Ejemplo n.º 1
0
    def plotRug(self, noUpdate=False):
        for rug in self.rugKeys:
            rug.detach()
        self.rugKeys = []

        if self.master.showRug:
            targetClass = self.master.targetClass

            if self.contingency:
                freqhigh = [
                    (val, freq[targetClass]) for val, freq in self.contingency.items() if freq[targetClass] > 1e-6
                ]
                freqlow = [(val, freq.abs - freq[targetClass]) for val, freq in self.contingency.items()]
                freqlow = [f for f in freqlow if f[1] > 1e-6]
            elif self.probDist:
                freqhigh = []
                freqlow = self.probDist.items()
            else:
                return

            if freqhigh:
                maxf = max([f[1] for f in freqhigh])
                if freqlow:
                    maxf = max(maxf, max([f[1] for f in freqlow]))
            elif freqlow:
                maxf = max([f[1] for f in freqlow])
            else:
                return

            freqfac = maxf > 1e-6 and 0.1 / maxf or 1

            xData = sum(([val, val] for val, freq in freqhigh), []) + sum(([val, val] for val, freq in freqlow), [])
            yData = sum(([1.0, 1.0 - max(0.02, freqfac * freq)] for val, freq in freqhigh), []) + sum(
                ([0.04, 0.04 + max(0.02, freqfac * freq)] for val, freq in freqlow), []
            )

            c = UnconnectedLinesCurve("rug", xData=xData, yData=yData)
            c.set_auto_scale(True)
            c.set_y_axis(yRight)
            self.add_custom_curve(c)
            self.rugKeys.append(c)

        if not noUpdate:
            self.replot()
Ejemplo n.º 2
0
    def plotRug(self, noUpdate = False):
        for rug in self.rugKeys:
            rug.detach()
        self.rugKeys = []

        if self.master.showRug:
            targetClass = self.master.targetClass

            if self.contingency:
                freqhigh = [(val, freq[targetClass]) for val, freq in self.contingency.items() if freq[targetClass] > 1e-6]
                freqlow = [(val, freq.abs - freq[targetClass]) for val, freq in self.contingency.items()]
                freqlow = [f for f in freqlow if f[1] > 1e-6]
            elif self.probDist:
                freqhigh = []
                freqlow = self.probDist.items()
            else:
                return

            if freqhigh:
                maxf = max([f[1] for f in freqhigh])
                if freqlow:
                    maxf = max(maxf, max([f[1] for f in freqlow]))
            elif freqlow:
                maxf = max([f[1] for f in freqlow])
            else:
                return

            freqfac = maxf > 1e-6 and .1 / maxf or 1
            
            xData = sum(([val, val] for val, freq in freqhigh), []) + sum(([val, val] for val, freq in freqlow), [])
            yData = sum(([1.0, 1.0 - max(0.02, freqfac * freq)] for val, freq in freqhigh), []) + sum(([0.04, 0.04 + max(.02, freqfac * freq)] for val, freq in freqlow), [])
            
            c = UnconnectedLinesCurve('rug', xData = xData, yData = yData)
            c.set_auto_scale(True)
            c.set_y_axis(yRight)
            self.add_custom_curve(c)
            self.rugKeys.append(c)

        if not noUpdate:
            self.replot()
Ejemplo n.º 3
0
    def updateData(self, labels = None, setAnchors = 0, **args):
        for c in self._extra_curves:
            c.detach()
        self._extra_curves = []
        self.tooltipMarkers = []
        for c in self.value_line_curves:
            c.detach()
        self.value_line_curves = []
        self.legend().clear()
        self.clear_markers()

        self.__dict__.update(args)
        if labels == None: labels = [anchor[2] for anchor in self.anchorData]
        self.shownAttributes = labels
        self.dataMap = {}   # dictionary with keys of form "x_i-y_i" with values (x_i, y_i, color, data)
        self.valueLineCurves = [{}, {}]    # dicts for x and y set of coordinates for unconnected lines

        if not self.haveData or len(labels) < 3:
            self.anchorData = []
            self.updateLayout()
            return

        if setAnchors or (args.has_key("XAnchors") and args.has_key("YAnchors")):
            self.potentialsBmp = None
            self.setAnchors(args.get("XAnchors"), args.get("YAnchors"), labels)
            #self.anchorData = self.createAnchors(len(labels), labels)    # used for showing tooltips

        indices = [self.attributeNameIndex[anchor[2]] for anchor in self.anchorData]  # store indices to shown attributes

        # do we want to show anchors and their labels
        if self.showAnchors:
            if self.hideRadius > 0:
                circle = CircleCurve(QColor(200,200,200), QColor(200,200,200), radius = self.hideRadius)
                circle.ignore_alpha = True
                self.add_custom_curve(circle)
                self._extra_curves.append(circle)

            # draw dots at anchors
            shownAnchorData = filter(lambda p, r=self.hideRadius**2/100: p[0]**2+p[1]**2>r, self.anchorData)
            self.remove_all_axes(user_only = False)
            if not self.normalizeExamples:
                r=self.hideRadius**2/100
                for i,(x,y,a) in enumerate(shownAnchorData):
                    if x > 0:
                        line = QLineF(0, 0, x, y)
                        arrows = AxisEnd
                        label_pos = AxisEnd
                    else:
                        line = QLineF(x, y, 0, 0)
                        arrows = AxisStart
                        label_pos = AxisStart
                    self.add_axis(UserAxis + i, title=a, title_location=label_pos, line=line, arrows=arrows, zoomable=True)
                    self.setAxisLabels(UserAxis + i, [])
            else:
                XAnchors = [a[0] for a in shownAnchorData]
                YAnchors = [a[1] for a in shownAnchorData]
                c = self.addCurve("dots", QColor(160,160,160), QColor(160,160,160), 10, style = Qt.NoPen, symbol = OWPoint.Ellipse, xData = XAnchors, yData = YAnchors, showFilledSymbols = 1)
                c.ignore_alpha = True
                self._extra_curves.append(c)

                # draw text at anchors
                if self.showAttributeNames:
                    for x, y, a in shownAnchorData:
                        self.addMarker(a, x*1.07, y*1.04, Qt.AlignCenter, bold = 1)

        if self.showAnchors and self.normalizeExamples:
            # draw "circle"
            circle = CircleCurve()
            circle.ignore_alpha = True
            self.add_custom_curve(circle)
            self._extra_curves.append(circle)

        self.potentialsClassifier = None # remove the classifier so that repaint won't recompute it
        self.updateLayout()

        if self.dataHasDiscreteClass:
            self.discPalette.setNumberOfColors(len(self.dataDomain.classVar.values))

        useDifferentSymbols = self.useDifferentSymbols and self.dataHasDiscreteClass and len(self.dataDomain.classVar.values) < len(self.curveSymbols)
        dataSize = len(self.rawData)
        validData = self.getValidList(indices)
        transProjData = self.createProjectionAsNumericArray(indices, validData = validData, scaleFactor = self.scaleFactor, normalize = self.normalizeExamples, jitterSize = -1, useAnchorData = 1, removeMissingData = 0)
        if transProjData == None:
            return
        projData = transProjData.T
        x_positions = projData[0]
        y_positions = projData[1]
        
        xPointsToAdd = {}
        yPointsToAdd = {}

        if self.potentialsCurve:
            self.potentialsCurve.detach()
            self.potentialsCurve = None
        if self.showProbabilities and self.haveData and self.dataHasClass:
            # construct potentialsClassifier from unscaled positions
            domain = orange.Domain([self.dataDomain[i].name for i in indices]+[self.dataDomain.classVar.name], self.dataDomain)
            offsets = [self.attrValues[self.attributeNames[i]][0] for i in indices]
            normalizers = [self.getMinMaxVal(i) for i in indices]
            selectedData = numpy.take(self.originalData, indices, axis = 0)
            averages = numpy.average(numpy.compress(validData, selectedData, axis=1), 1)
            classData = numpy.compress(validData, self.originalData[self.dataClassIndex])
            if classData.any():
                self.potentialsClassifier = orange.P2NN(domain, numpy.transpose(numpy.array([numpy.compress(validData, self.unscaled_x_positions), numpy.compress(validData, self.unscaled_y_positions), classData])), self.anchorData, offsets, normalizers, averages, self.normalizeExamples, law=1)
                self.potentialsCurve = ProbabilitiesItem(self.potentialsClassifier, self.squareGranularity, self.trueScaleFactor/2, self.spaceBetweenCells, QRectF(-1, -1, 2, 2))
                self.potentialsCurve.attach(self)
            else:
                self.potentialsClassifier = None
            self.potentialsImage = None


        if self.useDifferentColors:
            if self.dataHasDiscreteClass:
                color_data = [QColor(*self.discPalette.getRGB(i)) for i in self.originalData[self.dataClassIndex]]
            elif self.dataHasContinuousClass:    
                color_data = [QColor(*self.contPalette.getRGB(i)) for i in self.originalData[self.dataClassIndex]]
            else:
                color_data = [Qt.black]
        else:
            color_data = [Qt.black]
                        
        if self.useDifferentSymbols and self.dataHasDiscreteClass:
            symbol_data = [self.curveSymbols[int(i)] for i in self.originalData[self.dataClassIndex]]
        else:
            symbol_data = [OWPoint.Ellipse]
            
        size_data = [self.point_width]
        label_data = []
        
        if self.haveSubsetData:
            subset_ids = [example.id for example in self.rawSubsetData]
            marked_data = [example.id in subset_ids for example in self.rawData]
            showFilled = 0
        else:
            marked_data = []

        self.set_main_curve_data(x_positions, y_positions, color_data, label_data, size_data, symbol_data, marked_data, validData)
        
        # ##############################################################
        # show model quality
        # ##############################################################
        if self.insideColors != None or self.showKNN and self.haveData:
            # if we want to show knn classifications of the examples then turn the projection into example table and run knn
            if self.insideColors:
                insideData, stringData = self.insideColors
            else:
                shortData = self.createProjectionAsExampleTable([self.attributeNameIndex[attr] for attr in labels], useAnchorData = 1)
                predictions, probabilities = self.widget.vizrank.kNNClassifyData(shortData)
                if self.showKNN == 2: insideData, stringData = [1.0 - val for val in predictions], "Probability of wrong classification = %.2f%%"
                else:                 insideData, stringData = predictions, "Probability of correct classification = %.2f%%"

            if self.dataHasDiscreteClass:        classColors = self.discPalette
            elif self.dataHasContinuousClass:    classColors = self.contPalette

            if len(insideData) != len(self.rawData):
                j = 0
                for i in range(len(self.rawData)):
                    if not validData[i]: continue
                    if self.dataHasClass:
                        fillColor = classColors.getRGB(self.originalData[self.dataClassIndex][i], 255*insideData[j])
                        edgeColor = classColors.getRGB(self.originalData[self.dataClassIndex][i])
                    else:
                        fillColor = edgeColor = (0,0,0)
                    if self.showValueLines:
                        self.addValueLineCurve(x_positions[i], y_positions[i], edgeColor, i, indices)
                    self.addTooltipKey(x_positions[i], y_positions[i], QColor(*edgeColor), i, stringData % (100*insideData[j]))
                    j+= 1
            else:
                for i in range(len(self.rawData)):
                    if not validData[i]: continue
                    if self.dataHasClass:
                        fillColor = classColors.getRGB(self.originalData[self.dataClassIndex][i], 255*insideData[i])
                        edgeColor = classColors.getRGB(self.originalData[self.dataClassIndex][i])
                    else:
                        fillColor = edgeColor = (0,0,0)
                    if self.showValueLines:
                        self.addValueLineCurve(x_positions[i], y_positions[i], edgeColor, i, indices)
                    self.addTooltipKey(x_positions[i], y_positions[i], QColor(*edgeColor), i, stringData % (100*insideData[i]))

        # ##############################################################
        # do we have a subset data to show?
        # ##############################################################
        elif self.haveSubsetData:
            shownSubsetCount = 0
            subsetIdsToDraw = dict([(example.id,1) for example in self.rawSubsetData])

            # draw the rawData data set. examples that exist also in the subset data draw full, other empty
            for i in range(dataSize):
                if not validData[i]: continue
                if subsetIdsToDraw.has_key(self.rawData[i].id):
                    continue

                if self.dataHasDiscreteClass and self.useDifferentColors:
                    newColor = self.discPalette.getRGB(self.originalData[self.dataClassIndex][i])
                elif self.dataHasContinuousClass and self.useDifferentColors:
                    newColor = self.contPalette.getRGB(self.noJitteringScaledData[self.dataClassIndex][i])
                else:
                    newColor = (0,0,0)

                if self.useDifferentSymbols and self.dataHasDiscreteClass:
                    curveSymbol = self.curveSymbols[int(self.originalData[self.dataClassIndex][i])]
                else:
                    curveSymbol = self.curveSymbols[0]

                if self.showValueLines:
                    self.addValueLineCurve(x_positions[i], y_positions[i], newColor, i, indices)

                self.addTooltipKey(x_positions[i], y_positions[i], QColor(*newColor), i)

        elif not self.dataHasClass:
            xs = []; ys = []
            for i in range(dataSize):
                if not validData[i]: continue
                xs.append(x_positions[i])
                ys.append(y_positions[i])
                self.addTooltipKey(x_positions[i], y_positions[i], QColor(Qt.black), i)
                if self.showValueLines:
                    self.addValueLineCurve(x_positions[i], y_positions[i], (0,0,0), i, indices)

        # ##############################################################
        # CONTINUOUS class
        # ##############################################################
        elif self.dataHasContinuousClass:
            for i in range(dataSize):
                if not validData[i]: continue
                newColor = self.contPalette.getRGB(self.noJitteringScaledData[self.dataClassIndex][i])
                if self.showValueLines:
                    self.addValueLineCurve(x_positions[i], y_positions[i], newColor, i, indices)
                self.addTooltipKey(x_positions[i], y_positions[i], QColor(*newColor), i)

        # ##############################################################
        # DISCRETE class
        # ##############################################################
        elif self.dataHasDiscreteClass:
            for i in range(dataSize):
                if not validData[i]: continue
                if self.useDifferentColors: newColor = self.discPalette.getRGB(self.originalData[self.dataClassIndex][i])
                else:                       newColor = (0,0,0)
                if self.showValueLines:
                    self.addValueLineCurve(x_positions[i], y_positions[i], newColor, i, indices)
                self.addTooltipKey(x_positions[i], y_positions[i], QColor(*newColor), i)

        # first draw value lines
        if self.showValueLines:
            for i, color in enumerate(self.valueLineCurves[0].keys()):
                curve = UnconnectedLinesCurve("", QPen(QColor(*color + (self.alphaValue,))), self.valueLineCurves[0][color], self.valueLineCurves[1][color])
                curve.attach(self)
                self.value_line_curves.append(curve)


        # ##############################################################
        # draw the legend
        # ##############################################################
        # show legend for discrete class
        if self.dataHasDiscreteClass:
            classVariableValues = getVariableValuesSorted(self.dataDomain.classVar)
            for index in range(len(classVariableValues)):
                if self.useDifferentColors: color = QColor(self.discPalette[index])
                else:                       color = QColor(Qt.black)

                if not self.useDifferentSymbols:  curveSymbol = self.curveSymbols[0]
                else:                             curveSymbol = self.curveSymbols[index]

                self.legend().add_item(self.dataDomain.classVar.name, classVariableValues[index], OWPoint(curveSymbol, color, self.pointWidth))
        # show legend for continuous class
        elif self.dataHasContinuousClass:
            self.legend().add_color_gradient(self.dataDomain.classVar.name, [("%%.%df" % self.dataDomain.classVar.numberOfDecimals % v) for v in self.attrValues[self.dataDomain.classVar.name]])
        self.replot()
Ejemplo n.º 4
0
    def updateData(self, labels=None, setAnchors=0, **args):
        for c in self._extra_curves:
            c.detach()
        self._extra_curves = []
        self.tooltipMarkers = []
        for c in self.value_line_curves:
            c.detach()
        self.value_line_curves = []
        self.legend().clear()
        self.clear_markers()

        self.__dict__.update(args)
        if labels == None: labels = [anchor[2] for anchor in self.anchorData]
        self.shownAttributes = labels
        self.dataMap = {
        }  # dictionary with keys of form "x_i-y_i" with values (x_i, y_i, color, data)
        self.valueLineCurves = [
            {}, {}
        ]  # dicts for x and y set of coordinates for unconnected lines

        if not self.haveData or len(labels) < 3:
            self.anchorData = []
            self.updateLayout()
            return

        if setAnchors or (args.has_key("XAnchors")
                          and args.has_key("YAnchors")):
            self.potentialsBmp = None
            self.setAnchors(args.get("XAnchors"), args.get("YAnchors"), labels)
            #self.anchorData = self.createAnchors(len(labels), labels)    # used for showing tooltips

        indices = [
            self.attributeNameIndex[anchor[2]] for anchor in self.anchorData
        ]  # store indices to shown attributes

        # do we want to show anchors and their labels
        if self.showAnchors:
            if self.hideRadius > 0:
                circle = CircleCurve(QColor(200, 200, 200),
                                     QColor(200, 200, 200),
                                     radius=self.hideRadius)
                circle.ignore_alpha = True
                self.add_custom_curve(circle)
                self._extra_curves.append(circle)

            # draw dots at anchors
            shownAnchorData = filter(
                lambda p, r=self.hideRadius**2 / 100: p[0]**2 + p[1]**2 > r,
                self.anchorData)
            self.remove_all_axes(user_only=False)
            if not self.normalizeExamples:
                r = self.hideRadius**2 / 100
                for i, (x, y, a) in enumerate(shownAnchorData):
                    if x > 0:
                        line = QLineF(0, 0, x, y)
                        arrows = AxisEnd
                        label_pos = AxisEnd
                    else:
                        line = QLineF(x, y, 0, 0)
                        arrows = AxisStart
                        label_pos = AxisStart
                    self.add_axis(UserAxis + i,
                                  title=a,
                                  title_location=label_pos,
                                  line=line,
                                  arrows=arrows,
                                  zoomable=True)
                    self.setAxisLabels(UserAxis + i, [])
            else:
                XAnchors = [a[0] for a in shownAnchorData]
                YAnchors = [a[1] for a in shownAnchorData]
                c = self.addCurve("dots",
                                  QColor(160, 160, 160),
                                  QColor(160, 160, 160),
                                  10,
                                  style=Qt.NoPen,
                                  symbol=OWPoint.Ellipse,
                                  xData=XAnchors,
                                  yData=YAnchors,
                                  showFilledSymbols=1)
                c.ignore_alpha = True
                self._extra_curves.append(c)

                # draw text at anchors
                if self.showAttributeNames:
                    for x, y, a in shownAnchorData:
                        self.addMarker(a,
                                       x * 1.07,
                                       y * 1.04,
                                       Qt.AlignCenter,
                                       bold=1)

        if self.showAnchors and self.normalizeExamples:
            # draw "circle"
            circle = CircleCurve()
            circle.ignore_alpha = True
            self.add_custom_curve(circle)
            self._extra_curves.append(circle)

        self.potentialsClassifier = None  # remove the classifier so that repaint won't recompute it
        self.updateLayout()

        if self.dataHasDiscreteClass:
            self.discPalette.setNumberOfColors(
                len(self.dataDomain.classVar.values))

        useDifferentSymbols = self.useDifferentSymbols and self.dataHasDiscreteClass and len(
            self.dataDomain.classVar.values) < len(self.curveSymbols)
        dataSize = len(self.rawData)
        validData = self.getValidList(indices)
        transProjData = self.createProjectionAsNumericArray(
            indices,
            validData=validData,
            scaleFactor=self.scaleFactor,
            normalize=self.normalizeExamples,
            jitterSize=-1,
            useAnchorData=1,
            removeMissingData=0)
        if transProjData == None:
            return
        projData = transProjData.T
        x_positions = projData[0]
        y_positions = projData[1]

        xPointsToAdd = {}
        yPointsToAdd = {}

        if self.potentialsCurve:
            self.potentialsCurve.detach()
            self.potentialsCurve = None
        if self.showProbabilities and self.haveData and self.dataHasClass:
            # construct potentialsClassifier from unscaled positions
            domain = orange.Domain([self.dataDomain[i].name for i in indices] +
                                   [self.dataDomain.classVar.name],
                                   self.dataDomain)
            offsets = [
                self.attrValues[self.attributeNames[i]][0] for i in indices
            ]
            normalizers = [self.getMinMaxVal(i) for i in indices]
            selectedData = numpy.take(self.originalData, indices, axis=0)
            averages = numpy.average(
                numpy.compress(validData, selectedData, axis=1), 1)
            classData = numpy.compress(validData,
                                       self.originalData[self.dataClassIndex])
            if classData.any():
                self.potentialsClassifier = orange.P2NN(
                    domain,
                    numpy.transpose(
                        numpy.array([
                            numpy.compress(validData,
                                           self.unscaled_x_positions),
                            numpy.compress(validData,
                                           self.unscaled_y_positions),
                            classData
                        ])),
                    self.anchorData,
                    offsets,
                    normalizers,
                    averages,
                    self.normalizeExamples,
                    law=1)
                self.potentialsCurve = ProbabilitiesItem(
                    self.potentialsClassifier, self.squareGranularity,
                    self.trueScaleFactor / 2, self.spaceBetweenCells,
                    QRectF(-1, -1, 2, 2))
                self.potentialsCurve.attach(self)
            else:
                self.potentialsClassifier = None
            self.potentialsImage = None

        if self.useDifferentColors:
            if self.dataHasDiscreteClass:
                color_data = [
                    QColor(*self.discPalette.getRGB(i))
                    for i in self.originalData[self.dataClassIndex]
                ]
            elif self.dataHasContinuousClass:
                color_data = [
                    QColor(*self.contPalette.getRGB(i))
                    for i in self.originalData[self.dataClassIndex]
                ]
            else:
                color_data = [Qt.black]
        else:
            color_data = [Qt.black]

        if self.useDifferentSymbols and self.dataHasDiscreteClass:
            symbol_data = [
                self.curveSymbols[int(i)]
                for i in self.originalData[self.dataClassIndex]
            ]
        else:
            symbol_data = [OWPoint.Ellipse]

        size_data = [self.point_width]
        label_data = []

        if self.haveSubsetData:
            subset_ids = [example.id for example in self.rawSubsetData]
            marked_data = [
                example.id in subset_ids for example in self.rawData
            ]
            showFilled = 0
        else:
            marked_data = []

        self.set_main_curve_data(x_positions, y_positions, color_data,
                                 label_data, size_data, symbol_data,
                                 marked_data, validData)

        # ##############################################################
        # show model quality
        # ##############################################################
        if self.insideColors != None or self.showKNN and self.haveData:
            # if we want to show knn classifications of the examples then turn the projection into example table and run knn
            if self.insideColors:
                insideData, stringData = self.insideColors
            else:
                shortData = self.createProjectionAsExampleTable(
                    [self.attributeNameIndex[attr] for attr in labels],
                    useAnchorData=1)
                predictions, probabilities = self.widget.vizrank.kNNClassifyData(
                    shortData)
                if self.showKNN == 2:
                    insideData, stringData = [
                        1.0 - val for val in predictions
                    ], "Probability of wrong classification = %.2f%%"
                else:
                    insideData, stringData = predictions, "Probability of correct classification = %.2f%%"

            if self.dataHasDiscreteClass: classColors = self.discPalette
            elif self.dataHasContinuousClass: classColors = self.contPalette

            if len(insideData) != len(self.rawData):
                j = 0
                for i in range(len(self.rawData)):
                    if not validData[i]: continue
                    if self.dataHasClass:
                        fillColor = classColors.getRGB(
                            self.originalData[self.dataClassIndex][i],
                            255 * insideData[j])
                        edgeColor = classColors.getRGB(
                            self.originalData[self.dataClassIndex][i])
                    else:
                        fillColor = edgeColor = (0, 0, 0)
                    if self.showValueLines:
                        self.addValueLineCurve(x_positions[i], y_positions[i],
                                               edgeColor, i, indices)
                    self.addTooltipKey(x_positions[i], y_positions[i],
                                       QColor(*edgeColor), i,
                                       stringData % (100 * insideData[j]))
                    j += 1
            else:
                for i in range(len(self.rawData)):
                    if not validData[i]: continue
                    if self.dataHasClass:
                        fillColor = classColors.getRGB(
                            self.originalData[self.dataClassIndex][i],
                            255 * insideData[i])
                        edgeColor = classColors.getRGB(
                            self.originalData[self.dataClassIndex][i])
                    else:
                        fillColor = edgeColor = (0, 0, 0)
                    if self.showValueLines:
                        self.addValueLineCurve(x_positions[i], y_positions[i],
                                               edgeColor, i, indices)
                    self.addTooltipKey(x_positions[i], y_positions[i],
                                       QColor(*edgeColor), i,
                                       stringData % (100 * insideData[i]))

        # ##############################################################
        # do we have a subset data to show?
        # ##############################################################
        elif self.haveSubsetData:
            shownSubsetCount = 0
            subsetIdsToDraw = dict([(example.id, 1)
                                    for example in self.rawSubsetData])

            # draw the rawData data set. examples that exist also in the subset data draw full, other empty
            for i in range(dataSize):
                if not validData[i]: continue
                if subsetIdsToDraw.has_key(self.rawData[i].id):
                    continue

                if self.dataHasDiscreteClass and self.useDifferentColors:
                    newColor = self.discPalette.getRGB(
                        self.originalData[self.dataClassIndex][i])
                elif self.dataHasContinuousClass and self.useDifferentColors:
                    newColor = self.contPalette.getRGB(
                        self.noJitteringScaledData[self.dataClassIndex][i])
                else:
                    newColor = (0, 0, 0)

                if self.useDifferentSymbols and self.dataHasDiscreteClass:
                    curveSymbol = self.curveSymbols[int(
                        self.originalData[self.dataClassIndex][i])]
                else:
                    curveSymbol = self.curveSymbols[0]

                if self.showValueLines:
                    self.addValueLineCurve(x_positions[i], y_positions[i],
                                           newColor, i, indices)

                self.addTooltipKey(x_positions[i], y_positions[i],
                                   QColor(*newColor), i)

        elif not self.dataHasClass:
            xs = []
            ys = []
            for i in range(dataSize):
                if not validData[i]: continue
                xs.append(x_positions[i])
                ys.append(y_positions[i])
                self.addTooltipKey(x_positions[i], y_positions[i],
                                   QColor(Qt.black), i)
                if self.showValueLines:
                    self.addValueLineCurve(x_positions[i], y_positions[i],
                                           (0, 0, 0), i, indices)

        # ##############################################################
        # CONTINUOUS class
        # ##############################################################
        elif self.dataHasContinuousClass:
            for i in range(dataSize):
                if not validData[i]: continue
                newColor = self.contPalette.getRGB(
                    self.noJitteringScaledData[self.dataClassIndex][i])
                if self.showValueLines:
                    self.addValueLineCurve(x_positions[i], y_positions[i],
                                           newColor, i, indices)
                self.addTooltipKey(x_positions[i], y_positions[i],
                                   QColor(*newColor), i)

        # ##############################################################
        # DISCRETE class
        # ##############################################################
        elif self.dataHasDiscreteClass:
            for i in range(dataSize):
                if not validData[i]: continue
                if self.useDifferentColors:
                    newColor = self.discPalette.getRGB(
                        self.originalData[self.dataClassIndex][i])
                else:
                    newColor = (0, 0, 0)
                if self.showValueLines:
                    self.addValueLineCurve(x_positions[i], y_positions[i],
                                           newColor, i, indices)
                self.addTooltipKey(x_positions[i], y_positions[i],
                                   QColor(*newColor), i)

        # first draw value lines
        if self.showValueLines:
            for i, color in enumerate(self.valueLineCurves[0].keys()):
                curve = UnconnectedLinesCurve(
                    "", QPen(QColor(*color + (self.alphaValue, ))),
                    self.valueLineCurves[0][color],
                    self.valueLineCurves[1][color])
                curve.attach(self)
                self.value_line_curves.append(curve)

        # ##############################################################
        # draw the legend
        # ##############################################################
        # show legend for discrete class
        if self.dataHasDiscreteClass:
            classVariableValues = getVariableValuesSorted(
                self.dataDomain.classVar)
            for index in range(len(classVariableValues)):
                if self.useDifferentColors:
                    color = QColor(self.discPalette[index])
                else:
                    color = QColor(Qt.black)

                if not self.useDifferentSymbols:
                    curveSymbol = self.curveSymbols[0]
                else:
                    curveSymbol = self.curveSymbols[index]

                self.legend().add_item(
                    self.dataDomain.classVar.name, classVariableValues[index],
                    OWPoint(curveSymbol, color, self.pointWidth))
        # show legend for continuous class
        elif self.dataHasContinuousClass:
            self.legend().add_color_gradient(
                self.dataDomain.classVar.name,
                [("%%.%df" % self.dataDomain.classVar.numberOfDecimals % v)
                 for v in self.attrValues[self.dataDomain.classVar.name]])
        self.replot()
Ejemplo n.º 5
0
 def showAnchorLines(self):
     for i, color in enumerate(self.xLinesToAdd.keys()):
         curve = UnconnectedLinesCurve("", QPen(QColor(*color)), self.xLinesToAdd[color], self.yLinesToAdd[color])
         curve.attach(self)