ds=list(range(0, 50, 2)) + d_list, xlabel="Dimension of matrix (D)", ylabel="Index") elif figure == "liarinfo": plot_heatmap(datas, fig, map2liarinfo_heat, "Error info (average)", flat=args.flat, grid=grid, ns=d_list, ds=list(range(0, 50, 2)) + d_list, xlabel="Dimension of matrix (D)", ylabel="Index") elif dim_match := re.match("liarpos\(([0-9]+)\)", figure): ax = plot_dim(datas, fig, map2liarpos, int(dim_match.group(1)), "Error amount (average)") ax.set_ylim((0, ax.get_ylim()[1])) elif dim_match := re.match("liardepth\(([0-9]+)\)", figure): ax = plot_dim(datas, fig, map2liardepth, int(dim_match.group(1)), "Error depth (average)") ax.set_ylim((0.8, ax.get_ylim()[1])) elif dim_match := re.match("liarinfo\(([0-9]+)\)", figure): ax = plot_dim(datas, fig, map2liarinfo, int(dim_match.group(1)), "Error info (average)") ax.set_ylim((0, ax.get_ylim()[1])) else: print("Unknown figure.") exit(1) # fig.tight_layout() fig.subplots_adjust(top=0.949, bottom=0.079,
grid=grid, ns=d_list, ds=list(range(0, 50, 2)) + d_list, xlabel="run.D", ylabel="D") elif figure == "liarinfo": plot_heatmap(datas, fig, map2liarinfo_heat, "liar info", flat=args.flat, grid=grid, ns=d_list, ds=list(range(0, 50, 2)) + d_list, xlabel="run.D", ylabel="D") elif dim_match := re.match("liarpos\(([0-9]+)\)", figure): plot_dim(datas, fig, map2liarpos, int(dim_match.group(1)), "liar amount") elif dim_match := re.match("liardepth\(([0-9]+)\)", figure): plot_dim(datas, fig, map2liardepth, int(dim_match.group(1)), "liar depth (average)") elif dim_match := re.match("liarinfo\(([0-9]+)\)", figure): plot_dim(datas, fig, map2liarinfo, int(dim_match.group(1)), "liar info") else: print("Unknown figure.") exit(1) fig.tight_layout() plt.show()
ds=list(range(0, 50, 2)) + d_list, xlabel="run.D", ylabel="D") elif figure == "liarinfo": plot_heatmap(datas, fig, map2liarinfo_heat, "liar info", flat=args.flat, grid=grid, ns=d_list, ds=list(range(0, 50, 2)) + d_list, xlabel="run.D", ylabel="D") elif dim_match := re.match("liarpos\(([0-9]+)\)", figure): plot_dim(datas, fig, map2liarpos, int(dim_match.group(1)), "liar amount") elif dim_match := re.match("liardepth\(([0-9]+)\)", figure): plot_dim(datas, fig, map2liardepth, int(dim_match.group(1)), "liar depth (average)") elif dim_match := re.match("liarinfo\(([0-9]+)\)", figure): plot_dim(datas, fig, map2liarinfo, int(dim_match.group(1)), "Average error info (bits)") elif figure == "flipamount": plot_heatmap(datas, fig, map2flipamount, "Flip amount", flat=args.flat, grid=grid) elif figure == "flipindex": plot_heatmap(datas,