Ejemplo n.º 1
0
def Ti_histogram(T13, T23, bins=None, range_T13=None, range_T23=None, norm = None, legend = '', title = '', figlabel = '', save_fig = False):   
  plot_functions.histogram(T23, "$T_{23} [ns]$", "entries/bin", bins=bins, range=range_T23, f = False, title = title , legend = legend)
  if save_fig == True: 
      plt.savefig('plot/T23%s.pdf' % figlabel, format = 'pdf')        
  plot_functions.histogram(T13, "$T_{13} [ns]$", "entries/bin", bins = bins, range=range_T23, f = False, title = title, legend = legend)
  if save_fig == True:   
      plt.savefig('plot/T13%s.pdf' % figlabel, format = 'pdf')     
  plot_functions.hist2d(T23, T13, "$T_{23} [ns]$", "$T_{13} [ns]$", bins=bins, range_x = range_T23, range_y = range_T13, norm = norm, title = title , legend = legend )  
  if save_fig == True:   
      plt.savefig('plot/T13_T23%s.pdf' % figlabel, format = 'pdf')    
  r, p = pearsonr(T23, T13)
  print("r, p T23 and T13:", r, p)
  return 
Ejemplo n.º 2
0
def tof_beta_histogram(TOF, T12, x, l, beta, bins=None, range_TOF=(-5, 20.), range_T12=None, range_x = (-20., 300.), range_beta = (0., 3.), legend = '', title = '', figlabel = '', save_fig = False):       
  
  plot_functions.histogram(TOF, "TOF[ns]", "entries/bin", bins = bins, range = range_TOF, f = False, title = title, legend = legend)
  if save_fig is True:
    plt.savefig('plot/TOF%s.pdf' % figlabel, format = 'pdf') 
         
  plot_functions.histogram(T12, "T12[ns]", "entries/bin", bins = bins, range = range_T12, f = False, title = title, legend = legend)
  if save_fig is True:
    plt.savefig('plot/T12%s.pdf' % figlabel, format = 'pdf') 
     
  plot_functions.histogram(x, "x [cm]", "entries/bin", bins=bins , range = range_x, f = False, title = title, legend = legend)
  if save_fig is True:
    plt.savefig('plot/x%s.pdf' % figlabel, format = 'pdf')

  plot_functions.histogram(beta, "$beta [cm/ns]$", "entries/bin", bins= bins , range = range_beta, f = False, title = title, legend = legend)
  if save_fig is True:
    plt.savefig('plot/beta%s.pdf' % figlabel, format = 'pdf')   
  
  plot_functions.hist2d(TOF, l,  "TOF [ns]", "l[cm]", bins=bins, range_x = range_TOF, range_y = (110., 280.), norm = LogNorm())   
  if save_fig is True:
    plt.savefig('plot/tof_l_2dhist%s.pdf' % figlabel, format = 'pdf')   
  return 
Ejemplo n.º 3
0
        plot_functions.multiple_histogram(theta[mask],
                                          phi[mask],
                                          "theta[mask]",
                                          "phi[mask]",
                                          bins=45,
                                          range_var1=(-numpy.pi, numpy.pi),
                                          range_var2=(0., numpy.pi * 2))
        plot_functions.multiple_histogram(x3, y3, "x3", "y3", bins=45)
        plot_functions.multiple_histogram(x3[mask],
                                          y3[mask],
                                          "x3[mask]",
                                          "y3[mask]",
                                          bins=45)
        plot_functions.multiple_histogram(x1, y1, "x1", "y1", bins=45)
        plot_functions.multiple_histogram(x1[mask],
                                          y1[mask],
                                          "x1[mask]",
                                          "y1[mask]",
                                          bins=45)
        plot_functions.histogram(E[mask],
                                 "E[mask]",
                                 "",
                                 bins=None,
                                 range=(0., 1000),
                                 f=False,
                                 density=False,
                                 title='',
                                 legend='')
        plt.ion()
        plt.show()
Ejemplo n.º 4
0
    options = vars(options_parser.parse_args())
    input_file_sim = options['input_file_simulation']
    save_fig = options['save_fig']
    position = options['s3_position']

    E, P, beta, x1, y1, theta, phi, x3, y3, f = numpy.loadtxt(input_file_sim,
                                                              unpack=True)
    mask = (f == 1)

    title = 'Simulazione Monte Carlo per x = %d cm ' % position
    range = (position - 20., position + 20.)
    plot_functions.histogram(x1[mask] * 100,
                             "$x_{t}$[cm]",
                             "entries/bin",
                             bins=150,
                             range=range,
                             f=False,
                             density=False,
                             title=title,
                             legend='')

    delay_T13 = 26.1
    delay_T23 = 26.2
    res = 0.
    TOF_sim = signal_propagation_functions.Time_Of_Flight(
        x1[mask], x3[mask], y1[mask], y3[mask], 0., beta[mask])
    T13_sim, _ = signal_propagation_functions.DT_13(x1[mask],
                                                    x3[mask],
                                                    y3[mask],
                                                    delay_T13,
                                                    TOF_sim,
Ejemplo n.º 5
0
    #E[MeV], P [MeV], beta, x1[m], y1[cm], theta, phi, x3[m], y3[cm], flag
    E, P, beta, x1, y1, theta, phi, x3, y3, f = numpy.loadtxt(input_file,
                                                              unpack=True)
    mask = f > 0.5
    print("efficienza/tot:", numpy.sum(f), len(f))

    delay_T13 = numpy.ones(int(numpy.sum(f))) * 25.0  #ns
    delay_T23 = numpy.ones(int(numpy.sum(f))) * 25.1  #ns
    delay_T12 = delay_T13
    z_13 = 1.22

    if (plot_flag == True):
        plot_functions.histogram(E,
                                 'E [MeV]',
                                 "entries/bin",
                                 bins=70,
                                 range=(150., 3000),
                                 f=False,
                                 title='Spettro degli eventi generati',
                                 density=False)
        plot_functions.multiple_histogram(theta,
                                          phi,
                                          '$\Theta[rad]$',
                                          "$\Phi[rad]$",
                                          bins=70,
                                          range_var1=(-numpy.pi, numpy.pi),
                                          range_var2=(0., numpy.pi * 2),
                                          title='')

        plot_functions.multiple_histogram(theta[mask],
                                          phi[mask],
                                          "$\Theta_{S3}[rad]$",