Ejemplo n.º 1
0
# Size
if False or PLOT_ALL:
    with plot_settings(half_width=True):
        d = read_data(input_dir + f"{name}.csv", 1, 5)
        d = convert_to_gb(d)
        theo = {}
        for x in d:
            theo[x] = [bit_to_gb(comp_bloom_bits(x, 10**-20))] * 2
        error_plot_mult(
            [d, theo],
            output_dir + f'size{EXTENSION}',
            100000000,
            0,
            20,
            4,
            "Capacity [#]",
            "Size [GB]",
            r"Bloom Filter Size (FP Rate: $1^{{-20}}$, Stored: To Cap., "
            r"10 Reps)",
            legend=Legend(['Measured', 'Theoretic'], location="upper left"),
            adjust=(LEFT_ADJUST, RIGHT_ADJUST, TOP_ADJUST, BOTTOM_ADJUST),
            xticks=xticks[:],
            xlabels=xlabels[:],
            x_label_step=2)

# Query Time
if False or PLOT_ALL:
    with plot_settings(half_width=True):
        d = read_data(input_dir + f"{name}.csv", 1, 7)
        # d = convert_to_minutes(d)
        error_plot_mult(
            [d],
Ejemplo n.º 2
0
    # Fit lengths
    # new_data = {}
    # step = xticks[-1] / len(data.keys())
    # for i, key in enumerate(sorted(data.keys())):
    #     new_data[(i + 1) * step] = data[key]
    # data = new_data
    for i in range(len(xticks[:]) - 1, -1, -1):
        if xticks[i] < 0:
            del xticks[i]
            del x_labels[i]
    xstep = 0.5
    min_y = 0
    max_y = 20
    y_step = 5
    print(xticks, x_labels)
    error_plot_mult([data],
                    output_file,
                    xstep,
                    min_y,
                    max_y,
                    y_step,
                    xlabel,
                    ylabel,
                    title,
                    xticks=xticks,
                    xlabels=x_labels,
                    ver_grid=True,
                    x_rotation=90,
                    auto_ylabels=True)
Ejemplo n.º 3
0
                  x_is_float=eval['x_float'])
    with open(input_dir + f"{eval['name']}.pyc", 'wb') as f:
        pickle.dump(d, f)
for eval in evals:
    with plot_settings(half_width=eval['half_width']):
        with open(input_dir + f"{eval['name']}.pyc", 'rb') as f:
            d = pickle.load(f)
        error_plot_mult(
            [d],
            output_dir + f"{eval['out']}{EXTENSION}",
            eval['x_step'],
            0,
            eval['y_max'] if 'y_max' in eval else 0,
            eval['y_step'] if 'y_step' in eval else 0,
            x_axis[eval['x']],
            y_label,
            eval['title'],
            adjust=eval['adjust'] if 'adjust' in eval else None,
            y_log=eval['y_log'],
            auto_ylabels=True if 'auto_y' not in eval else eval['auto_y'],
            y_lim=eval['y_lim'] if 'y_lim' in eval else None,
            y_lim_bottom=eval['y_lim_bottom']
            if 'y_lim_bottom' in eval else None,
            xticks=eval['xticks'] if 'xticks' in eval else None,
            xlabels=eval['xlabels'] if 'xlabels' in eval else None,
            minor_xticks=eval['minor_xticks']
            if 'minor_xticks' in eval else None,
            minor_xlabels=eval['minor_xlabels']
            if 'minor_xlabels' in eval else None,
        )
Ejemplo n.º 4
0
                          hatches=hatches,
                          y_lim=62)
# RAM Plot
if 0 or PLOT_ALL:
    output_file = output_dir + f'provider_ram{EXTENSION}'
    xlabel = "Uploads [#]"
    title = "Title"
    d = read_ram_max(input_dir + 'butthead_provider_uploads_ram' + '.csv', 2,
                     4)
    convert_mib_to_gb(d)
    error_plot_mult(
        [d],
        output_file,
        100,
        0,
        35,
        5,
        xlabel,
        "RAM Usage [GB]",
        r"Title",
        auto_ylabels=True,
    )
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
#                Random Length Dependence
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
name = "butthead_provider_record_length"
output_dir = output_dir_provider + "rand_length/"
os.makedirs(output_dir, exist_ok=True)
Ejemplo n.º 5
0
output_dir = OUTPUT_DIR + 'bloom_insert_dep/'
input_dir = INPUT_DIR + 'bloom_full_insert/'
name = "butthead_bloom_insert"
xticks = [i for i in range(0, 10**9 + 1, 10**8)]
xlabels: List[str] = [0] + [f"{round(i / 10 ** 9, 1)} Bil" for i in xticks[1:]]
BOTTOM_ADJUST = 0.22
RIGHT_ADJUST = 0.935
TOP_ADJUST = 0.97
LEFT_ADJUST = 0.15

# Insert Time
if False or PLOT_ALL:
    with plot_settings(half_width=True):
        d = read_data(input_dir + f"{name}.csv", 3, 6)
        d = convert_to_minutes(d)
        error_plot_mult([d],
                        output_dir + f'insert_time{EXTENSION}',
                        100000000,
                        0,
                        350,
                        50,
                        "Inserted Elements [#]",
                        "Insertion Time [min]",
                        r"",
                        x_label_step=2,
                        auto_ylabels=True,
                        adjust=(LEFT_ADJUST, RIGHT_ADJUST, TOP_ADJUST,
                                BOTTOM_ADJUST),
                        xticks=xticks,
                        xlabels=xlabels)
Ejemplo n.º 6
0
    f"{round(i / 10 ** 9, 1)} Bil" for i in
    xticks[1:]]
BOTTOM_ADJUST = 0.22
RIGHT_ADJUST = 0.935
TOP_ADJUST = 0.97
LEFT_ADJUST = 0.11

# Query Time
if False or PLOT_ALL:
    with plot_settings(half_width=True):
        d = read_data(input_dir + f"{name}.csv", 4, 7)
        d = convert_to_minutes(d)
        error_plot_mult(
            [d],
            output_dir + f'query_time{EXTENSION}',
            100000000,
            0,
            350,
            50,
            "Queries [#]",
            "Query Time [min]",
            r"Time for Query (FP Rate: $1^{{-20}}$, Stored: To Cap., "
            r"1Bil Queries, "
            "10 Reps)",
            x_label_step=2,
            auto_ylabels=True,
            adjust=(LEFT_ADJUST, RIGHT_ADJUST, TOP_ADJUST, BOTTOM_ADJUST),
            xticks=xticks,
            xlabels=xlabels
        )
Ejemplo n.º 7
0
        d = read_data(input_dir + f"{name}.csv", 2, 5, x_is_float=True)
        d = convert_to_gb(d)
        theo = {}
        for x in d:
            theo[x] = [bit_to_gb(comp_bloom_bits(100000000, x))] * 2
        error_plot_mult(
            [d, theo],
            output_dir + f'size{EXTENSION}',
            100000000,
            0,
            1.5,
            0.5,
            "FP Rate",
            "Size [GB]",
            "Bloom Filter Size (Capacity: 100Mio, Stored: To Cap., 10 Reps)",
            legend=Legend(['Measured', 'Theoretic'], location='upper left'),
            adjust=(LEFT_ADJUST, RIGHT_ADJUST, TOP_ADJUST, BOTTOM_ADJUST),
            xticks=xticks,
            xlabels=xlabels,
            minor_xticks=minor_xticks,
            minor_xlabels=minor_xlabels,
            log_base=10,
            x_log=True,
            x_sync=True,
            reverseX=True,
        )

# Query Time
if False or PLOT_ALL:
    with plot_settings(half_width=True):
        d = read_data(input_dir + f"{name}.csv", 2, 7, x_is_float=True)
Ejemplo n.º 8
0
        print("Runtime at 300ms: ",
              sum(data_list[300][10**7]) / len(data_list[300][10**7]), "min")
        latencies = sorted(data_list.keys(), reverse=True)
        legend_labels = [f"{i}ms" for i in latencies]
        legend_labels[-2] = "  50ms"
        legend_labels[-1] = "    0ms"
        xticks = list(range(0, 10**7 + 1, 2 * 10**6))
        error_plot_mult(
            [data_list[i] for i in latencies],
            output_dir + f'{name}{EXTENSION}',
            2 * 10**6,
            0,
            5,
            1,
            "PSI Set Size [#]",
            "Time [min]",
            "PSI Execution Time w/ Latency(No TLS/MAL)",
            adjust=(0.11, 0.935, 0.76, 0.21),
            # for 2/3  Height (0.19, 0.93, 0.98, 0.16),
            legend=Legend(legend_labels, location='above'),
            x_label_step=1,
            y_lim=5,
            xticks=xticks,
            xlabels=[0] + [f"{i // 10 ** 6} Mio" for i in xticks[1:]])
# Bandwidth WITHOUT TLS -------------------------------------------------------
if False or PLOT_ALL:
    with plot_settings(half_width=True):
        name = "butthead_psi_bandwidth"
        data_list = read_data_mult(input_dir + f"bandwidth/{name}.csv", 2, 10,
                                   8)
        bws = sorted(data_list.keys())[1:]