# varname = 'fogpresent'
    varname = 'SMOIS'
    # varname = 'fogbase'
    # varname = 'fogpct'
    # varname = 'QCLOUD'
    # varname = 'uvmet'
    # varname = 'wa'
    # varname = 'LU_INDEX'

    read_data = True
    if read_data:
        # wildcard_pat = "*d{:02d}02_2009-06-\{0[0-9],1[01]\}".format(DOMAIN)
        wildcard_pat = "*d{:02d}_2005-*".format(DOMAIN)
        vd = var_diff(os.path.join(ctl_dir, wildcard_pat),
                      os.path.join(dry_dir, wildcard_pat),
                      label_A='ctl',
                      label_B='drysoil_CLM',
                      varname=varname)
        vd.read_files()
        vd.to_netcdf(
            os.path.join('/', 'global', 'cscratch1', 'sd', 'twhilton',
                         '{}_d{:02d}_CLM_drysoil.nc'.format(varname, DOMAIN)))
        print('done reading files ({})'.format(datetime.datetime.now() - t0))
        # vd.mask_land_or_water(mask_water=False)
    else:
        vd = var_diff(ncfile=os.path.join(
            '/', 'global', 'cscratch1', 'sd', 'twhilton',
            '{varname}_d{DOMAIN:02d}_CLM_drysoil.nc'.format(varname=varname,
                                                            DOMAIN=DOMAIN)))
    # vd = is_foggy_obrien_2013(vd)
    # vd.get_significance_mask(significance=0.99, adj_autocorr=False)
import os
from plot_diff import var_diff, graphics

if __name__ == "__main__":
    rootdir = os.path.join('/', 'global', 'cscratch1', 'sd', 'twhilton',
                           'WRFv3.9_Sensitivity', 'FromScratch')
    ctl_dir = os.path.join(rootdir, 'WRFV3_Ctl', 'run')
    ctl2_dir = os.path.join(rootdir, 'WRFV3_Ctl2', 'run')

    vd = var_diff(os.path.join(ctl_dir, 'summen_sensitivity_ctl',
                               '*d01_2009-06*'),
                  os.path.join(ctl2_dir, 'summen_sensitivity_ctl2',
                               '*d01_2009-06*'),
                  label_A='ctl',
                  label_B='ctl2',
                  varname='QCLOUD')
    read_data = True
    if read_data:
        vd.read_files()
        # vd.mask_land_or_water(mask_water=True)
    for this_t in range(0, 120):  # 255
        fig = graphics(vd, t_idx=this_t, layer=0, domain=1, pfx='ctl2')

if __name__ == "__main__":
    rootdir = os.path.join('/', 'global', 'cscratch1', 'sd', 'twhilton',
                           'WRFv3.9_Sensitivity')
    ctl_dir = os.path.join(rootdir, 'WRFv3.9_Sensitivity_Ctl', 'WRFV3', 'run')
    ctl_dir_new = os.path.join('/', 'global', 'cscratch1', 'sd', 'twhilton',
                               'WRFv3.9_Sensitivity', 'FromScratch',
                               'WRFV3_Ctl', 'run')
    urb_dir = os.path.join(rootdir, 'FromScratch', 'WRFV3_urban', 'run')

    vd = var_diff(
        os.path.join(ctl_dir_new, 'summen_sensitivity_ctl',
                     '*d{:02d}_2009-06-02*.nc'.format(DOMAIN)),
        os.path.join(urb_dir, 'summen_sensitivity_urban',
                     '*d{:02d}_2009-06-02*.nc'.format(DOMAIN)),
        label_A='ctl',
        label_B='urban',
        # varname='LCL')
        varname='QCLOUD')
    # varname='uvmet')
    # varname='wa')
    # varname='LU_INDEX')
    read_data = True
    if read_data:
        vd.read_files()
        # vd.mask_land_or_water(mask_water=False)
    for this_t in range(0, 47):  #
        plotter = VarDiffPlotter(vd,
                                 t_idx=this_t,
                                 layer=0,
import os
from plot_diff import var_diff, graphics

if __name__ == "__main__":
    rootdir = os.path.join('/', 'global', 'cscratch1', 'sd',
                           'twhilton', 'WRFv3.9_Sensitivity', 'FromScratch')
    ctl_dir = os.path.join(rootdir, 'WRFV3_Ctl', 'run')
    dry_dir = os.path.join(rootdir, 'WRFV3_Dry', 'run')
    # vd = var_diff(os.path.join(ctl_dir, 'met_em.d01.2009-06-02_00:00:00.nc'),
    #               os.path.join(dry_dir, 'met_em.d01.2009-06-02_00:00:00.nc'),
    #               label_A='ctl met_em',
    #               label_B='dry met_em',
    #               varname='SM000010')

    vd = var_diff(os.path.join(ctl_dir, 'summen_sensitivity_ctl',
                               'wrfsees_ccs3pb1_ls2_d02_2009-06-02_00:00:00'),
                  os.path.join(dry_dir, 'summen_sensitivity_dry',
                               'wrfsees_ccs3pb1_ls2_d02_2009-06-02_00:00:00'),
                  label_A='ctl out',
                  label_B='dry out',
                  varname='SMOIS')
    read_data = True
    if read_data:
        vd.read_files()
        # vd.mask_land_or_water(mask_water=True)
    for this_t in range(0, 6):  # 255
        fig = graphics(vd, t_idx=this_t, layer=0, domain=2)
Ejemplo n.º 5
0
import os
from plot_diff import var_diff, graphics

if __name__ == "__main__":
    cscratch = os.path.join('/', 'global', 'cscratch1', 'sd', 'twhilton')
    ctl_dir = os.path.join(cscratch, 'WRFv3.9_Sensitivity',
                           'WRFv3.9_Sensitivity_Ctl_short', 'WRFV3',
                           'run')
    dry_dir = os.path.join(cscratch, 'WRFv3.9_Sensitivity',
                           'WRFv3.9_Sensitivity_DrySoil_newrst', 'WRFV3',
                           'run', 'summen_sensitivity_drysoil')
    vd = var_diff(os.path.join(ctl_dir, 'wrfrst_d01_2009-06-02*'),
                  os.path.join(dry_dir, 'wrfsees_ccs3pb1_ls2_d01_2009-06-02*'),
                  label_A='short_ctl rst',
                  label_B='short_dry out',
                  varname='QCLOUD')
    read_data = True
    if read_data:
        vd.read_files()
        # vd.mask_land_or_water(mask_water=True)
    for this_t in range(0, 1):  # 255
        fig = graphics(vd, t_idx=this_t, layer=0, domain=1)
Ejemplo n.º 6
0
    out_dir = os.path.join(cscratchdir, 'plots_temporary')

    # insignificant_pixels = ma.masked_invalid(means_diff_test.main(0.95)).mask

    varname = 'HFX'
    runkey = 'CLM_nourban'
    runkey = 'CLM_drysoil'
    runkey = 'RWurban'

    read_data = True
    if read_data:
        # wildcard_pat = "*d{:02d}02_2009-06-\{0[0-9],1[01]\}".format(DOMAIN)
        wildcard_pat = "*d{:02d}_2009-06-*".format(DOMAIN)
        vd = var_diff(os.path.join(ctl_dir, wildcard_pat),
                      os.path.join(urb_dir, wildcard_pat),
                      label_A='ctl',
                      label_B='urbanRW',
                      varname=varname)
        vd.read_files()
        vd.get_significance_mask(significance=0.95, adj_autocorr=True)
        vd.to_netcdf(
            os.path.join('/', 'global', 'cscratch1', 'sd', 'twhilton',
                         '{}_d{:02d}_RWurban.nc'.format(varname, DOMAIN)))
        print('done reading files ({})'.format(datetime.datetime.now() - t0))
        # vd.mask_land_or_water(mask_water=False)
    else:
        vd = var_diff(ncfile=os.path.join(
            cscratchdir,
            # '/Users/tim/work/Data/SummenWRF/',
            # '{varname}_d{DOMAIN:02d}_RWurban.nc'.format(
            '{varname}_d{DOMAIN:02d}_{runkey}.nc'.format(
    """compare wrf.ll_points() to XLONG, XLAT variables
    """
    nc = netCDF4.Dataset(wrffile, 'r')
    xlat = nc.variables['XLAT_U'][...].squeeze()
    xlong = nc.variables['XLONG_U'][...].squeeze()
    ll_points_list = ll_points(xlat, xlong)
    return (ll_points_list, xlat, xlong)


if __name__ == "__main__":

    varname = 'fogpresent'

    read_data = False
    vd = var_diff(ncfile=os.path.join(
        '/Users/tim/work/Data/SummenWRF/',
        '{varname}_d{DOMAIN:02d}_CLM_nourban.nc'.format(varname=varname,
                                                        DOMAIN=DOMAIN)))
    # for k in vd.data.keys():
    #     vd.data[k] = vd.data[k] * 100.0
    if vd.p is None:
        vd.get_significance_mask(significance=0.95, adj_autocorr=True)
    pfx = 'gridtest'
    # for this_series in ['all_tstamps', 'time_avg']:

    t_end = 1
    pfx = pfx + '_timeavg'
    vd.aggregate_time(time_avg=True)
    time_title_str = 'June 2005'

    for k in vd.data.keys():
        vd.data[k][...] = np.ones(vd.data[k].shape)
    cscratchdir = os.path.join('/', 'global', 'cscratch1', 'sd', 'twhilton')
    rootdir = os.path.join(cscratchdir, 'WRFv4.0_Sensitivity')
    ctl_dir = os.path.join(rootdir, 'WRFCLMv4.0_NCEPDOEp2', 'WRFV4', 'run',
                           'summen_2005_ctl_NCEPDOE')
    nourb_dir = os.path.join(rootdir, 'WRFCLMv4.0_NCEPDOEp2_deurbanized',
                             'WRFV4', 'run', 'summen_2005_deurbanized_NCEPDOE')
    out_dir = os.path.join(cscratchdir, 'plots_temporary')

    if READ_DATA:
        # wildcard_pat = "*d{:02d}02_2009-06-\{0[0-9],1[01]\}".format(DOMAIN)
        wildcard_pat = "*d{:02d}_2005-*".format(DOMAIN)
        re_pat = "d{:02d}_all\\.nc".format(DOMAIN)
        vd = var_diff(os.path.join(ctl_dir, re_pat),
                      os.path.join(nourb_dir, re_pat),
                      label_A='ctl',
                      label_B='no_urban_CLM',
                      varname=varname)
        vd.read_files()
        # for k in vd.data.keys():
        #     z_ax = vd.var_axes.index('Lay')
        #     idx = [slice(None), ] * vd.data[k].ndim
        #     idx[z_ax] = slice(0, 10)
        #     vd.data[k] = np.mean(vd.data[k][idx], axis=z_ax)
        # vd.var_axes.pop(vd.var_axes.index('Lay'))
        vd.get_significance_mask(significance=0.95, adj_autocorr=False)
        vd.to_netcdf(
            os.path.join(
                '/', 'global', 'cscratch1', 'sd', 'twhilton',
                '{}_d{:02d}_CLM_nourban_noautocorr.nc'.format(varname,
                                                              DOMAIN)))
def main(significance=None):

    if significance is None:
        significance = significance_default

    cscratchdir = os.path.join('/', 'global', 'cscratch1', 'sd', 'twhilton')
    rootdir = os.path.join(cscratchdir, 'WRFv3.9_Sensitivity')
    ctl_dir = os.path.join(rootdir, 'WRFV3_Ctl', 'run',
                           'summen_sensitivity_ctl')
    urb_dir = os.path.join(rootdir, 'WRFV3_redwoodsurban', 'run',
                           'summen_redwoodsurban')
    # urb_dir = os.path.join('/', 'global', 'cscratch1', 'sd',
    #                        'twhilton', 'WRFv3.9_Sensitivity',
    #                        'FromScratch', 'WRFV3_urban', 'run',
    #                        'summen_sensitivity_urban')
    out_dir = os.path.join(cscratchdir, 'plots_temporary')

    if read_vardiff_from_netcdf:
        vd = var_diff(
            ncfile=os.path.join('/', 'global', 'cscratch1', 'sd', 'twhilton',
                                'fog_pct_d02_RWurban.nc'))
    else:
        # wildcard_pat = "*d{:02d}02_2009-06-\{0[0-9],1[01]\}".format(DOMAIN)
        wildcard_pat = "*d{:02d}_2009-06-*".format(DOMAIN)
        vd = var_diff(
            os.path.join(ctl_dir, wildcard_pat),
            os.path.join(urb_dir, wildcard_pat),
            label_A='ctl',
            label_B='urbanRW',
            # varname='HFX')
            varname='fogpresent')
        # varname='fogbase')
        # varname='fogpct')
        vd.read_files()
        vd.to_netcdf(
            os.path.join('/', 'global', 'cscratch1', 'sd', 'twhilton',
                         'fog_pct_d02_RWurban.nc'))

    print('calculating probabilities')
    z = vd.diff_means_test(adj_autocorr=adj_autocorr)
    vectorized_cdf = np.vectorize(lambda x: norm.cdf(x, 0.0, 1.0))
    p = vectorized_cdf(z)
    p = np.ma.masked_less(p, significance)
    # draw map
    print('drawing map')
    fig = MyFig(figsize=(8, 8))
    ax = fig.add_subplot(111, projection=CoastalSEES_WRF_prj())
    this_cmap = matplotlib.cm.get_cmap('Dark2_r')
    this_map = CoastalSEES_WRF_Mapper(ax=ax, domain=DOMAIN)
    this_map.pcolormesh(vd.lon, vd.lat, p, vmin=0, vmax=1.0, cmap=this_cmap)
    ax.set_title(('urbanized redwood experiment\n'
                  'fog differences significant '
                  'at {:0.0f}%'.format(significance * 100.0)))
    significant_patch = mpatches.Patch(color=this_cmap.colors[-1],
                                       label='signficant')
    ax.legend(handles=(significant_patch, ))
    fname = ('fogpct_RWurban_d{domain:02d}_means_diff_'
             'map_2tail_adj{adj}_p{sig:0.2f}.png'.format(domain=DOMAIN,
                                                         adj=adj_autocorr,
                                                         sig=significance))
    fig.savefig(fname=fname)
    print('saved {}'.format(fname))
    return (p)
Ejemplo n.º 10
0
from plot_diff import var_diff, graphics

if __name__ == "__main__":
    rootdir = os.path.join('/', 'global', 'cscratch1', 'sd', 'twhilton',
                           'WRFv3.9_Sensitivity', 'FromScratch')
    ctl_dir = os.path.join(rootdir, 'WRFV3_Ctl', 'run')
    dry_dir = os.path.join(rootdir, 'WRFV3_Dry', 'run')
    # vd = var_diff(os.path.join(ctl_dir, 'met_em.d01.2009-06-02_00:00:00.nc'),
    #               os.path.join(dry_dir, 'met_em.d01.2009-06-02_00:00:00.nc'),
    #               label_A='ctl met_em',
    #               label_B='dry met_em',
    #               varname='SM000010')

    vd = var_diff(os.path.join(ctl_dir, 'summen_sensitivity_ctl_d01_3hr',
                               'wrfinput_ctl_3hr_d01_2009-06*'),
                  os.path.join(dry_dir, 'summen_sensitivity_dry_d01_3hr',
                               'wrfinput_dry_3hr_d01_2009-06*'),
                  label_A='ctl out',
                  label_B='dry out',
                  varname='QCLOUD')
    read_data = True
    if read_data:
        vd.read_files()
        # vd.mask_land_or_water(mask_water=True)
    for this_t in range(0, 20):  # 255
        fig = graphics(vd,
                       t_idx=this_t,
                       layer=0,
                       domain=1,
                       pfx='fromscratch_nomatch_t')
import os
from plot_diff import var_diff, graphics

if __name__ == "__main__":
    rootdir = os.path.join('/', 'global', 'cscratch1', 'sd', 'twhilton',
                           'WRFv3.9_Sensitivity', 'FromScratch')
    dry0p05_dir = os.path.join(rootdir, 'WRFV3_Dry', 'run')
    dry0p70_dir = os.path.join(rootdir, 'WRFV3_0.7Dry', 'run')
    ctl_dir = os.path.join(rootdir, 'WRFV3_Ctl', 'run')

    vd_0p05_0p70 = var_diff(os.path.join(dry0p05_dir, 'summen_sensitivity_dry',
                                         '*d01_2009-06-0[12]*'),
                            os.path.join(dry0p70_dir,
                                         'summen_sensitivity_0.7dry',
                                         '*d01_2009-06-0[12]*'),
                            label_A='dry 0.05',
                            label_B='dry 0.70',
                            varname='QCLOUD')

    vd_d0p7_ctl = var_diff(os.path.join(dry0p70_dir,
                                        'summen_sensitivity_0.7dry',
                                        '*d02_2009-06-0[12]*'),
                           os.path.join(ctl_dir, 'summen_sensitivity_ctl',
                                        '*d02_2009-06-0[12]*'),
                           label_A='dry 0.70',
                           label_B='control',
                           varname='QCLOUD')
    read_data = True
    if read_data:
        vd_0p05_0p70.read_files()
        vd_d0p7_ctl.read_files()