Ejemplo n.º 1
0
        path_suffix = clip_path[len(prefix):]
        # This is same number used to identify pose clip (not sequential!)
        tmp2_id = video_entry['video_id']
        new_name = 'vid%d' % tmp2_id
        meta_dict[new_name] = {'path_suffix': path_suffix, 'tmp2_id': tmp2_id}

    meta = meta_dict[vid_name]
    path_suffix = meta['path_suffix']
    tmp2_id = meta['tmp2_id']
    tmp2_id = int(re.match(r'^vid(\d+)$', vid_name).groups()[0])
    all_frame_fns = load_sorted_paths(os.path.join(FRAME_DIR, path_suffix))
    # for some reason there is one video directory with a subdirectory that has
    # a numeric name
    frame_paths = [f for f in all_frame_fns if f.endswith('.jpg')]

    pose_seqs = poses[None, ...]
    seq_names = ['Full sequence']
    action_labels = action_names[actions]
    assert len(action_labels) == len(poses)
    print('Action names: ' + ', '.join(action_names))
    print('Actions: ' + ', '.join(action_labels))

    anims = draw_poses('Original training poses in %s' % H5_PATH,
                       parents,
                       pose_seqs,
                       frame_paths=[frame_paths] * 3,
                       subplot_titles=seq_names,
                       fps=50,
                       action_labels=action_labels)
    plt.show()
    # a numeric name
    all_frame_fns = [f for f in all_frame_fns if f.endswith('.jpg')]
    frame_paths = [all_frame_fns[i] for i in d['frame_inds']]

    pose_seqs = np.stack(
        (d['true_poses'], d['prior_poses'], d['posterior_poses']), axis=0)
    seq_names = ['True poses', 'Prior prediction', 'Posterior prediction']

    pose_mat_path = os.path.join(POSE_DIR, 'pose_clip_%d.mat' % tmp2_id)
    pose_mat = loadmat(pose_mat_path, squeeze_me=True)

    # important not to let return value be gc'd (anims won't run otherwise!)
    anim = draw_poses('Completed poses in %s' % args.completion_path,
                      d['parents'],
                      pose_seqs,
                      frame_paths=[frame_paths] * 3,
                      subplot_titles=seq_names,
                      fps=50 / 9.0,
                      crossover=d['crossover_time'])
    if args.vid_dir is not None:
        # save video
        print('Saving video')
        try:
            os.makedirs(args.vid_dir)
        except FileExistsError:
            pass

        bn = os.path.basename(args.completion_path).rsplit('.')[0]
        key = d['vid_name'] + '-' + bn
        anim.save(
            os.path.join(args.vid_dir, key + '.mp4'),
Ejemplo n.º 3
0
        action_name_map = np.asarray(
            json.loads(fp['/action_names'].value.tostring().decode('utf8')))
        parents = fp['/parents'].value

    pose_seqs = poses[None, ...]
    action_labels = action_name_map[action_ids]
    frame_paths = load_sorted_paths(os.path.join(FRAME_DIR, vid_name))
    seq_names = ['True poses']
    all_mat_pose_paths = load_sorted_paths(os.path.join(POSE_DIR, vid_name))
    mat_fst_pose_path = all_mat_pose_paths[0]
    with h5py.File(mat_fst_pose_path) as fp:
        # gives us 2*14
        ref_pose = fp['pose'].value[:, :8].astype('float')
    alpha, beta = alignment_constant(pose_seqs[0, 0], ref_pose)

    pose_seqs = pose_seqs * alpha + beta[None, None, :, None]

    assert len(action_labels) == len(poses)
    print('Action names: ' + ', '.join(action_name_map))
    print('Actions: ' + ', '.join(action_labels))

    # important not to let return value be gc'd (anims won't run otherwise!)
    anims = draw_poses('Poses in %s' % vid_name,
                       parents,
                       pose_seqs,
                       frame_paths=[frame_paths] * 3,
                       subplot_titles=seq_names,
                       fps=50 / 9.0,
                       action_labels=action_labels)
    plt.show()