Ejemplo n.º 1
0
def plotScatterNorm_ds2_bserr(data_aggPF, name, fullName):
    x = data_aggPF['sm_norm_diff_signals_2']['median']
    y = data_aggPF['sm_norm_diff_signals_2']['bserr'].apply(lambda x: float(x.split(',')[1][:-1]) - float(x.split(',')[0][1:]))
    plt.figure(figsize=(7, 7))
    plotlib.scatterDensity(x, y, alpha=0.7, log=True)
    plotlib.setproperties(xlabel='Normalized differential signals', 
                          ylabel='Bootstrapped error', 
                          title=fullName,
                          labelfontsize=25, tickfontsize=25, equal=True)
    plt.savefig(figureDir+'/'+name+'_scatterNorm_ds2_bserr.png')
Ejemplo n.º 2
0
def plotScatterNorm_QO_ds2(data_aggPF, name, fullName):
    x = data_aggPF['QO_norm_signals']['median']
    y = data_aggPF['sm_norm_diff_signals_2']['median']
    plt.figure(figsize=(7, 7))
    plotlib.scatterDensity(x, y, alpha=0.7, log=True)
    plotlib.setproperties(xlim=(-0.09, 1), ylim=(-0.09, 1), 
                          xlabel='Normalized quenched signals', 
                          ylabel='Normalized differential signals 2', 
                          title=fullName,
                          labelfontsize=25, tickfontsize=25, equal=True)
    plt.savefig(figureDir+'/'+name+'_scatterNorm_QO_ds2.png')
Ejemplo n.º 3
0
def plotScatterNorm_ds2_fbserr(data_aggPF, name, fullName):
    x = data_aggPF['sm_norm_diff_signals_2']['median']
    y = data_aggPF['sm_norm_diff_signals_2']['bserr'].apply(lambda x: float(x.split(',')[1][:-1]) - float(x.split(',')[0][1:])) 
    df = pd.concat([x, y / x], axis=1).replace([np.inf, -np.inf], np.nan).dropna()
    plt.figure(figsize=(7, 7))
    plotlib.scatterDensity(df[0], df[1], alpha=0.7, log=True)
    plotlib.setproperties(xlabel='Normalized differential signals',
                          ylabel='Fractional bootstrapped error', 
                          title=fullName,
                          labelfontsize=25, tickfontsize=25, equal=True)
    plt.savefig(figureDir+'/'+name+'_scatterNorm_ds2_fbserr.png')
Ejemplo n.º 4
0
def plotScatterNorm_QO_sm_linear(data_aggPF, name, fullName):
    x = data_aggPF['quenched_norm']['median']
    y = data_aggPF['switch2_norm']['median']
    plt.figure(figsize=(7, 7))
    plotlib.scatterDensity(x, y, alpha=0.7, log=False)
    plotlib.setproperties(xlim=(-0.09, 1), ylim=(-0.09, 1), 
                          xlabel='Normalized quenched signals', 
                          ylabel='Normalized switching signals', 
                          title=fullName,
                          labelfontsize=25, tickfontsize=25, equal=True)
    plt.savefig(figureDir+'/'+name+'_scatterNorm_QO_sm_linear.png')
Ejemplo n.º 5
0
def plotScatter_QO_sm(data_aggPF, name, fullName):
    x = data_aggPF['QO_signals']['median']
    y = data_aggPF['sm_signals']['median']
    plt.figure(figsize=(7, 7))
    plotlib.scatterDensity(x, y, alpha=0.7, log=True)
    ub = max(np.percentile(x, 99.9), np.percentile(y, 99.9)) * 1.1
    plotlib.setproperties(xlim=(0, ub), ylim=(0, ub), 
                          xlabel='Quenched signals', 
                          ylabel='Switching signals', 
                          title=fullName,
                          labelfontsize=25, tickfontsize=25, equal=True)
    plt.savefig(figureDir+'/'+name+'_scatter_QO_sm.png')
Ejemplo n.º 6
0
def plotScatterNorm_ds2_bserr(data_aggPF, name, fullName):
    x = data_aggPF['sm_norm_diff_signals_2']['median']
    y = data_aggPF['sm_norm_diff_signals_2']['bserr'].apply(
        lambda x: float(x.split(',')[1][:-1]) - float(x.split(',')[0][1:]))
    plt.figure(figsize=(7, 7))
    plotlib.scatterDensity(x, y, alpha=0.7, log=True)
    plotlib.setproperties(xlabel='Normalized differential signals',
                          ylabel='Bootstrapped error',
                          title=fullName,
                          labelfontsize=25,
                          tickfontsize=25,
                          equal=True)
    plt.savefig(figureDir + '/' + name + '_scatterNorm_ds2_bserr.png')
Ejemplo n.º 7
0
def plotScatterNorm_QO_ds1(data_aggPF, name, fullName):
    x = data_aggPF['QO_norm_signals']['median']
    y = data_aggPF['sm_norm_diff_signals_1']['median']
    plt.figure(figsize=(7, 7))
    plotlib.scatterDensity(x, y, alpha=0.7, log=True)
    plotlib.setproperties(xlim=(-0.09, 1),
                          ylim=(-0.09, 1),
                          xlabel='Normalized quenched signals',
                          ylabel='Normalized differential signals 1',
                          title=fullName,
                          labelfontsize=25,
                          tickfontsize=25,
                          equal=True)
    plt.savefig(figureDir + '/' + name + '_scatterNorm_QO_ds1.png')
Ejemplo n.º 8
0
def plotScatter_QO_sm(data_aggPF, name, fullName):
    x = data_aggPF['QO_signals']['median']
    y = data_aggPF['sm_signals']['median']
    plt.figure(figsize=(7, 7))
    plotlib.scatterDensity(x, y, alpha=0.7, log=True)
    ub = max(np.percentile(x, 99.9), np.percentile(y, 99.9)) * 1.1
    plotlib.setproperties(xlim=(0, ub),
                          ylim=(0, ub),
                          xlabel='Quenched signals',
                          ylabel='Switching signals',
                          title=fullName,
                          labelfontsize=25,
                          tickfontsize=25,
                          equal=True)
    plt.savefig(figureDir + '/' + name + '_scatter_QO_sm.png')
Ejemplo n.º 9
0
def plotScatterNorm_ds2_fbserr(data_aggPF, name, fullName):
    x = data_aggPF['sm_norm_diff_signals_2']['median']
    y = data_aggPF['sm_norm_diff_signals_2']['bserr'].apply(
        lambda x: float(x.split(',')[1][:-1]) - float(x.split(',')[0][1:]))
    df = pd.concat([x, y / x], axis=1).replace([np.inf, -np.inf],
                                               np.nan).dropna()
    plt.figure(figsize=(7, 7))
    plotlib.scatterDensity(df[0], df[1], alpha=0.7, log=True)
    plotlib.setproperties(xlabel='Normalized differential signals',
                          ylabel='Fractional bootstrapped error',
                          title=fullName,
                          labelfontsize=25,
                          tickfontsize=25,
                          equal=True)
    plt.savefig(figureDir + '/' + name + '_scatterNorm_ds2_fbserr.png')