def plot_data(pickle_name,pause=False,basename=None,roi=None, cycles=None): #read a pickle file created by simulate and create plots. Basename is directory #plus optional characters to put in front of plot names #cycles is (from,to) tuple of the cycle numbers to plot, inclusive, or a single int with open(pickle_name,'rb') as fp: data=pickle.load(fp) plots.plot(data,roi,pause=pause,out_place=basename, cycles=None)
def simulate_and_plot(override_param, do_plots=False, pause=False, outdir=None,params_file='params',verbose=False, roi=None): data,ret,param,pickle_name,out_place= simulate(override_param, outdir=outdir, params_file=params_file, verbose=verbose) if do_plots: plots.plot(data, roi, pause=pause, out_place=out_place) return ret,param
def _save_metric(self, metric, metric_name='loss', y_label='Test Error'): c_name = metric_name+'-'+self.name print_metric_mean_and_std(metric, c_name) if self.do_plot and (self.save_dir is not None or self.show_plot): plot(metric, None, None, None, None, None, '', y_label, c_name, self.save_dir, self.show_plot, self.name) if self.save_dir is not None: save_nparray(metric, c_name, self.save_dir)
def loop(robot, input_file, comparison_file, plot_name): output_file = "analytic_outputs/" + plot_name + ".csv" outputFile = open(output_file, "w") """column_headers = np.array(['time', 'lidar_F', 'lidar_R', 'gyro', 'compass_x', 'compass_y']) np.savetxt(OUTPUT_FILE, column_headers)""" w = robot.width l = robot.length xOffset = robot.S[0] - (l // 2) yOffset = robot.S[1] - (w // 2) #pygame.init() #screen = pygame.display.set_mode((robot.room_width, robot.room_length)) with open(input_file) as csvFile: csvReader = csv.reader(csvFile, delimiter=',') inputs = list(csvReader) time = np.arange(0, 20.005, 0.005) lidar = np.zeros((len(time), 2)) gyro = np.zeros((len(time), 1)) compass = np.zeros((len(time), 2)) position = np.zeros((len(time), 3)) for i in range(len(time)): try: robot.state_update(inputs[i]) except IndexError: break data = robot.get_observation() lidar[i] = data[:2] gyro[i] = data[2] compass[i] = np.array(data[3:]) position[i] = robot.S.reshape((3,)) """# draw screen.fill((0, 0, 0)) angle = robot.S[2] * 180 / np.pi surf = pygame.Surface((l, w)).convert_alpha() surf.fill((0, 128, 255)) x = xOffset + robot.S[0] y = yOffset + robot.S[1] blitRotate(screen, surf, (x, y), (l // 2, w // 2), -angle) pygame.display.update() """ output_matrix = time output_matrix = np.column_stack((output_matrix, lidar)) output_matrix = np.column_stack((output_matrix, gyro)) output_matrix = np.column_stack((output_matrix, compass)) output_matrix = np.column_stack((output_matrix, position)) np.savetxt(output_file, output_matrix, delimiter=' ', fmt='%.4f') plot(output_file, comparison_file, plot_name)
def on_epoch_end(self, epoch, logs={}): if epoch % self.period == 0 and epoch != 0: [ os.remove(os.path.join(self.path, file)) for file in os.listdir(self.path) ] used_metrics = [ metric for metric in self.model.history.params['metrics'] if 'val' not in metric ] for label in used_metrics: plot(history=self.model.history, path=self.path, label=label)
def main(restraints, x_axis, y_axis, one_graph=False): df, header = load() filt = filter_data(df, header, restraints) xs, ys, hs = extract_plotable_data(filt, header, x_axis, y_axis) if not (one_graph): for x, y, h in zip(xs, ys, hs): plot(x, y, x_axis, y_axis, h, header, one_graph) else: plot(xs, ys, x_axis, y_axis, hs, header, one_graph) return None
def main(): # check if user args are velid. user_args = check_user_args(arguments, model_list) # read data. data = read_data.read_data(user_args[2], user_args[3]) # call to model. model = model_handler.model_caller(user_args[1]) # fit model to data. result = fits.fit(data, model[0]) # plot of fitted model. plots.plot(data, result[0], model[1], user_args[2], show=user_args[0]) # report of fit results. logs.log(user_args[2], model[1], result, show=user_args[0])
def main(): start = time.time() pool = Pool() pool.map(worker, range(len(eats))) pool.close() pool.join() plot(plots, xc, Vc, zc, DEL, eats, nKGB, 'n', DATA, zpoints, fpoints, sig80) end = time.time() print('time taken = {0}'.format(end - start))
def launch(filepath, k=55, include_seq=True, threshold=0.3, format='pdf', output='out', show=False, pause=1.2, fix_steps=False, make_gif=False): """ Launch function to create graph representation of assembly, collapse it, remove low covered vertices :param filepath: str - path to fasta file :param k: int - kmer size, recommended to be odd :param include_seq: boolean - whether to display vertex and edge sequences :param threshold: float - coefficient which determines threshold for coverage for vertex removing :param format: str - format of output images - pdf, svg, png :param output: str - file name of output, 'original' and 'collapsed' will be appended to it :param show: boolean - whether to display fiery slide show :param pause: float - pause between each slide :param fix_steps: boolean - whether to create image of graph state at every stage :return: """ # Load file a = Graph(filepath, k) # Populate graph and cover edges a.fragmentate() a.cover_edges() a.edge_coverage() # Collapse graph and remove low covered vertices a.collapse_filter(threshold, fix_steps=fix_steps, show=show, pause=pause, format=format, output=output) # Compute edge coverage a.edge_coverage() a.extract(f'{output}/out') # Create plot of collapsed graph if it wasn't created if not fix_steps: plot(a, f'{output}/picts/collapsed', include_seq, format, show) # Create animation from obtained images if make_gif: animate(f'{output}/picts', format, pause)
def selection_sort(arr, type_plot): # Run through all data elements for i in range(len(arr)): # Find the minimum element min_idx = i for j in range(i + 1, len(arr)): if arr[min_idx] > arr[j]: min_idx = j # Swap the found minimum element with # the first element arr[i], arr[min_idx] = arr[min_idx], arr[i] # Created typ with selected plot type plot(arr=arr, fallow_point=min_idx, type_plot=type_plot, title='Selection Sort')
def bubble_sort(arr, type_plot): # Traverse through all array elements for j in range(len(arr)): # Compare all elements for i in range(len(arr)): if i < (len(arr)) - 1: # Swap if the element found is greater # than the next element if arr[i] > arr[i + 1]: arr[i], arr[i + 1] = arr[i + 1], arr[i] # Created typ with selected plot type plot(arr=arr, fallow_point=i + 1, type_plot=type_plot, title='Bubble Sort')
def on_epoch_end(self, epoch, logs={}): if epoch % self.period == 0 and epoch != 0: [ os.remove(os.path.join(self.path, file)) for file in os.listdir(self.path) ] used_metrics = [ metric for metric in self.model.history.params['metrics'] if 'val' not in metric ] for label in used_metrics: plot(history=self.model.history, path=self.path, label=label) evaluate_model(model=self.model, path=self.path, dataset=self.validation_data, split='Validation', target_names=self.validation_data.classes)
def hold_out(training_data, results): print 'Total Data : ' + str(len(training_data)) print sum(results) test_data = training_data[-int(0.2 * len(training_data)):] training_data = training_data[:-int(0.2 * len(training_data))] results_training = results[:-int(0.2 * len(results))] results_test = results[-int(0.2 * len(results)):] zeros = 0 ones = 0 # unique(training_data,test_data) print 'Training Items : ' + str(len(training_data)) print 'Test Items : ' + str(len(test_data)) training_scores_logreg = [] testing_scores_logreg = [] training_scores_svm = [] testing_scores_svm = [] training_scores_rf = [] testing_scores_rf = [] training_scores_bnb = [] testing_scores_bnb = [] #training_scores_knn = [] #testing_scores_knn = [] for i in range(1, len(training_data) / 1000): print 'Iteration : ' + str(i) print len(testing_scores_logreg) logreg.fit(training_data[:i * 1000], results_training[:i * 1000]) testing_scores_logreg.append(logreg.score(test_data, results_test)) training_scores_logreg.append( logreg.score(training_data, results_training)) clf2.fit(training_data[:i * 1000], results_training[:i * 1000]) testing_scores_svm.append(clf2.score(test_data, results_test)) training_scores_svm.append(clf2.score(training_data, results_training)) rf.fit(training_data[:i * 1000], results_training[:i * 1000]) testing_scores_rf.append(rf.score(test_data, results_test)) training_scores_rf.append(rf.score(training_data, results_training)) bnb.fit(training_data[:i * 1000], results_training[:i * 1000]) testing_scores_bnb.append(bnb.score(test_data, results_test)) training_scores_bnb.append(bnb.score(training_data, results_training)) #logreg.fit(training_data[:i*1000],results_training[:i*1000]) #testing_scores_logreg.append(logreg.score(test_data,results_test)) #training_scores_logreg.append(logreg.score(training_data,results_training)) plots.plot(training_scores_logreg, testing_scores_logreg, training_scores_svm, testing_scores_svm, training_scores_rf, testing_scores_rf, training_scores_bnb, testing_scores_bnb) '''
def train(audio_path, plot_matrix=False): x_data, y_data = get_set(26, 9, audio_path) x_data = keras.preprocessing.sequence.pad_sequences(x_data, maxlen=100) x_train, x_test, Y_train, Y_test = train_test_split(x_data, y_data, test_size=0.1, random_state=42) y_train = keras.utils.to_categorical(Y_train, 16) y_test = keras.utils.to_categorical(Y_test, 16) model = getModel((x_train.shape[1], x_train.shape[2]), y_train.shape[1]) history = model.fit(x_train, y_train, batch_size=10, epochs=137, verbose=1, validation_data=(x_test, y_test)) # Plot training & validation accuracy values plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('Model accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.show() # Plot training & validation loss values plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.show() score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) model.save(model_name) if plot_matrix: plot(x_test, Y_test, model_name)
def hold_out(training_data,results): print 'Total Data : ' + str(len(training_data)) print sum(results); test_data = training_data[-int(0.2*len(training_data)):] training_data = training_data[:-int(0.2*len(training_data))] results_training = results[:-int(0.2*len(results))] results_test = results[-int(0.2*len(results)):] zeros = 0 ones = 0 # unique(training_data,test_data) print 'Training Items : ' + str(len(training_data)) print 'Test Items : ' + str(len(test_data)) training_scores_logreg = [] testing_scores_logreg = [] training_scores_svm = [] testing_scores_svm = [] training_scores_rf = [] testing_scores_rf = [] training_scores_bnb = [] testing_scores_bnb = [] #training_scores_knn = [] #testing_scores_knn = [] for i in range(1,len(training_data)/1000): print 'Iteration : ' + str(i) print len(testing_scores_logreg) logreg.fit(training_data[:i*1000],results_training[:i*1000]) testing_scores_logreg.append(logreg.score(test_data,results_test)) training_scores_logreg.append(logreg.score(training_data,results_training)) clf2.fit(training_data[:i*1000],results_training[:i*1000]) testing_scores_svm.append(clf2.score(test_data,results_test)) training_scores_svm.append(clf2.score(training_data,results_training)) rf.fit(training_data[:i*1000],results_training[:i*1000]) testing_scores_rf.append(rf.score(test_data,results_test)) training_scores_rf.append(rf.score(training_data,results_training)) bnb.fit(training_data[:i*1000],results_training[:i*1000]) testing_scores_bnb.append(bnb.score(test_data,results_test)) training_scores_bnb.append(bnb.score(training_data,results_training)) #logreg.fit(training_data[:i*1000],results_training[:i*1000]) #testing_scores_logreg.append(logreg.score(test_data,results_test)) #training_scores_logreg.append(logreg.score(training_data,results_training)) plots.plot(training_scores_logreg,testing_scores_logreg,training_scores_svm,testing_scores_svm ,training_scores_rf ,testing_scores_rf ,training_scores_bnb , testing_scores_bnb) '''
def parflow(): INPUT_DIR = os.path.join(os.path.dirname(__file__), '..', 'parflow', 'inputs') FORCING_DIR = os.path.join(os.path.dirname(__file__), '..', 'parflow', 'forcing') OUTPUT_DIR = os.path.join(os.getenv('HOME'), 'RESULTS/output') PNG_PATH = os.path.join(os.getenv('HOME'), 'RESULTS/plot.png') # copy input files directly in the base output folder, # because that's where Parflow expects them to be. shutil.copytree(INPUT_DIR, OUTPUT_DIR, dirs_exist_ok=True) run.Solver.CLM.CLMFileDir = OUTPUT_DIR run.Solver.CLM.MetFilePath = FORCING_DIR run.run(working_directory=OUTPUT_DIR) plot(OUTPUT_DIR, run.get_name(), PNG_PATH, title=title) img = open(PNG_PATH, 'rb').read() return render_template('result.html', img=base64.encodebytes(img).decode('ascii'))
def partition(arr, left, right, type_plot): i = (left - 1) # smaller element pivot = arr[right] # pivot for j in range(left, right): # Swap if current element is smaller than or # equal to pivot if arr[j] <= pivot: i = i + 1 arr[i], arr[j] = arr[j], arr[i] # Create plot with arr and pivot plot(arr=arr, fallow_point=pivot, type_plot=type_plot, title='Quick Sort ') arr[i + 1], arr[right] = arr[right], arr[i + 1] return i + 1
def plot_to_file(self): file = filenames['basic_plot'] % curr data = self.data['input']['processed'] args = {} args['filename'] = file args['data'] = data args['y_label'] = curr + "/PLN" args['x_label'] = 'czas [data]' return plot(args)
def plot_to_file_log_return(self): file = filenames['basic_log_return_plot'] % curr data = self.data['input']['log_returns'] args = {} args['filename'] = file args['data'] = data args['y_label'] = "logarytmiczna stopa zwrotu, średnia %d dni" % ( 2 * moving_average_delta + 1) args['x_label'] = 'czas [data]' return plot(args)
def plot_data_with_equation(self, file_name, equation): fitted_signal = self.fourier_analyse_inverse(equation) args = {} args['data'] = [ self.data['input']['processed'][0], # time self.data['input']['processed'][1], # real values fitted_signal['signal_abs'] # fitted values ] args['filename'] = file_name return plot(args)
def simulationAnnealing(NT, snapNT, spins, J, N, M, kB, gamma, T0, Tsteps): #initialization for first simulation spins = spinsInit(N, M) #keeping track of magnetization globals.magnetizationInit() globals.magnetizationHistoryInit() globals.magnetization = spins.sum() #calculating the decreas factor of temperature decreasFactor = (0.05 / T0)**(1 / Tsteps) #Array of slowly decreasing temperatures iterationArray = np.zeros(Tsteps) for i in range(len(iterationArray)): iterationArray[i] = T0 * decreasFactor**i #Annealing for t in iterationArray: beta = 1 / t / kB simulation(NT, snapNT, spins, J, N, M, beta, gamma) plots.plot(spins, gamma, 1, 1)
def heapify(arr, n, i, type_plot): largest = i # Initialize largest as root l = 2 * i + 1 # left = 2*i + 1 r = 2 * i + 2 # right = 2*i + 2 # See if left child of root exists and is # greater than root if l < n and arr[i] < arr[l]: largest = l # See if right child of root exists and is # greater than root if r < n and arr[largest] < arr[r]: largest = r # Change root, if needed if largest != i: arr[i], arr[largest] = arr[largest], arr[i] # swap # Heapify the root. heapify(arr, n, largest, type_plot) plot(arr=arr, fallow_point=largest, type_plot=type_plot, title='Heap Sort')
def plot_freq_basic_analysis(self): omegas = self.freq_domain['omegas'] dft_abs = self.freq_domain['dft_abs'] points = self.find_valuable_maxims() file = filenames['basic_fourier_analysis_freq'] % curr args = {} args['filename'] = file args['data'] = [omegas, dft_abs] args['highlight_data'] = points args['y_label'] = 'amplituda' args['x_label'] = 'częstość [1/dzień]' return plot(args)
def plot_returns(self): arguments = {} timing = self.data['fourier_fit']['returns'][0] values1 = self.data['input']['log_returns'][1] values2 = self.data['fourier_fit']['returns'][1] arguments['data'] = [timing, values1, values2] name = filenames['both_log_return_plot'] % curr arguments['filename'] = name arguments['y_label'] = "logarytmiczna stopa zwrotu, średnia %d dni" % ( 2 * moving_average_delta + 1) arguments['x_label'] = "czas [data]" return plot(arguments)
def plot_basic_data_with_dff_fit(self): self.find_valuable_maxims(True) equation = self.translate_maxims_to_equation() fitted_signal = self.fourier_analyse_inverse(equation) file = filenames['basic_fourier_analysis_fit'] % curr args = {} args['data'] = [ self.data['input']['processed'][0], # time self.data['input']['processed'][1], # real values fitted_signal['signal_abs'] # fitted values ] args['filename'] = file return plot(args)
def main_page(): data_list = [cases[place] for place in current_places] if request.method == 'POST': query = request.form.get('place') if query in cases.keys() and query not in current_places: current_places.append(query) function = request.form.get('function') try: data_list = [eval(function) for place in current_places] except: data_list = [cases[place] for place in current_places] script, div, js_resources, css_resources = plot(dates, data_list, current_places) return render_template( 'index.html', current_places=current_places, places=filter(is_country, list(cases.keys())), plot_script=script, plot_div=div, js_resources=js_resources, css_resources=css_resources, )
from stimuli import visual_stimulus from plots import plot try: Runcase=int(sys.argv[-1]) except ValueError: print('Provide aither an integer, the key "all", or a specific key (see run.py)') Runcase=str(sys.argv[-1]) np.random.seed(1) Nshow = 8 if (Runcase==19) or (Runcase=='model-doc') or (Runcase=='all'): model = earlyVis_model(from_file='data/dense-noise.npz') ps = plot(model=model) fig = ps.protocol_plot(cell_plot=np.random.choice(np.arange(model.Ncells), Nshow, replace=False)) fig.savefig('docs/figs/response-dense-noise.png') ps.show() if (Runcase==18) or (Runcase=='model-doc') or (Runcase=='all'): model = earlyVis_model(from_file='data/sparse-noise.npz') ps = plot(model=model) fig = ps.protocol_plot(cell_plot=np.random.choice(np.arange(model.Ncells), Nshow, replace=False)) fig.savefig('docs/figs/response-sparse-noise.png') ps.show() if (Runcase==15) or (Runcase=='model-doc') or (Runcase=='all'): model = earlyVis_model(from_file='data/static-grating.npz') ps = plot(model=model) fig = ps.protocol_plot(cell_plot=np.random.choice(np.arange(model.Ncells), Nshow, replace=False))
ns = 2 # number of sweeps dE = 0.0001 # V, potential increment. This value has to be small for BI to approximate the circuit properly t, E = wf.sweep(Eini=Eini, Efin=Efin, dE=dE, sr=sr, ns=ns) # Creates waveform g0 = Q0/F # mol/cm2, maximum coverage for 1 monolayer eps = n*FRT*(E-E0) kf = ks*np.exp(alpha*eps) kb = ks*np.exp(-(1-alpha)*eps) # Simulation parameters nt = np.size(t) dt = t[1] Th = np.ones(nt) #%% Simulation for j in range(1,nt): # Backwards implicit: Th[j] = (Th[j-1] + dt*kb[j-1])/(1 + dt*(kf[j-1]+kb[j-1])) # Denormalisation i = -n*F*Ageo*g0*(kb - (kf+kb)*Th) Q = g0*F*(1-Th) end = time.time() print(end-start) #%% Plot p.plot(E, i, "$E$ / V", "$i$ / A") p.plot(E, Q*1e6, "$E$ / V", "$Q$ / $\mu$C cm$^{-2}$")
X = np.linspace(0, Xmax, nX) # Discretisation of distance eps = (E - E0) * n * FRT # adimensional potential waveform delta = np.sqrt(D * t[-1]) # cm, diffusion layer thickness K0 = ks * delta / D # Normalised standard rate constant #%% Simulation for k in range(1, nT): # Boundary condition, Butler-Volmer: C[k, 0] = (C[k - 1, 1] + dX * K0 * np.exp(-alpha * eps[k])) / (1 + dX * K0 * (np.exp( (1 - alpha) * eps[k]) + np.exp(-alpha * eps[k]))) # Solving finite differences: for j in range(1, nX - 1): C[k, j] = C[k - 1, j] + lamb * (C[k - 1, j + 1] - 2 * C[k - 1, j] + C[k - 1, j - 1]) # Denormalising: i = n * F * Ageo * D * cB * (-C[:, 2] + 4 * C[:, 1] - 3 * C[:, 0]) / (2 * dX * delta) cR = C * cB cO = cB - cR x = X * delta end = time.time() print(end - start) #%% Plot p.plot(E, i, "$E$ / V", "$i$ / A") p.plot2(x, cR[-1, :] * 1e6, x, cO[-1, :] * 1e6, "[R]", "[O]", "x / cm", "c($t_{end}$,$x$=0) / mM")
epilog=''' ''') parser.add_argument("files", nargs='+',type=str, help="pickle files to plot", default=None) parser.add_argument('-c', '--cycles', type=parseIntRange, help="cycle or range of cycles to plot, .e.g. 4 or 0-2", default=None) parser.add_argument('-n', '--nopause', action='store_true', help="do not pause after generating plots") options = parser.parse_args() print('git revision:{}'.format(util.get_git_commit())) class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self for file in options.files: with open(file, 'rb') as fp: data=pickle.load(fp) print('loaded {}'.format(file)) print('cyles {}'.format(options.cycles)) head,tail=os.path.split(file) print('head={} tail={}'.format(head,tail)) #take the part up to the dash in tail, and add something parts=tail.split('-') out_place=os.path.join(head,parts[0]+'-replot') print('out_place={}'.format(out_place)) plots.plot(data, out_place=out_place, pause=not options.nopause, cycles=options.cycles, text=parts[0])
if (t>=surround_delay) and (t<=surround_delay+surround_duration) and (t>=center_delay) and (t<=center_delay+center_duration): self.static_center_surround_grating(i+self.it0, **args) elif (t>=surround_delay) and (t<=surround_delay+surround_duration): self.static_surround_grating(i+self.it0, **args) elif (t>=center_delay) and (t<=center_delay+center_duration): self.static_center_surround_grating(i+self.it0, **args) if __name__=='__main__': from plots import plot stim = visual_stimulus(sys.argv[-1]) stim_plot= plot(stimulus=stim, graph_env_key='visual_stim') stim_plot.screen_movie(stim) # if stim.stimulus_params['static']: # stim_plot.screen_plot(stim.full_array[0,:,:]) # else: # stim_plot.screen_movie(stim) stim_plot.show()
def hold_out_training(training_data,results): print 'Length : ' + str(len(training_data)) test_data = training_data[-int(0.3*len(training_data)):] training_data = training_data[:-int(0.3*len(training_data))] results_training = results[:-int(0.3*len(results))] results_test = results[-int(0.3*len(results)):] rf.fit(training_data,results_training) print rf.score(test_data,results_test) ''' pre_shuffle_stuff = [] counter = 0 for item in results_training: item = item.append(results_training[counter]) accuracies = [] #shuffle(training_data) ''' accuracies_svm = [] accuracies_rf = [] accuracies_knn = [] accuracies_svm_rbf = [] for j in range(10,len(training_data),1): correct = 0 wrong = 0 curr_training_data = training_data[:j] curr_results = results_training[:j] rf.fit(curr_training_data,curr_results) rf.score(test_data,results_test) y_true = [] y_pred = [] for i in range(len(test_data)): result = rf.predict(test_data[i]) if result[0] == results_test[i]: correct = correct + 1 #print 'Correct : ' + str(result) else: wrong = wrong + 1 #iprint 'Wrong : ' + str(result) print correct,wrong accuracy = (float(correct))/(float(correct) + float(wrong)) accuracies_rf.append(accuracy) print 'Accuracy : ' + str(accuracy) knn.fit(curr_training_data,curr_results) knn.score(test_data,results_test) correct = 0 wrong = 0 for i in range(len(test_data)): result = knn.predict(test_data[i]) if result[0] == results_test[i]: correct = correct + 1 #print 'Correct : ' + str(result) else: wrong = wrong + 1 #iprint 'Wrong : ' + str(result) print correct,wrong accuracy = (float(correct))/(float(correct) + float(wrong)) accuracies_knn.append(accuracy) print 'Accuracy : ' + str(accuracy) clf2.fit(curr_training_data,curr_results) clf2.score(test_data,results_test) correct = 0 wrong = 0 for i in range(len(test_data)): result = knn.predict(test_data[i]) if result[0] == results_test[i]: correct = correct + 1 #print 'Correct : ' + str(result) else: wrong = wrong + 1 #iprint 'Wrong : ' + str(result) print correct,wrong accuracy = (float(correct))/(float(correct) + float(wrong)) accuracies_svm.append(accuracy) print 'Accuracy : ' + str(accuracy) clf.fit(curr_training_data,curr_results) clf.score(test_data,results_test) correct = 0 wrong = 0 for i in range(len(test_data)): result = knn.predict(test_data[i]) if result[0] == results_test[i]: correct = correct + 1 #print 'Correct : ' + str(result) else: wrong = wrong + 1 #iprint 'Wrong : ' + str(result) print correct,wrong accuracy = (float(correct))/(float(correct) + float(wrong)) accuracies_svm_rbf.append(accuracy) print 'Accuracy : ' + str(accuracy) plots.plot(accuracies_rf,accuracies_knn,accuracies_svm,accuracies_svm_rbf,training_data)