Ejemplo n.º 1
0
def test_match():
    v1 = [1, 1, 2, 2, 3, 3]
    v2 = [1, 2, 3]
    v3 = [0, 1, 2]
    c = [1]

    assert match(v1, v2) == [0, 0, 1, 1, 2, 2]
    assert match(v1, v2, incomparables=c) == [-1, -1, 1, 1, 2, 2]
    assert match(v1, v3) == [1, 1, 2, 2, -1, -1]
Ejemplo n.º 2
0
def test_match():
    v1 = [1, 1, 2, 2, 3, 3]
    v2 = [1, 2, 3]
    v3 = [0, 1, 2]
    c = [1]

    assert match(v1, v2) == [0, 0, 1, 1, 2, 2]
    assert match(v1, v2, incomparables=c) == [-1, -1, 1, 1, 2, 2]
    assert match(v1, v3) == [1, 1, 2, 2, -1, -1]
Ejemplo n.º 3
0
    def train_position_scales(self, layout, layers):
        """
        Compute ranges for the x and y scales
        """
        _layout = layout.layout
        panel_scales_x = layout.panel_scales_x
        panel_scales_y = layout.panel_scales_y

        # loop over each layer, training x and y scales in turn
        for layer in layers:
            data = layer.data
            match_id = match(data['PANEL'], _layout['PANEL'])
            if panel_scales_x:
                x_vars = list(set(panel_scales_x[0].aesthetics) &
                              set(data.columns))
                # the scale index for each data point
                SCALE_X = _layout['SCALE_X'].iloc[match_id].tolist()
                panel_scales_x.train(data, x_vars, SCALE_X)

            if panel_scales_y:
                y_vars = list(set(panel_scales_y[0].aesthetics) &
                              set(data.columns))
                # the scale index for each data point
                SCALE_Y = _layout['SCALE_Y'].iloc[match_id].tolist()
                panel_scales_y.train(data, y_vars, SCALE_Y)

        return self
Ejemplo n.º 4
0
    def map(self, data, layout):
        if not len(data):
            data['PANEL'] = pd.Categorical(
                [], categories=layout['PANEL'].cat.categories, ordered=True)
            return data

        vars = [x for x in self.rows + self.cols]
        margin_vars = [
            list(data.columns & self.rows),
            list(data.columns & self.cols)
        ]
        data = add_margins(data, margin_vars, self.margins)

        facet_vals = eval_facet_vars(data, vars, self.plot.environment)
        data, facet_vals = add_missing_facets(data, layout, vars, facet_vals)

        # assign each point to a panel
        if len(facet_vals) == 0:
            # Special case of no facetting
            data['PANEL'] = 1
        else:
            keys = join_keys(facet_vals, layout, vars)
            data['PANEL'] = match(keys['x'], keys['y'], start=1)

        data = data.sort_values('PANEL', kind='mergesort')

        # matching dtype and
        # the categories(panel numbers) for the data should be in the
        # same order as the panels. i.e the panels are the reference,
        # they "know" the right order
        data['PANEL'] = pd.Categorical(
            data['PANEL'],
            categories=layout['PANEL'].cat.categories,
            ordered=True)

        data.reset_index(drop=True, inplace=True)
        return data