in p_before1 if x != 0]
  p_before2 = [x for x in p_before2 if x != 0]#
  if len(p_before2) == 0:
    p_before2 = 0
#fee before submission
  f_before1 = [x for x in f_before1 if x != 0]
  f_before2 = [x for x in f_before2 if x != 0]#
  if len(f_before2) == 0:
    f_before2 = 0
    
#payment after submission
  p_after1 = [x for x in p_after1 if x != 0]
  p_after2 = [x for x in p_after2 if x != 0]#
  p_after3 = [x for x in p_after3 if x != 0]#
  if len(p_after3) == 0:
    p_after3 = 0
  if len(p_after2) == 0:
    p_after2 = 0
    
#fee after submission 
  f_after1 = [x for x in f_after1 if x != 0]
  f_after2 = [x for x in f_after2 if x != 0]#
  f_after3 = [x for x in f_after3 if x != 0]#
  if len(f_after3) == 0:
    f_after3 = 0
  if len(f_after2) == 0:
    f_after2 = 0  
    
#cost
  cost1 = [x for x in cost1 if x != 0]
  cost2 = [x for x in cost2 if x != 0]#
  
  if len(cost2) == 0:
    cost2 = 0
  
  
  
  #output.put((mere1,mere2,expected1,expected2,expected3,real1,real2,real3,before1,before2, before3, after1, after2, after3, p_before1, p_before2, f_before1, f_before2, p_after1, p_after2, p_after3,
  #f_after1, f_after2, f_after3, cost1, cost2))
   
  output.put((np.mean(mere1), np.mean(mere2), np.mean(expected1), np.mean(expected2), np.mean(expected3), np.mean(real1), np.mean(real2), np.mean(real3), 
  np.mean(before1), np.mean(before2), np.mean(before3), np.mean(after1), np.mean(after2), np.mean(after3), np.mean(p_before1), np.mean(p_before2), np.mean(f_before1), 
  np.mean(f_before2), np.mean(p_after1), np.mean(p_after2), np.mean(p_after3), np.mean(f_after1), np.mean(f_after2), np.mean(f_after3), np.mean(cost1), np.mean(cost2)))
Ejemplo n.º 5
0
def preference_cdf(time_unit, task_n, provider_n, capacity, max_value, max_deadline, max_alpha, max_task_size, max_provider_bid, max_provider_skill, max_mu, task_columns, provider_columns, iteration, output): 

  r_distribution1 = []
  r_distribution2 = []
  r_distribution3 = []

  r_cumulative1 = []
  r_cumulative2 = []
  r_cumulative3 = []

  p_distribution1 = []
  p_distribution2 = []
  p_distribution3 = []

  p_cumulative1 = []
  p_cumulative2 = []
  p_cumulative3 = []

  r_mean1=[]
  r_mean2=[]
  r_mean3=[]

  p_mean1=[]
  p_mean2=[]
  p_mean3=[]

  for _ in range(iteration):
  
    tasks = TaskCreator(task_n, max_value, max_alpha, max_deadline, max_task_size)
    providers = ProviderCreator(provider_n, max_mu, max_provider_bid, max_provider_skill)

    auctioneer = Platform(capacity)
  
#without consideration to alpha and mu '''winner selection'''
    W_requesters, req_threshold = auctioneer.WinningRequesterSelection(tasks)
    W_providers, pro_threshold = auctioneer.WinningProviderSelection(providers)

#with consideration to alpha and mu
    New_W_requesters, New_req_threshold = auctioneer.New_WinningRequesterSelection(tasks)
    New_W_providers, New_pro_threshold = auctioneer.New_WinningProviderSelection(providers)

#trimming process
    W_requesters, W_providers = auctioneer.Trimming(W_requesters, W_providers)
    New_W_requesters, New_W_providers = auctioneer.Trimming(New_W_requesters, New_W_providers)



#1. preference ordering

#satisfaction level without consideration of preference, alpha and mu: 1
    requester_preference_ordering = auctioneer.ordering_matrix(W_providers,provider_columns)
    provider_preference_ordering = auctioneer.ordering_matrix(W_requesters,task_columns)

    r_rank, r_mean_rank = benchmark_satisfaction_level(requester_preference_ordering)
    p_rank, p_mean_rank = benchmark_satisfaction_level(provider_preference_ordering)
  
    r_pdf1, r_cdf1 = bench_distribution(r_rank)
    p_pdf1, p_cdf1 = bench_distribution(p_rank)
  
    r_distribution1.append(r_pdf1)
    r_cumulative1.append(r_cdf1)
  
    p_distribution1.append(p_pdf1)
    p_cumulative1.append(p_cdf1)
  
    r_mean1.append(r_mean_rank)
    p_mean1.append(p_mean_rank)
  
#satisfaction level without consideration of preference but with alpha, mu: 2
    New_requester_preference_ordering = auctioneer.ordering_matrix(New_W_providers,provider_columns)
    New_provider_preference_ordering = auctioneer.ordering_matrix(New_W_requesters,task_columns)

    New_r_rank, New_r_mean_rank = benchmark_satisfaction_level(New_requester_preference_ordering)
    New_p_rank, New_p_mean_rank = benchmark_satisfaction_level(New_provider_preference_ordering)
  
    r_pdf2, r_cdf2 = bench_distribution(New_r_rank)
    p_pdf2, p_cdf2 = bench_distribution(New_p_rank)

    r_distribution2.append(r_pdf2)
    p_distribution2.append(p_pdf2)
  
    r_cumulative2.append(r_cdf2)
    p_cumulative2.append(p_cdf2)
  
    r_mean2.append(New_r_mean_rank)
    p_mean2.append(New_p_mean_rank)
  
#Run Stable Marriage Algorithm: In match, requester: keys, providers: values
    match = auctioneer.SMA(New_requester_preference_ordering, New_provider_preference_ordering)



#satisfaction with consideration to preference, alpha, mu:3 
#requesters
    r_rank3, r_mean_rank3 = auctioneer.satisfaction_level(match, New_requester_preference_ordering)
  
#providers
    p_rank3, p_mean_rank3 = auctioneer.satisfaction_level(match, New_provider_preference_ordering)

    r_pdf3, r_cdf3 = auctioneer.satisfaction_distribution(r_rank3)
    p_pdf3, p_cdf3 = auctioneer.satisfaction_distribution(p_rank3)
  
    r_distribution3.append(r_pdf3)
    p_distribution3.append(p_pdf3)
  
    r_cumulative3.append(r_cdf3)
    p_cumulative3.append(p_cdf3)
  
    r_mean3.append(r_mean_rank3)
    p_mean3.append(p_mean_rank3)

  r_distribution1 = np.array(r_distribution1).mean(axis = 0)
  r_distribution2 = np.array(r_distribution2).mean(axis = 0)
  r_distribution3 = np.array(r_distribution3).mean(axis = 0)

  r_cumulative1 = np.array(r_cumulative1).mean(axis = 0)
  r_cumulative2 = np.array(r_cumulative2).mean(axis = 0)
  r_cumulative3 = np.array(r_cumulative3).mean(axis = 0)


  p_distribution1 = np.array(p_distribution1).mean(axis = 0)
  p_distribution2 = np.array(p_distribution2).mean(axis = 0)
  p_distribution3 = np.array(p_distribution3).mean(axis = 0)

  p_cumulative1 = np.array(p_cumulative1).mean(axis = 0)
  p_cumulative2 = np.array(p_cumulative2).mean(axis = 0)
  p_cumulative3 = np.array(p_cumulative3).mean(axis = 0)


  r_mean1= np.array(r_mean1).mean()
  r_mean2= np.array(r_mean2).mean()
  r_mean3= np.array(r_mean3).mean()

  p_mean1= np.array(p_mean1).mean()
  p_mean2= np.array(p_mean2).mean()
  p_mean3= np.array(p_mean3).mean()
  
  output.put((r_distribution1, r_distribution2, r_distribution3, r_cumulative1, r_cumulative2, r_cumulative3, p_distribution1, p_distribution2, p_distribution3, p_cumulative1, p_cumulative2, p_cumulative3,
  r_mean1, r_mean2, r_mean3, p_mean1, p_mean2, p_mean3))