Ejemplo n.º 1
0
def spatial_density_all_time_all_crimes():

    poly = get_camden_region()
    camden_mpoly = geodjango_to_shapely([get_camden_region()])
    oo = osm.OsmRendererBase(poly, buffer=100)

    cbg = CadByGrid()
    a = cbg.all_time_aggregate()

    fig = plt.figure(figsize=(8, 8))
    ax = fig.add_subplot(111, projection=ccrs.OSGB())
    ax.set_extent([523000, 533000, 179000, 190000], ccrs.OSGB())
    ax.background_patch.set_visible(False)
    oo.render(ax)

    a = a.sum(axis=1)

    cmap = mpl.cm.Reds
    norm = mpl.colors.Normalize()
    norm.autoscale(a)
    cax = mpl.colorbar.make_axes(ax,
                                 location='bottom',
                                 pad=0.02,
                                 fraction=0.05,
                                 shrink=0.9)
    cbar = mpl.colorbar.ColorbarBase(cax[0],
                                     cmap=cmap,
                                     norm=norm,
                                     orientation='horizontal')
    sm = mpl.cm.ScalarMappable(norm=norm, cmap=cmap)

    for j in range(cbg.m):
        val = a.values[j]
        fc = sm.to_rgba(val) if val else 'none'
        ax.add_geometries(geodjango_to_shapely([cbg.grid[j].mpoly]),
                          ccrs.OSGB(),
                          facecolor=fc,
                          alpha=0.3)

    ax.add_geometries(camden_mpoly,
                      ccrs.OSGB(),
                      facecolor='none',
                      edgecolor='black')

    plt.show()
Ejemplo n.º 2
0
def get_camden_wards(as_shapely=True):
    camden = models.Division.objects.get(type='borough', name__iexact='camden')
    wards = models.Division.objects.filter(type='ward',
                                           mpoly__intersects=camden.mpoly)
    polys = []
    for t in wards:
        if t.mpoly.intersection(camden.mpoly).area / t.mpoly.area > 1e-3:
            polys.append(t.mpoly.simplify())
    if as_shapely:
        polys = [geodjango_to_shapely(p) for p in polys]
    return polys
Ejemplo n.º 3
0
def plot_domains(name=None, ax=None, set_axis=True):
    if name is None and ax is not None:
        raise AttributeError("If no single domain is specified, we have to make new figures for each plot")
    city = geodjango_to_shapely(
        models.ChicagoDivision.objects.get(name='ChicagoFilled').mpoly.simplify(0)
    )
    domains = get_chicago_side_polys(as_shapely=True)
    if name is not None:
        plot_domain(city, domains[name], ax=ax, set_axis=set_axis)
    else:
        for k, v in domains.items():
            plot_domain(city, v)
Ejemplo n.º 4
0
 def __init__(self, grid=None, **kwargs):
     # defer dedupe until after spatial aggregation
     super(CadSpatialGrid, self).__init__(**kwargs)
     # load grid or use one provided
     self.grid = grid or models.Division.objects.filter(
         type='cad_250m_grid')
     self.shapely_grid = [
         geodjango_to_shapely(x.mpoly)[0] for x in self.grid
     ]
     # self.shapely_grid = pandas.Series([geodjango_to_shapely([x.mpoly]) for x in self.grid],
     #                                   index=[x.name for x in self.grid])
     # gridded data
     self.data = self.aggregate()
Ejemplo n.º 5
0
    def __init__(self, data, t0, data_index=None, grid=None):
        """

        :param data: N x 3 np.ndarray or DataArray (t, x, y), all float
        :param data_index: length N array containing indices corresponding to data.  If not supplied, lookup index used.
        :param t0: datetime corresponding to first record
        :param grid: optional list of grid (multi)polygons, default is CAD 250m grid
        :return:
        """

        self.grid = grid or [
            t.mpoly
            for t in models.Division.objects.filter(type='cad_250m_grid')
        ]
        self.shapely_grid = [geodjango_to_shapely(x)[0] for x in self.grid]
        # preliminary cad filter
        self.data = data
        self.t0 = t0
        self.data_index = np.array(
            data_index) if data_index is not None else np.arange(len(data))

        self.dates, self.indices = self.compute_array()
Ejemplo n.º 6
0
def get_camden_region(as_shapely=False):
    poly = models.Division.objects.get(type='borough', name__iexact='camden')
    poly = poly.mpoly.simplify()  # type Polygon
    if as_shapely:
        poly = geodjango_to_shapely(poly)
    return poly
Ejemplo n.º 7
0
def local_morans_i():

    nicl_numbers = [1, 3, (6, 7)]
    short_names = ['Violence', 'Burglary dwelling', 'Theft of/from vehicle']
    camden_mpoly = geodjango_to_shapely(
        [models.Division.objects.get(name='Camden', type='borough').mpoly])
    cbg = CadByGrid(nicl_numbers=nicl_numbers)
    a = cbg.all_time_aggregate()
    W = rook_boolean_connectivity(cbg.grid)

    fig = plt.figure(figsize=(15, 6))
    axes = [
        fig.add_subplot(1, cbg.l, i + 1, projection=ccrs.OSGB())
        for i in range(cbg.l)
    ]
    fig.subplots_adjust(left=0.05,
                        right=0.95,
                        bottom=0.05,
                        top=0.95,
                        wspace=0.03,
                        hspace=0.01)

    local_i = []
    standard_local_i = []
    max_li = 0.
    min_li = 1e6

    for i in range(cbg.l):
        ds = a[cbg.nicl_names[i]]
        this_res = lmi(ds, W)
        local_i.append(this_res)
        standard_local_i.append(this_res / this_res.std())
        max_li = max(max_li, max(standard_local_i[i]))
        min_li = min(min_li, min(standard_local_i[i]))

    for i in range(cbg.l):
        ax = axes[i]
        ax.set_title(short_names[i])
        ax.set_extent([523000, 533000, 179000, 190000], ccrs.OSGB())
        ax.background_patch.set_visible(False)
        # ax.outline_patch.set_visible(False)
        cmap = mpl.cm.jet
        norm = mpl.colors.Normalize(vmin=min_li, vmax=max_li)
        # norm.autoscale(local_i[i])
        cax = mpl.colorbar.make_axes(ax,
                                     location='bottom',
                                     pad=0.02,
                                     fraction=0.05,
                                     shrink=0.9)
        cbar = mpl.colorbar.ColorbarBase(cax[0],
                                         cmap=cmap,
                                         norm=norm,
                                         orientation='horizontal')
        sm = mpl.cm.ScalarMappable(norm=norm, cmap=cmap)

        for j in range(cbg.m):
            val = standard_local_i[i].values[j]
            fc = sm.to_rgba(val) if val else 'none'
            ax.add_geometries(geodjango_to_shapely([cbg.grid[j].mpoly]),
                              ccrs.OSGB(),
                              facecolor=fc)

        ax.add_geometries(camden_mpoly,
                          ccrs.OSGB(),
                          facecolor='none',
                          edgecolor='black')

    plt.show()

    return local_i
Ejemplo n.º 8
0
def spatial_density_weekday_evening():

    nicl_numbers = [3, 6, 10]
    short_names = ['Burglary Dwelling', 'Veh Theft', 'Crim Damage']
    camden_mpoly = geodjango_to_shapely(
        [models.Division.objects.get(name='Camden', type='borough').mpoly])
    cbg = CadByGrid(nicl_numbers=nicl_numbers)
    a = cbg.weekday_weekend_aggregate()
    b = cbg.daytime_evening_aggregate()
    # combine
    for x in b.items:
        a[x] = b[x]
    b = a.transpose(2, 0, 1)

    for i in range(cbg.l):  # crime types

        df = b.iloc[i]
        n = df.shape[0]
        fig = plt.figure(figsize=(20, 6))
        axes = [
            fig.add_subplot(1, n, t + 1, projection=ccrs.OSGB())
            for t in range(n)
        ]
        fig.subplots_adjust(left=0.05,
                            right=0.95,
                            bottom=0.05,
                            top=0.95,
                            wspace=0.03,
                            hspace=0.01)

        for j in range(n):
            ax = axes[j]
            ds = df.iloc[j]
            ax.set_title(ds.name)
            ax.set_extent([523000, 533000, 179000, 190000], ccrs.OSGB())
            ax.background_patch.set_visible(False)
            # ax.outline_patch.set_visible(False)

            cmap = mpl.cm.cool
            norm = mpl.colors.Normalize()
            norm.autoscale(ds)
            cax = mpl.colorbar.make_axes(ax,
                                         location='bottom',
                                         pad=0.02,
                                         fraction=0.05,
                                         shrink=0.9)
            cbar = mpl.colorbar.ColorbarBase(cax[0],
                                             cmap=cmap,
                                             norm=norm,
                                             orientation='horizontal')
            sm = mpl.cm.ScalarMappable(norm=norm, cmap=cmap)

            for j in range(cbg.m):
                val = ds.values[j]
                fc = sm.to_rgba(val) if val else 'none'
                ax.add_geometries(geodjango_to_shapely([cbg.grid[j].mpoly]),
                                  ccrs.OSGB(),
                                  facecolor=fc)

            ax.add_geometries(camden_mpoly,
                              ccrs.OSGB(),
                              facecolor='none',
                              edgecolor='black')

    plt.show()