Ejemplo n.º 1
0
def test_geometries(tmpdir):
    test_file = '{}/test_file.shp'.format(tmpdir)
    _create_test_input_files(test_file)

    df = GeoDataFrame.from_file(test_file)
    p = (ggplot(df) + aes(fill='geometry.bounds.miny') + geom_map() +
         geom_map(draw='Point', size=4) + geom_map(draw='LineString', size=2) +
         labs(fill='miny'))

    assert p + _theme == 'geometries'
Ejemplo n.º 2
0
def test_geometries(tmpdir):
    test_file = '{}/test_file.shp'.format(tmpdir)
    _create_test_input_files(test_file)

    df = GeoDataFrame.from_file(test_file)
    p = (ggplot(df)
         + aes(fill='geometry.bounds.miny')
         + geom_map()
         + geom_map(draw='Point', size=4)
         + geom_map(draw='LineString', size=2)
         + labs(fill='miny')
         )

    assert p + _theme == 'geometries'
Ejemplo n.º 3
0
def test_geometries(tmpdir):
    point_file = '{}/test_file_point.shp'.format(tmpdir)
    polygon_file = '{}/test_file_polygon.shp'.format(tmpdir)
    polyline_file = '{}/test_file_polyline.shp'.format(tmpdir)

    _point_file(point_file)
    _polygon_file(polygon_file)
    _polyline_file(polyline_file)

    df_point = GeoDataFrame.from_file(point_file)
    df_polygon = GeoDataFrame.from_file(polygon_file)
    df_polyline = GeoDataFrame.from_file(polyline_file)

    p = (ggplot() + aes(fill='geometry.bounds.miny') + geom_map(df_polygon) +
         geom_map(df_point, size=4) + geom_map(df_polyline, size=2) +
         labs(fill='miny'))

    assert p + _theme == 'geometries'
Ejemplo n.º 4
0
def test_facet_wrap(tmpdir):
    polygon_file = '{}/test_file_polygon.shp'.format(tmpdir)
    _polygon_file(polygon_file)

    df_polygon = GeoDataFrame.from_file(polygon_file)
    df_polygon['shape'] = ['rectangle', 'triangle']

    p = (ggplot() + aes(fill='geometry.bounds.miny') + geom_map(df_polygon) +
         facet_wrap('shape') + labs(fill='miny'))
    assert p + _theme == 'facet_wrap'
Ejemplo n.º 5
0
def plot_restaurants_per_neighborhood(filepath, restaurant_data_file,
                                      pittsburgh_shapefile):
    mexican_restaurants = pd.read_csv(filepath + restaurant_data_file)

    gdf = gpd.GeoDataFrame(
        mexican_restaurants,
        geometry=gpd.points_from_xy(mexican_restaurants.longitude,
                                    mexican_restaurants.latitude),
    )

    restaurant_locations = gdf.filter(items=["geometry"])

    # import Pittsburgh neighborhood shapefile
    neighborhood_polygons = gpd.read_file(pittsburgh_shapefile).filter(
        items=["hood", "hood_no", "geometry"])

    # spatial join to figure out which neighborhood each restaurant is in
    restaurants_in_polys = gpd.sjoin(restaurant_locations,
                                     neighborhood_polygons,
                                     how="inner",
                                     op="intersects")

    restaurants_counted = restaurants_in_polys.groupby(
        "hood_no").count().reset_index()
    restaurants_in_hoods = restaurants_counted.filter(
        items=["hood_no", "hood"])
    restaurants_in_hoods.rename(columns={"hood": "num_restaurants"},
                                inplace=True)

    restaurants_per_shape = gpd.GeoDataFrame(
        pd.merge(neighborhood_polygons, restaurants_in_hoods, how="left"))

    restaurant_map = (p.ggplot(restaurants_per_shape) +
                      p.geom_map(p.aes(fill="num_restaurants")) +
                      p.scale_colour_gradient(low="white", high="black") +
                      p.theme(
                          panel_background=p.element_rect(fill="white"),
                          axis_text_x=p.element_blank(),
                          axis_text_y=p.element_blank(),
                          axis_ticks_major_x=p.element_blank(),
                          axis_ticks_major_y=p.element_blank(),
                      )) + p.scale_fill_gradient(
                          low="#efefef", high="#073763", name="# Restaurants")

    restaurant_map.save("restaurant_map.png")