def objective(args):
    """Return limit computed on test set with model trained on training set."""

    global tried_points
    global all_losses
    global n_tries
    n_tries += 1

    args['fit']['epochs'] = int(args['fit']['epochs'])

    print("\nTry {}: testing model for sampling point: {}".format(
        n_tries, args))

    model = create_nonresonant_model(**args['model'])

    history = model.fit(dataset.training_dataset,
                        dataset.training_targets,
                        sample_weight=dataset.training_weights,
                        verbose=False,
                        validation_data=(dataset.testing_dataset,
                                         dataset.testing_targets,
                                         dataset.testing_weights),
                        callbacks=callbacks,
                        **args['fit'])

    limit = get_test_limit(dataset, model)

    if limit is None:
        return {'status': STATUS_FAIL}

    tried_points.append(args)
    all_losses.append(limit)
    save_results()

    plotTools.draw_keras_history(history,
                                 output_dir=output_folder,
                                 output_name="loss_try_{}_limit_{}.pdf".format(
                                     n_tries, limit))

    best_so_far = np.min(all_losses)

    print("Try {}: Expected limit: {} -- Best so far: {}".format(
        n_tries, limit, best_so_far))

    return {'loss': limit, 'status': STATUS_OK}
Ejemplo n.º 2
0
    history = model.fit(training_dataset, training_targets, sample_weight=training_weights, batch_size=batch_size, nb_epoch=nb_epoch,
            verbose=True, validation_data=(testing_dataset, testing_targets, testing_weights), callbacks=callbacks)

    end_time = timer()
    training_time = datetime.timedelta(seconds=(end_time - start_time))

    save_training_parameters(output_folder, model,
            batch_size=batch_size, nb_epoch=nb_epoch,
            training_time=str(training_time),
            masses=signal_masses,
            with_mass_column=add_mass_column,
            inputs=inputs,
            cut=cut,
            weights=resonant_weights)

    plotTools.draw_keras_history(history, output_dir=output_folder, output_name="loss.pdf")

    # Save history
    print("Saving model training history...")
    output_history_filename = 'hh_resonant_trained_model_history.pklz'
    output_history_filename = os.path.join(output_folder, output_history_filename)
    with gzip.open(output_history_filename, 'wb') as f:
        pickle.dump(history.history, f)
    print("Done.")

model = keras.models.load_model(output_model_filename)

export_for_lwtnn(model, output_model_filename)
draw_resonant_training_plots(model, dataset, output_folder, split_by_mass=add_mass_column)

print("All done. Training time: %s" % str(training_time))
Ejemplo n.º 3
0
#    verbose=True,
#    validation_data=([testing_features, testing_independent], testing_targets, testing_weights),
#    callbacks=callbacks_lsmi)

# Save only after the LSMI training, since that modifies the base model's weights
discr.save(output_model_filename)
lsmi.save(output_model_lsmi_filename)

end_time = timer()
training_time = datetime.timedelta(seconds=(end_time - start_time))

# Save history
print("Saving model training history...")
for history in [history_discr, history_lsmi, history_discr_batched]:
    plotTools.draw_keras_history(history,
                                 output_dir=output_folder,
                                 output_name="history_" + history.name +
                                 ".pdf")

########################################
##### Re-loading model and evaluate ####
########################################

model = keras.models.load_model(output_model_filename)

export_for_lwtnn(model, output_model_filename)
draw_non_resonant_training_plots(model,
                                 dataset,
                                 output_folder,
                                 split_by_parameters=add_parameters_columns)
draw_nn_vs_independent(model, dataset, np.linspace(0, 400, 20), output_folder)
def objective_cv(args):
    """Return limit averaged over k-fold cross-validated models,
    on training data only. Test data NOT used."""

    global tried_points
    global all_losses
    global n_tries
    n_tries += 1

    args['fit']['epochs'] = int(args['fit']['epochs'])

    print("\nTry {}: testing model for sampling point: {}".format(
        n_tries, args))

    k_folds = args['k_folds']
    skf = StratifiedKFold(n_splits=k_folds)
    limits = []

    for i, (train, test) in enumerate(
            skf.split(dataset.training_dataset, dataset.training_targets)):
        print("Training on fold {} out of {}...".format(i + 1, k_folds))

        model = create_nonresonant_model(**args['model'])

        history = model.fit(dataset.training_dataset[train],
                            dataset.training_targets[train],
                            sample_weight=dataset.training_weights[train],
                            verbose=False,
                            validation_data=(dataset.training_dataset[test],
                                             dataset.training_targets[test],
                                             dataset.training_weights[test]),
                            callbacks=callbacks,
                            **args['fit'])

        limit = get_test_limit(dataset, model, test)

        if limit is not None:
            print("... Limit is {}".format(limit))
            limits.append(limit)

            plotTools.draw_keras_history(
                history,
                output_dir=output_folder,
                output_name="loss_try_{}_fold_{}_limit_{}.pdf".format(
                    n_tries, i, limit))
        else:
            print("Try {} failed: Could not compute a limit!".format(n_tries))
            return {'status': STATUS_FAIL}

    limit = np.mean(limits)

    tried_points.append(args)
    all_losses.append(limit)
    save_results()

    best_so_far = np.min(all_losses)

    print(
        "Try {}: K-fold limits: {} -- Average expected limit: {} -- Best so far: {}"
        .format(n_tries, limits, limit, best_so_far))

    return {'loss': limit, 'status': STATUS_OK}
Ejemplo n.º 5
0
    batch_size = 5000
    nb_epoch = 50

    history_discr = discr.fit(training_features,
                              training_targets,
                              sample_weight=training_weights,
                              batch_size=batch_size,
                              epochs=nb_epoch,
                              verbose=True,
                              validation_data=(testing_features,
                                               testing_targets,
                                               testing_weights),
                              callbacks=callbacks)

    plotTools.draw_keras_history(history_discr, output_folder,
                                 'discr_loss.pdf')
    discr.save_weights(discr_weight_file)

if (not load_advers) and train_advers:
    batch_size = 2048
    nb_epoch = 40

    print("\nTraining adversary!\n")

    scores_train_bkg = discr.predict(training_features[bkg_cut],
                                     batch_size=20000)
    scores_test_bkg = discr.predict(testing_features[bkg_cut_test],
                                    batch_size=20000)

    history_advers = advers.fit(
        scores_train_bkg,
Ejemplo n.º 6
0
def training_resonant(variables, selection, masses, output_folder,
                      output_model_filename):
    parametricDNN = False
    if len(masses) > 1: parametricDNN = True

    # Loading Signal and Backgrounds
    dataset = DatasetManager(variables, selection, masses)

    dataset.loadResonantSignal(treename)
    dataset.loadBackgrounds(treename)
    dataset.split()

    training_dataset, training_targets = dataset.get_training_combined_dataset_and_targets(
    )
    training_weights = dataset.get_training_combined_weights()

    testing_dataset, testing_targets = dataset.get_testing_combined_dataset_and_targets(
    )
    testing_weights = dataset.get_testing_combined_weights()

    n_inputs = len(variables)
    if len(masses) > 1:  ## add mass column
        n_inputs += 1

    # You create here the real DNN structure
    model = create_resonant_model(n_inputs)

    # callback: set of functions to be applied at given stages of the training procedure. You can use callbacks to get a view on internal states/statistics of model during training
    callbacks = []
    callbacks.append(
        ModelCheckpoint(output_model_filename,
                        monitor='val_loss',
                        verbose=False,
                        save_best_only=True,
                        mode='auto'))  #Save model after every epoch
    # output_logs_folder = os.path.join('hh_resonant_trained_models', 'logs', output_suffix)
    # callbacks.append(keras.callbacks.TensorBoard(log_dir=output_logs_folder, histogram_freq=1, write_graph=True, write_images=False))
    callbacks.append(
        LearningRateScheduler(lr_scheduler)
    )  # Provide learnign rate per epoch. lr_scheduler = have to be a function of epoch.
    #n_inputs = len(inputs)
    #if add_mass_column:
    #    n_inputs += 1

    # You create here the real DNN structure
    #model = create_resonant_model(n_inputs)

    start_time = timer()
    # You do the training with the compiled model
    history = model.fit(training_dataset,
                        training_targets,
                        sample_weight=training_weights,
                        batch_size=batch_size,
                        epochs=epochs,
                        verbose=True,
                        validation_data=(testing_dataset, testing_targets,
                                         testing_weights),
                        callbacks=callbacks)

    end_time = timer()
    training_time = datetime.timedelta(seconds=(end_time - start_time))

    save_training_parameters(output_folder,
                             model,
                             batch_size=batch_size,
                             epochs=epochs,
                             training_time=str(training_time),
                             masses=masses,
                             with_mass_column=parametricDNN,
                             inputs=variables,
                             cut=selection)

    plotTools.draw_keras_history(history,
                                 output_dir=output_folder,
                                 output_name="loss.pdf")

    # Save history
    print("Saving model training history...")
    output_history_filename = 'hh_resonant_trained_model_history.pklz'
    output_history_filename = os.path.join(output_folder,
                                           output_history_filename)
    with gzip.open(output_history_filename, 'wb') as f:
        pickle.dump(history.history, f)
    print("Done.")

    print("All done. Training time: %s" % str(training_time))

    return dataset, model