Ejemplo n.º 1
0
    def plot_data_mc(hists_mc, hist_data, name):
        canv = ROOT.TCanvas()
        p1 = ROOT.TPad("p1", "p1", 0, 0.3, 1, 1)
        p1.Draw()
        p1.SetTicks(1, 1);
        p1.SetGrid();
        p1.SetFillStyle(0);
        p1.cd()

        stacks_d = OrderedDict()
        print "MC",hists_mc
        print "VAL",hists_mc.values()
        stacks_d["mc"] = hists_mc.values()
        stacks_d["data"] = [hist_data]
        stacks = plot_hists_stacked(
            p1,
            stacks_d,
            x_label=var,
            y_label="",
            do_log_y=True
        )
        leg = legend([hist_data] + list(reversed(hists_mc.values())), styles=["p", "f"])
        print canv, hist_data
        print get_stack_total_hist(stacks["mc"])
        ratio_pad, hratio = plot_data_mc_ratio(canv, get_stack_total_hist(stacks["mc"]), hist_data)

        plot_info = PlotMetaInfo(
            name,
            "CUT",
            "WEIGHT",
            [infile],
            subdir=fit.name,
            comments=str(result[SIGNAL])
        )
        of.savePlot(canv, plot_info)
        canv.Close()
Ejemplo n.º 2
0
def data_mc_plot(samples, plot_def, name, lepton_channel, lumi, weight, physics_processes, use_antiiso=False):

    logger.info('Plot in progress %s' % name)

    merge_cmds = PhysicsProcess.get_merge_dict(physics_processes) #The actual merge dictionary

    var = plot_def['var']

    #Id var is a list/tuple, assume
    if not isinstance(var, basestring):
        try:
            if lepton_channel == 'ele':
                var = var[0]
            elif lepton_channel == 'mu':
                var = var[1]
        except Exception as e:
            logger.error("Plot variable 'var' specification incorrect for multi-variable plot: %s" % str(var))
            raise e
    cut = None
    if lepton_channel == 'ele':
        cut = plot_def['elecut']
    elif lepton_channel == 'mu':
        cut = plot_def['mucut']

    cut_str = str(cut)

    plot_range = plot_def['range']

    do_norm = False
    if 'normalize' in plot_def.keys() and plot_def['normalize']:
        do_norm = True
    hists_mc = dict()
    hists_data = dict()
    for name, sample in samples.items():
        logger.debug("Starting to plot %s" % name)
        if sample.isMC:
            hist = sample.drawHistogram(var, cut_str, weight=str(weight), plot_range=plot_range)
            hist.Scale(sample.lumiScaleFactor(lumi))
            hists_mc[sample.name] = hist
            if do_norm:
                Styling.mc_style_nostack(hists_mc[sample.name], sample.name)
            else:
                Styling.mc_style(hists_mc[sample.name], sample.name)

            if "fitpars" in plot_def.keys():
                rescale_to_fit(sample.name, hist, plot_def["fitpars"][lepton_channel])
        elif "antiiso" in name and plot_def['estQcd'] and not use_antiiso:

            # Make loose template
            #Y U NO LOOP :) -JP
            region = '2j1t'
            if '2j0t' in plot_def['estQcd']: region='2j0t'
            if '3j0t' in plot_def['estQcd']: region='3j0t'
            if '3j1t' in plot_def['estQcd']: region='3j1t'
            if '3j2t' in plot_def['estQcd']: region='3j2t'

            qcd_extra_cut = Cuts.deltaR(0.3)*Cuts.antiiso(lepton_channel)

            #Take the loose template with a good shape from the N-jet, M-tag, post lepton selection region with high statistics
            qcd_loose_cut = cutlist[region]*cutlist['presel_'+lepton_channel]*qcd_extra_cut

            #Take the template which can be correctly normalized from the actual region with inverted isolation cuts
            qcd_cut = cut*qcd_extra_cut

            hist_qcd_loose = sample.drawHistogram(var, str(qcd_loose_cut), weight="1.0", plot_range=plot_range)
            hist_qcd = sample.drawHistogram(var, str(qcd_cut), weight="1.0", plot_range=plot_range)
            logger.debug("Using the QCD scale factor %s: %.2f" % (plot_def['estQcd'], qcdScale[lepton_channel][plot_def['estQcd']]))
            

            hist_qcd.Scale(qcdScale[lepton_channel][plot_def['estQcd']])
            hist_qcd_loose.Scale(hist_qcd.Integral()/hist_qcd_loose.Integral())
            if var=='cos_theta':
                hist_qcd=hist_qcd_loose
            sampn = "QCD"+sample.name

            #Rescale the QCD histogram to the eta_lj fit
            if "fitpars" in plot_def.keys():
                rescale_to_fit(sampn, hist_qcd, plot_def["fitpars"][lepton_channel])

            hists_mc[sampn] = hist_qcd
            hists_mc[sampn].SetTitle('QCD')
            if do_norm:
                Styling.mc_style_nostack(hists_mc[sampn], 'QCD')
            else:
                Styling.mc_style(hists_mc[sampn], 'QCD')

        #Real ordinary data in the isolated region
        elif not "antiiso" in name or use_antiiso:
            hist_data = sample.drawHistogram(var, cut_str, weight="1.0", plot_range=plot_range)
            hist_data.SetTitle('Data')
            Styling.data_style(hist_data)
            hists_data[name] = hist_data


    if len(hists_data.values())==0:
        raise Exception("Couldn't draw the data histogram")

    #Combine the subsamples to physical processes
    hist_data = sum(hists_data.values())
    merge_cmds['QCD']=["QCD"+merge_cmds['data'][0]]
    order=['QCD']+PhysicsProcess.desired_plot_order
    if plot_def['log']:
        order = PhysicsProcess.desired_plot_order_log+['QCD']
    merged_hists = merge_hists(hists_mc, merge_cmds, order=order)

    if hist_data.Integral()<=0:
        logger.error(hists_data)
        logger.error("hist_data.entries = %d" % hist_data.GetEntries())
        logger.error("hist_data.integral = %d" % hist_data.Integral())
        raise Exception("Histogram for data was empty. Something went wrong, please check.")

    if do_norm:
        for k,v in merged_hists.items():
            v.Scale(1./v.Integral())
        hist_data.Scale(1./hist_data.Integral())

    htot = sum(merged_hists.values())

    chi2 = hist_data.Chi2Test(htot, "UW CHI2/NDF")
    if chi2>20:#FIXME: uglyness
        logger.error("The chi2 between data and MC is large (%s, chi2=%.2f). You may have errors with your samples!" %
            (name, chi2)
        )
        logger.info("MC  : %s" % " ".join(map(lambda x: "%.1f" % x, list(htot.y()))))
        logger.info("DATA: %s" % " ".join(map(lambda x: "%.1f" % x, list(hist_data.y()))))
        logger.info("diff: %s" % str(
            " ".join(map(lambda x: "%.1f" % x, numpy.abs(numpy.array(list(htot.y())) - numpy.array(list(hist_data.y())))))
        ))

    merged_hists_l = merged_hists.values()

    PhysicsProcess.name_histograms(physics_processes, merged_hists)

    leg_style = ['p','f']
    if do_norm:
        leg_style=['p','l']
    leg = legend([hist_data] + list(reversed(merged_hists_l)), legend_pos=plot_def['labloc'], styles=leg_style)

    canv = ROOT.TCanvas()

    #Make the stacks
    stacks_d = OrderedDict()
    stacks_d["mc"] = merged_hists_l
    stacks_d["data"] = [hist_data]

    #label
    xlab = plot_def['xlab']
    if not isinstance(xlab, basestring):
        if lepton_channel == 'ele':
            xlab = xlab[0]
        else:
            xlab = xlab[1]
    ylab = 'N / '+str((1.*(plot_range[2]-plot_range[1])/plot_range[0]))
    if plot_def['gev']:
        ylab+=' GeV'
    fact = 1.5
    if plot_def['log']:
        fact = 10

    plow=0.3
    if do_norm:
        plow=0

    #Make a separate pad for the stack plot
    p1 = ROOT.TPad("p1", "p1", 0, plow, 1, 1)
    p1.Draw()
    p1.SetTicks(1, 1);
    p1.SetGrid();
    p1.SetFillStyle(0);
    p1.cd()

    stacks = plot_hists_stacked(p1, stacks_d, x_label=xlab, y_label=ylab, max_bin_mult = fact, do_log_y = plot_def['log'], stack = (not do_norm))

    #Put the the lumi box where the legend is not
    boxloc = 'top-right'
    if plot_def['labloc'] == 'top-right':
        boxloc = 'top-left'
    chan = 'Electron'
    if lepton_channel == "mu":
        chan = 'Muon'

    additional_comments = ""
    if 'cutname' in plot_def.keys():
        additional_comments += ", " + plot_def['cutname'][lepton_channel]
    lbox = lumi_textbox(lumi,
        boxloc,
        'preliminary',
        chan + ' channel' + additional_comments
    )

    #Draw everything
    lbox.Draw()
    leg.Draw()
    canv.Draw()

    #Keep the handles just in case
    canv.PAD1 = p1
    canv.STACKS = stacks
    canv.LEGEND = legend
    canv.LUMIBOX = lbox

    return canv, merged_hists, htot, hist_data
Ejemplo n.º 3
0
        elif name == "SingleMu":
            hist_data = sample.drawHistogram(var, cut_str, weight="1.0", plot_range=plot_range)
            Styling.data_style(hist_data)

        elif name == "SingleMu_aiso":
            hist_qcd = sample.drawHistogram(var, cut_str, weight="1.0", plot_range=plot_range)
            #hist_qcd.
            pass

    #Combine the subsamples to physical processes
    merged_hists = merge_hists(hists_mc, merge_cmds).values()

    #Some printout
    for h in merged_hists + [hist_data]:
        print h.GetName(), h.GetTitle(), h.Integral()

    canv = ROOT.TCanvas()

    stacks_d = OrderedDict()
    stacks_d["mc"] = merged_hists
    stacks_d["data"] = [hist_data]
    stacks = plot_hists_stacked(canv, stacks_d)
    canv.Draw()

    #Create the dir if it doesn't exits
    try:
        os.mkdir("muon_out")
    except OSError:
        pass
    canv.SaveAs("muon_out/test.pdf")
Ejemplo n.º 4
0
    canv = ROOT.TCanvas("c", "c")
    canv.SetWindowSize(500, 500)
    canv.SetCanvasSize(600, 600)

    #!!!!LOOK HERE!!!!!
    #----
    #Draw the stacked histograms
    #----
    stacks_d = OrderedDict(
    )  #<<< need to use OrderedDict to have data drawn last (dict does not preserve order)
    stacks_d["mc"] = [h_mc1, h_mc2,
                      h_mc3]  # <<< order is important here, mc1 is bottom-most
    stacks_d["data"] = [h_d1]
    stacks = plot_hists_stacked(canv,
                                stacks_d,
                                x_label="variable x [GeV]",
                                y_label="",
                                do_log_y=False)

    #Draws the lumi box
    from plots.common.utils import lumi_textbox
    lumibox = lumi_textbox(19432)

    #Draw the legend
    from plots.common.legend import legend
    leg = legend(
        [h_d1, h_mc3, h_mc2, h_mc1
         ],  # <<< need to reverse MC order here, mc3 is top-most
        styles=["p", "f"],
        width=0.25)
Ejemplo n.º 5
0
def data_mc_plot(pd):
    hists = load_theta_format(pd.infile, styles)

    for (variable, sample, systtype, systdir), hist in hists.items_flat():

        #Scale all MC samples except QCD to the luminosity
        if sample_types.is_mc(sample) and not sample=="qcd":
            hist.Scale(pd.lumi)
        if hasattr(pd, "rebin"):
            hist.Rebin(pd.rebin)
        if sample=="qcd" and hasattr(pd, "qcd_yield"):
            hist.Scale(pd.qcd_yield / hist.Integral())

        rescale_to_fit(sample, hist, pd.process_scale_factor)
        hist.SetTitle(sample)
        hist.SetName(sample)


    #Assuming we only have 1 variable
    hists = hists[pd.var]

    hists_nominal = hists.pop("nominal")[None]
    hists_nom_data = hists_nominal.pop('data')
    hists_nom_mc = hists_nominal.values()
    hists_syst = hists

    hists_nom_data.SetTitle('data')

    #A list of all the systematic up, down variation templates as 2-tuples
    all_systs = [
    ]

    all_systs = hists_syst.keys()
    systs_to_consider = []

    #See which systematics where asked to switch on
    for syst in all_systs:
        for sm in pd.systematics:
            if re.match(sm, syst):
                systs_to_consider.append(syst)

    #The total nominal MC histogram
    nom = sum(hists_nom_mc)

    if pd.normalize:
        ratio = hists_nom_data.Integral() / nom.Integral()
        hists_nom_data.Scale(1.0/ratio)

    #Get all the variated up/down total templates
    #A list with all the up/down total templates
    all_systs = []

    sumsqs = []
    logger.info("Considering systematics %s" % str(systs_to_consider))
    for syst in systs_to_consider:

        #A list with the up/down variated template for a particular systematic
        totupdown = []

        sumsq = []
        for systdir in ["up", "down"]:

            #Get all the templates corresponding to a systematic scenario and a variation
            _hists = hists_syst[syst][systdir]


            for k, h in _hists.items():

                """
                Consider only the shape variation of the systematic,
                hence the variated template is normalized to the corresponding
                unvariated template.
                """
                if pd.systematics_shapeonly:
                    if h.Integral()>0:
                        h.Scale(hists_nominal[k].Integral() / h.Integral())

            #For the missing variated templates, use the nominal ones, but warn the user
            present = set(_hists.keys())
            all_mc = set(hists_nominal.keys())
            missing = list(all_mc.difference(present))
            for m in missing:
                logger.warning("Missing systematic template for %s:%s" % (syst, systdir))

            #Calculate the total variated template
            tot = sum(_hists.values()) + sum([hists_nominal[m] for m in missing])
            totupdown.append(tot)

            sumsq.append(
                math.sqrt(numpy.sum(numpy.power(numpy.array(list(nom.y())) - numpy.array(list(tot.y())), 2)))
            )
        logger.debug("Systematic %s: sumsq=%.2Eu, %.2Ed" % (syst, sumsq[0], sumsq[1]))
        sumsqs.append((syst, max(sumsq)))
        all_systs.append(
            (syst, tuple(totupdown))
        )

    sumsqs = sorted(sumsqs, key=lambda x: x[1], reverse=True)
    for syst, sumsq in sumsqs[0:7]:
        logger.info("Systematic %s, %.4f" % (syst, sumsq))

    #Calculate the total up/down variated templates by summing in quadrature
    syst_stat_up, syst_stat_down = total_syst(
        nom, all_systs,
    )

    for k, v in hists_nominal.items():
        if hasattr(PhysicsProcess, k):
            pp = getattr(PhysicsProcess, k)
            v.SetTitle(pp.pretty_name)
        else:
            logger.warning("Not setting pretty name for %s" % k)


    #If QCD is high-stats, put it in the bottom
    plotorder = copy.copy(PhysicsProcess.desired_plot_order_mc)
    if hists_nominal["qcd"].GetEntries()>100:
        plotorder.pop(plotorder.index("qcd"))
        plotorder.insert(0, "qcd")

    stacks_d = OrderedDict()
    stacks_d['mc'] = reorder(hists_nominal, plotorder)
    stacks_d['data'] = [hists_nom_data]

    #Systematic style
    for s in [syst_stat_up, syst_stat_down]:
        s.SetFillStyle(0)
        s.SetLineWidth(3)
        s.SetMarkerSize(0)
        s.SetLineColor(ROOT.kBlue+2)
        s.SetLineStyle('dashed')
        s.SetTitle("stat. + syst.")

    #c = ROOT.TCanvas("c", "c", 1000, 1000)
    c = ROOT.TCanvas("c", "c")
    p1 = ROOT.TPad("p1", "p1", 0, 0.3, 1, 1)
    p1.Draw()
    p1.SetTicks(1, 1);
    p1.SetGrid();
    p1.SetFillStyle(0);
    p1.cd()

    stacks = plot_hists_stacked(
        p1, stacks_d,
        x_label=pd.get_x_label(), max_bin_mult=pd.get_max_bin_mult(),
        min_bin=pd.get_min_bin()
    )
    p1.SetLogy(pd.log)

    syst_stat_up.Draw("SAME hist")
    syst_stat_down.Draw("SAME hist")

    ratio_pad, hratio = plot_data_mc_ratio(
        c, hists_nom_data,
        nom, syst_hists=(syst_stat_down, syst_stat_up), min_max=pd.get_ratio_minmax()
    )



    p1.cd()
    leg = legend(
        stacks_d['data'] +
        list(reversed(stacks_d['mc'])) +
        [syst_stat_up],
        nudge_x=pd.legend_nudge_x,
        nudge_y=pd.legend_nudge_y,
        **pd.__dict__
    )
    lb = lumi_textbox(pd.lumi,
        line2=pd.get_lumibox_comments(channel=pd.channel_pretty),
        pos=pd.get_lumi_pos()
    )
    c.children = [p1, ratio_pad, stacks, leg, lb]

    tot = 0
    for k, v in hists_nominal.items():
        print k, v.Integral(), v.GetEntries()
        tot += v.Integral()
    tot_data = hists_nom_data.Integral()
    print "MC: %.2f Data: %.2f" % (tot, tot_data)
    #import pdb; pdb.set_trace()
    return c, (hists_nominal, hists_nom_data)
Ejemplo n.º 6
0
    #Create the canvas
    canv = ROOT.TCanvas("c", "c")
    canv.SetWindowSize(500, 500)
    canv.SetCanvasSize(600, 600)

    #!!!!LOOK HERE!!!!!
    #----
    #Draw the stacked histograms
    #----
    stacks_d = OrderedDict() #<<< need to use OrderedDict to have data drawn last (dict does not preserve order)
    stacks_d["mc"] = [h_mc1, h_mc2, h_mc3] # <<< order is important here, mc1 is bottom-most
    stacks_d["data"] = [h_d1]
    stacks = plot_hists_stacked(
        canv,
        stacks_d,
        x_label="variable x [GeV]",
        y_label="",
        do_log_y=False
    )

    #Draws the lumi box
    from plots.common.utils import lumi_textbox
    lumibox = lumi_textbox(19432)

    #Draw the legend
    from plots.common.legend import legend
    leg = legend(
        [h_d1, h_mc3, h_mc2, h_mc1], # <<< need to reverse MC order here, mc3 is top-most
        styles=["p", "f"],
        width=0.25
    )