Ejemplo n.º 1
0
    def _hovmoller_plot(self, subplot, map_subplot, nomap_subplot, name, vmin,
                        vmax, data, times, cmap, unit, title):
        if self.showmap:
            plt.subplot(subplot[map_subplot[0], map_subplot[1]])
        else:
            plt.subplot(subplot[nomap_subplot[0], nomap_subplot[1]])

        c = plt.pcolormesh(
            self.distance,
            times,
            data,
            cmap=cmap,
            shading='gouraud',  # Smooth shading
            vmin=vmin,
            vmax=vmax)

        ax = plt.gca()
        ax.set_title(title, fontsize=14)  # Set title of subplot
        ax.yaxis_date()
        ax.yaxis.grid(True)
        ax.set_facecolor('dimgray')

        plt.xlabel(gettext("Distance (km)"))
        plt.xlim([self.distance[0], self.distance[-1]])

        divider = make_axes_locatable(plt.gca())
        cax = divider.append_axes("right", size="5%", pad=0.05)
        bar = plt.colorbar(c, cax=cax)
        bar.set_label("%s (%s)" % (name, utils.mathtext(unit)))
def scale(args):
    """
    Draws the variable scale that is placed over the map.
    Returns a BytesIO object.
    """

    dataset_name = args.get("dataset")
    config = DatasetConfig(dataset_name)
    scale = args.get("scale")
    scale = [float(component) for component in scale.split(",")]

    variable = args.get("variable")
    variable = variable.split(",")

    if len(variable) > 1:
        variable_unit = config.variable[",".join(variable)].unit
        variable_name = config.variable[",".join(variable)].name
    else:
        variable_unit = config.variable[variable[0]].unit
        variable_name = config.variable[variable[0]].name

    cmap = colormap.find_colormap(variable_name)

    if len(variable) == 2:
        cmap = colormap.colormaps.get("speed")

    fig = plt.figure(figsize=(2, 5), dpi=75)
    ax = fig.add_axes([0.05, 0.05, 0.25, 0.9])
    norm = matplotlib.colors.Normalize(vmin=scale[0], vmax=scale[1])

    formatter = ScalarFormatter()
    formatter.set_powerlimits((-3, 4))
    bar = ColorbarBase(ax,
                       cmap=cmap,
                       norm=norm,
                       orientation="vertical",
                       format=formatter)
    if variable_name == "Potential Sub Surface Channel":
        bar.set_ticks([0, 1], True)

    bar.set_label("%s (%s)" %
                  (variable_name.title(), utils.mathtext(variable_unit)),
                  fontsize=12)
    # Increase tick font size
    bar.ax.tick_params(labelsize=12)

    buf = BytesIO()
    plt.savefig(
        buf,
        format="png",
        dpi="figure",
        transparent=False,
        bbox_inches="tight",
        pad_inches=0.05,
    )
    plt.close(fig)

    buf.seek(0)  # Move buffer back to beginning
    return buf
Ejemplo n.º 3
0
def scale(args):
    dataset_name = args.get('dataset')
    config = DatasetConfig(dataset_name)
    scale = args.get('scale')
    scale = [float(component) for component in scale.split(',')]

    variable = args.get('variable')
    variable = variable.split(',')

    with open_dataset(config) as dataset:
        if len(variable) > 1:
            variable_unit = config.variable[",".join(variable)].unit
            variable_name = config.variable[",".join(variable)].name
        else:
            variable_unit = config.variable[dataset.variables[
                variable[0]]].unit
            variable_name = config.variable[dataset.variables[
                variable[0]]].name

    cmap = colormap.find_colormap(variable_name)

    if len(variable) == 2:
        cmap = colormap.colormaps.get('speed')

    fig = plt.figure(figsize=(2, 5), dpi=75)
    ax = fig.add_axes([0.05, 0.05, 0.25, 0.9])
    norm = matplotlib.colors.Normalize(vmin=scale[0], vmax=scale[1])

    formatter = ScalarFormatter()
    formatter.set_powerlimits((-3, 4))
    bar = ColorbarBase(ax,
                       cmap=cmap,
                       norm=norm,
                       orientation='vertical',
                       format=formatter)
    bar.set_label("%s (%s)" %
                  (variable_name.title(), utils.mathtext(variable_unit)),
                  fontsize=12)
    # Increase tick font size
    bar.ax.tick_params(labelsize=12)

    buf = BytesIO()
    plt.savefig(buf,
                format='png',
                dpi='figure',
                transparent=False,
                bbox_inches='tight',
                pad_inches=0.05)
    plt.close(fig)

    buf.seek(0)  # Move buffer back to beginning
    return buf
 def __add_surface_plot(self, axis_divider):
     ax = axis_divider.append_axes("top", size="35%", pad=0.35)
     ax.plot(self.surface_data['distance'],
             self.surface_data['data'], color='r')
     ax.locator_params(nbins=3)
     ax.yaxis.tick_right()
     ax.yaxis.set_label_position("right")
     label = plt.ylabel(utils.mathtext(self.surface_data['unit']))
     title = plt.title(self.surface_data['name'], y=1.1)
     plt.setp(title, size='smaller')
     plt.setp(label, size='smaller')
     plt.setp(ax.get_yticklabels(), size='x-small')
     plt.xlim([0, self.surface_data['distance'][-1]])
     plt.ylim(utils.normalize_scale(self.surface_data['data'],
                                    self.surface_data['config']))
     ax.yaxis.grid(True)
     ax.axes.get_xaxis().set_visible(False)
 def _surface_plot(self, axis_divider):
     ax = axis_divider.append_axes("top", size="35%", pad=0.35)
     ax.plot(self.surface_data['distance'],
             self.surface_data['data'], color='r')
     ax.locator_params(nbins=3)
     ax.yaxis.tick_right()
     ax.yaxis.set_label_position("right")
     label = plt.ylabel(utils.mathtext(self.surface_data['unit']))
     title = plt.title(self.surface_data['name'], y=1.1)
     plt.setp(title, size='smaller')
     plt.setp(label, size='smaller')
     plt.setp(ax.get_yticklabels(), size='x-small')
     plt.xlim([0, self.surface_data['distance'][-1]])
     if np.any([re.search(x, self.surface_data['name'], re.IGNORECASE) for x in [
             "free surface",
             "surface height"
         ]]):
         ylim = plt.ylim()
         plt.ylim([min(ylim[0], -ylim[1]), max([-ylim[0], ylim[1]])])
         ax.yaxis.grid(True)
     ax.axes.get_xaxis().set_visible(False)
Ejemplo n.º 6
0
    def _transect_plot(self, values, depths, plotTitle, vmin, vmax, cmapLabel,
                       unit, cmap):
        self.__fill_invalid_shift(values)

        dist = np.tile(self.transect_data['distance'], (values.shape[0], 1))

        # Plot the data
        c = plt.pcolormesh(
            dist,
            depths.transpose(),
            values,
            cmap=cmap,
            shading='gouraud',  # Smooth shading
            vmin=vmin,
            vmax=vmax)
        ax = plt.gca()
        ax.set_title(plotTitle, fontsize=14)  # Set title of subplot
        ax.invert_yaxis()
        if self.depth_limit is None or (self.depth_limit is not None and
                                        self.linearthresh < self.depth_limit):
            plt.yscale('symlog', linthreshy=self.linearthresh)

        ax.yaxis.set_major_formatter(ScalarFormatter())

        # Mask out the bottom
        plt.fill_between(self.bathymetry['x'],
                         self.bathymetry['y'] * -1,
                         plt.ylim()[0],
                         facecolor='dimgray',
                         hatch='xx')
        ax.set_facecolor('dimgray')

        plt.xlabel(gettext("Distance (km)"))
        plt.ylabel(gettext("Depth (m)"))
        plt.xlim([
            self.transect_data['distance'][0],
            self.transect_data['distance'][-1]
        ])

        # Tighten the y-limits
        if self.depth_limit:
            plt.ylim(self.depth_limit, 0)
        else:
            deep = np.amax(self.bathymetry['y'] * -1)
            l = 10**np.floor(np.log10(deep))
            plt.ylim(np.ceil(deep / l) * l, 0)

        ticks = sorted(
            set(list(plt.yticks()[0]) +
                [self.linearthresh, plt.ylim()[0]]))
        if self.depth_limit is not None:
            ticks = [y for y in ticks if y <= self.depth_limit]

        plt.yticks(ticks)

        # Show the linear threshold
        plt.plot([
            self.transect_data['distance'][0],
            self.transect_data['distance'][-1]
        ], [self.linearthresh, self.linearthresh],
                 'k:',
                 alpha=1.0)

        divider = make_axes_locatable(ax)
        cax = divider.append_axes("right", size="5%", pad=0.05)
        bar = plt.colorbar(c, cax=cax)

        # Append variable units to color scale label
        bar.set_label(cmapLabel + " (" + utils.mathtext(unit) + ")")

        if len(self.points) > 2:
            station_distances = []
            current_dist = 0
            d = VincentyDistance()
            for idx, p in enumerate(self.points):
                if idx == 0:
                    station_distances.append(0)
                else:
                    current_dist += d.measure(p, self.points[idx - 1])
                    station_distances.append(current_dist)

            ax2 = ax.twiny()
            ax2.set_xticks(station_distances)
            ax2.set_xlim([
                self.transect_data['distance'][0],
                self.transect_data['distance'][-1]
            ])
            ax2.tick_params('x',
                            length=0,
                            width=0,
                            pad=-3,
                            labelsize='xx-small',
                            which='major')
            ax2.xaxis.set_major_formatter(StrMethodFormatter("$\u25bc$"))
            cax = make_axes_locatable(ax2).append_axes("right",
                                                       size="5%",
                                                       pad=0.05)
            bar2 = plt.colorbar(c, cax=cax)
            bar2.remove()
        return divider
    def plot(self):
        v = set([])
        for idx in self.observation_variable:
            v.add(self.observation_variable_names[idx])
        for n in self.variable_names:
            v.add(n)

        numplots = len(v)

        fig, ax = self.setup_subplots(numplots)

        data = []
        for o in self.observation:
            d = np.ma.MaskedArray(o['data'])
            d[np.where(d == '')] = np.ma.masked
            d = np.ma.masked_invalid(d.filled(np.nan).astype(np.float32))
            data.append(d)

        ureg = pint.UnitRegistry()
        ax_idx = -1
        axis_map = {}
        unit_map = {}
        for idx in self.observation_variable:
            ax_idx += 1
            for d in data:
                if d.shape[1] == 1:
                    style = '.'
                else:
                    style = '-'

                ax[ax_idx].plot(d[idx, :, 1], d[idx, :, 0], style)
            ax[ax_idx].xaxis.set_label_position('top')
            ax[ax_idx].xaxis.set_ticks_position('top')
            ax[ax_idx].set_xlabel("%s (%s)" % (
                self.observation_variable_names[idx],
                mathtext(self.observation_variable_units[idx]),
            ))
            axis_map[self.observation_variable_names[idx]] = ax[ax_idx]

            try:
                if "_" in self.observation_variable_units[idx]:
                    u = self.observation_variable_units[idx].lower().split(
                        "_", 1)[1]
                else:
                    u = self.observation_variable_units[idx].lower()
                unit_map[
                    self.observation_variable_names[idx]] = ureg.parse_units(u)

            except:
                unit_map[
                    self.observation_variable_names[idx]] = ureg.dimensionless

        for k, v in list(unit_map.items()):
            if v == ureg.speed_of_light:
                unit_map[k] = ureg.celsius

        for idx, var in enumerate(self.variables):
            if axis_map.get(self.variable_names[idx]) is not None:
                axis = axis_map.get(self.variable_names[idx])
                showlegend = True
                destunit = unit_map.get(self.variable_names[idx])
            else:
                ax_idx += 1
                axis = ax[ax_idx]
                showlegend = False
                try:
                    destunit = ureg.parse_units(
                        self.variable_units[idx].lower())
                    if destunit == ureg.speed_of_light:
                        destunit = ureg.celsius

                except:
                    destunit = ureg.dimensionless

            for j in range(0, self.data.shape[0]):
                try:
                    u = ureg.parse_units(self.variable_units[idx].lower())
                    if u == ureg.speed_of_light:
                        u = ureg.celsius

                    quan = ureg.Quantity(self.data[j, idx, :], u)
                except:
                    quan = ureg.Quantity(self.data[j, idx, :],
                                         ureg.dimensionless)

                axis.plot(quan.to(destunit).magnitude, self.depths[j, idx, :])

            showlegend = showlegend or len(self.observation) > 1
            if not showlegend:
                axis.xaxis.set_label_position('top')
                axis.xaxis.set_ticks_position('top')
                axis.set_xlabel("%s (%s)" % (
                    self.variable_names[idx],
                    mathtext(self.variable_units[idx]),
                ))
            else:
                l = []
                for j in [(gettext("Observed"), self.observation_times),
                          (gettext("Modelled"), self.timestamps)]:
                    for i, name in enumerate(self.names):
                        if len(self.names) == 1:
                            name = ""
                        else:
                            name = name + " "

                        l.append("%s%s (%s)" %
                                 (name, j[0], format_datetime(j[1][i])))

                leg = axis.legend(l, loc='best')

                for legobj in leg.legendHandles:
                    legobj.set_linewidth(4.0)

        ax[0].invert_yaxis()
        ax[0].set_ylabel(gettext("Depth (m)"))

        if not self.plotTitle:
            if len(self.variables) > 0:
                plt.suptitle("\n".join(
                    wrap(
                        gettext(
                            "Profile for %s, Observed at %s, Modelled at %s") %
                        (", ".join(self.names),
                         format_datetime(self.observation_time),
                         format_datetime(self.timestamp)), 80)))
            else:
                plt.suptitle("\n".join(
                    wrap(
                        gettext("Profile for %s (%s)") %
                        (", ".join(self.names),
                         format_datetime(self.observation_time)), 80)))
        else:
            plt.suptitle(self.plotTitle, fontsize=15)

        fig.tight_layout()
        fig.subplots_adjust(top=0.85)

        return super(ObservationPlotter, self).plot()
Ejemplo n.º 8
0
    def plot(self):
        figuresize = list(map(float, self.size.split("x")))
        figuresize[1] *= len(self.points) * len(self.depth)
        fig, ax = plt.subplots(len(self.points) * len(self.depth),
                               1,
                               sharex=True,
                               figsize=figuresize,
                               dpi=self.dpi)
        if len(self.points) * len(self.depth) == 1:
            ax = [ax]

        if self.data.shape[1] == 2:
            for idx, p in enumerate(self.points):
                magnitude = np.sqrt(self.data[idx, 0, :, :]**2 +
                                    self.data[idx, 1, :, :]**2)
                scale = np.mean(magnitude)
                if scale != 0:
                    scale = np.round(scale, int(-np.floor(np.log10(scale))))

                for idx2, d in enumerate(self.depth):
                    datenums = date2num(self.timestamp)
                    a = ax[idx * len(self.points) + idx2]
                    q = a.quiver(
                        datenums,
                        [0] * len(self.timestamp),
                        self.data[idx, 0, idx2, :],
                        self.data[idx, 1, idx2, :],
                        angles='uv',
                        width=0.002,
                        headwidth=0,
                        headlength=0,
                        headaxislength=0,
                    )

                    a.axes.get_yaxis().set_visible(False)
                    a.axes.get_xaxis().tick_bottom()
                    a.xaxis_date()
                    a.quiverkey(
                        q, 0.1, 0.75, scale, "%.1g %s" %
                        (scale, utils.mathtext(self.variable_units[0])))
                    dx = datenums[1] - datenums[0]
                    a.set_xlim(
                        [datenums[0] - dx / 2.0, datenums[-1] + dx / 2.0])
                    a.set_frame_on(False)
                    a.axhline(0, color='grey', ls=':')
                    if self.depth[idx2] == "bottom":
                        depth = "Bottom"
                    else:
                        depth = "%d m" % np.round(self.data_depth[idx, 0, idx2,
                                                                  0])
                    if self.plotTitle is None or self.plotTitle == "":
                        a.set_title(gettext("%s at (%s)\n%s") %
                                    (self.vector_name(self.variable_names[0]),
                                     self.names[idx], depth),
                                    fontsize=15)
                    else:
                        a.set_title(self.plotTitle, fontsize=15)

        plt.setp(plt.gca().get_xticklabels(), rotation=30)
        fig.tight_layout()

        return super(StickPlotter, self).plot(fig)
Ejemplo n.º 9
0
    def plot(self):
        if self.scale:
            vmin = self.scale[0]
            vmax = self.scale[1]
        else:
            vmin, vmax = utils.normalize_scale(
                self.data, self.dataset_config.variable[self.variables[0]])

        if self.cmap is None:
            self.cmap = colormap.find_colormap(self.variable_name)

        datenum = matplotlib.dates.date2num(self.times)
        if self.depth == 'all':
            size = list(map(float, self.size.split("x")))
            numpoints = len(self.points)
            figuresize = (size[0], size[1] * numpoints)
            fig, ax = plt.subplots(numpoints,
                                   1,
                                   sharex=True,
                                   figsize=figuresize,
                                   dpi=self.dpi)

            if not isinstance(ax, np.ndarray):
                ax = [ax]

            for idx, p in enumerate(self.points):
                d = self.data[idx, 0, :]
                dlim = np.ma.flatnotmasked_edges(d[0, :])
                maxdepth = self.depths[dlim[1]].max()
                mindepth = self.depths[dlim[0]].min()

                c = ax[idx].pcolormesh(datenum,
                                       self.depths[:dlim[1] + 1],
                                       d[:, :dlim[1] + 1].transpose(),
                                       shading='gouraud',
                                       cmap=self.cmap,
                                       vmin=vmin,
                                       vmax=vmax)
                ax[idx].invert_yaxis()
                if maxdepth > LINEAR:
                    ax[idx].set_yscale('symlog', linthreshy=LINEAR)
                ax[idx].yaxis.set_major_formatter(ScalarFormatter())

                if maxdepth > LINEAR:
                    l = 10**np.floor(np.log10(maxdepth))
                    ax[idx].set_ylim(np.ceil(maxdepth / l) * l, mindepth)
                    ax[idx].set_yticks(
                        list(ax[idx].get_yticks()) + [maxdepth, LINEAR])
                else:
                    ax[idx].set_ylim(maxdepth, mindepth)
                ax[idx].set_ylabel("Depth (%s)" %
                                   utils.mathtext(self.depth_unit))

                ax[idx].xaxis_date()
                ax[idx].set_xlim(datenum[0], datenum[-1])

                divider = make_axes_locatable(ax[idx])
                cax = divider.append_axes("right", size="5%", pad=0.05)
                bar = plt.colorbar(c, cax=cax)
                bar.set_label("%s (%s)" % (self.variable_name.title(),
                                           utils.mathtext(self.variable_unit)))
                ax[idx].set_title("%s%s at %s" %
                                  (self.variable_name.title(),
                                   self.depth_label, self.names[idx]))
                plt.setp(ax[idx].get_xticklabels(), rotation=30)
            fig.autofmt_xdate()
        else:
            # Create base figure
            figure_size = self.figuresize
            figure_size[0] *= 1.5 if self.showmap else 1.0
            fig = plt.figure(figsize=figure_size, dpi=self.dpi)

            # Setup figure layout
            width = 1
            if self.showmap:
                width += 1
                # Horizontally scale the actual plots by 2x the size of
                # the location map
                width_ratios = [1, 2]
            else:
                width_ratios = None

            # Create layout helper
            gs = gridspec.GridSpec(1, width, width_ratios=width_ratios)
            subplot = 0

            # Render point location
            if self.showmap:
                plt.subplot(gs[0, 0])
                subplot += 1
                utils.point_plot(
                    np.array([
                        [x[0] for x in self.points],  # Latitudes
                        [x[1] for x in self.points]
                    ]))  # Longitudes

            plt.subplot(gs[:, subplot])
            plt.plot_date(datenum,
                          np.squeeze(self.data),
                          fmt='-',
                          figure=fig,
                          xdate=True)
            plt.ylabel(
                f"{self.variable_name.title()} ({utils.mathtext(self.variable_unit)})",
                fontsize=14)
            plt.ylim(vmin, vmax)

            # Title
            if self.plotTitle is None or self.plotTitle == "":
                wrapped_title = wrap(
                    "%s%s at %s" % (self.variable_name.title(),
                                    self.depth_label, ", ".join(self.names)),
                    80)
                plt.title("\n".join(wrapped_title), fontsize=15)
            else:
                plt.title(self.plotTitle, fontsize=15)

            plt.gca().grid(True)

            fig.autofmt_xdate()

            self.plot_legend(fig, self.names)

        return super(TimeseriesPlotter, self).plot(fig)
Ejemplo n.º 10
0
    def plot(self):
        # Create base figure
        fig = plt.figure(figsize=self.figuresize(), dpi=self.dpi)

        # Setup figure layout
        width = len(self.variables)
        if self.showmap:
            width += 1
            # Horizontally scale the actual plots by 2x the size of
            # the location map
            width_ratios = [1]
            [width_ratios.append(2) for w in range(0, width - 1)]
        else:
            width_ratios = None

        # Create layout helper
        gs = gridspec.GridSpec(1, width, width_ratios=width_ratios)
        subplot = 0

        # Render point location
        if self.showmap:
            plt.subplot(gs[0, subplot])
            subplot += 1
            utils.point_plot(
                np.array([
                    [x[0] for x in self.points],  # Latitudes
                    [x[1] for x in self.points]
                ]))  # Longitudes

        is_y_label_plotted = False
        # Create a subplot for each variable selected
        # Each subplot has all points plotted
        for idx, v in enumerate(self.variables):
            plt.subplot(gs[:, subplot])

            plt.plot(self.data[:, idx, :].transpose(),
                     self.depths[:, idx, :].transpose())

            current_axis = plt.gca()
            current_axis.xaxis.set_label_position('top')
            current_axis.xaxis.set_ticks_position('top')
            current_axis.invert_yaxis()
            current_axis.grid(True)
            current_axis.set_xlabel("%s (%s)" %
                                    (self.variable_names[idx],
                                     utils.mathtext(self.variable_units[idx])),
                                    fontsize=14)

            # Put y-axis label on left-most graph (but after the point location)
            if not is_y_label_plotted and (subplot == 0 or subplot == 1):
                current_axis.set_ylabel(gettext("Depth (m)"), fontsize=14)
                is_y_label_plotted = True

            if self.compare:
                xlim = np.abs(plt.gca().get_xlim()).max()
                plt.gca().set_xlim([-xlim, xlim])

            subplot += 1

        self.plot_legend(fig, self.names)

        if self.plotTitle is None or self.plotTitle == "":
            plt.suptitle("%s(%s)\n%s\n%s" % (gettext("Profile for "), \
                                            ", ".join(self.names), \
                                            ", ".join(self.variable_names), \
                                            self.date_formatter(self.timestamp)), \
                        fontsize=15)
        else:
            plt.suptitle(self.plotTitle, fontsize=15)

        fig.tight_layout()
        fig.subplots_adjust(top=(0.8))

        return super(ProfilePlotter, self).plot(fig)
Ejemplo n.º 11
0
    def plot(self):
        if self.showmap:
            width = 2
            width_ratios = [2, 7]
        else:
            width = 1
            width_ratios = [1]

        numplots = len(self.variables) + len(self.buoyvariables)
        if "votemper" in self.variables and "sst" in self.buoyvariables:
            numplots -= 1

        if self.latlon:
            numplots += 2

        figuresize = list(map(float, self.size.split("x")))
        figuresize[1] *= numplots
        fig = plt.figure(figsize=figuresize, dpi=self.dpi)
        gs = gridspec.GridSpec(numplots, width, width_ratios=width_ratios)

        if self.showmap:
            # Plot the path on a map
            if numplots > 1:
                plt.subplot(gs[:, 0])
            else:
                plt.subplot(gs[0])

            utils.path_plot(self.points[self.start:self.end].transpose(),
                            False)

        # Plot observed
        if self.showmap:
            subplot = 1
            subplot_inc = 2
        else:
            subplot = 0
            subplot_inc = 1

        for j, v in enumerate(self.buoyvariables):
            ax = plt.subplot(gs[subplot])
            subplot += subplot_inc

            ax.plot(self.times[self.start:self.end],
                    self.data[j][self.start:self.end])

            if v == 'sst' and 'votemper' in self.variables:
                i = self.variables.index('votemper')
                plt.plot(self.model_times, self.model_data[i])

            legend = [self.name]
            if v == 'sst' and 'votemper' in self.variables:
                legend = legend + ["%s (Modelled)" % self.name]

            if 'votemper' in self.variables and v == 'sst':
                legend = [gettext("Observed"), gettext("Modelled")]

            if len(legend) > 1:
                leg = plt.legend(legend, loc='best')
                for legobj in leg.legendHandles:
                    legobj.set_linewidth(4.0)

            if self.data_units[j] is not None:
                plt.ylabel(
                    "%s (%s)" %
                    (self.data_names[j], utils.mathtext(self.data_units[j])))
            else:
                plt.ylabel(self.data_names[j]),

            plt.setp(ax.get_xticklabels(), rotation=30)

        for idx, v in enumerate(self.variables):
            if v == 'votemper' and 'sst' in self.buoyvariables:
                continue

            if np.isnan(self.model_data[idx]).all():
                continue

            ax = plt.subplot(gs[subplot])
            subplot += subplot_inc

            ax.plot(self.model_times, self.model_data[idx])

            plt.ylabel("%s (%s)" % (self.variable_names[idx],
                                    utils.mathtext(self.variable_units[idx])))
            plt.setp(ax.get_xticklabels(), rotation=30)

        # latlon
        if self.latlon:
            for j, label in enumerate([
                    gettext("Latitude (degrees)"),
                    gettext("Longitude (degrees)")
            ]):
                plt.subplot(gs[subplot])
                subplot += subplot_inc

                plt.plot(self.times[self.start:self.end],
                         self.points[self.start:self.end, j])

                plt.ylabel(label)
                plt.setp(plt.gca().get_xticklabels(), rotation=30)

        fig.suptitle(
            gettext("Drifter Plot (IMEI: %s, WMO: %s)") %
            (self.imei, self.wmo))
        fig.tight_layout(pad=3, w_pad=4)
        return super(DrifterPlotter, self).plot(fig)
Ejemplo n.º 12
0
    def plot(self):
        figuresize = list(map(float, self.size.split("x")))
        fig = plt.figure(figsize=figuresize, dpi=self.dpi)

        width = len(self.variables)

        if self.showmap:
            width += 1  # Shift graphs to the right

        gs = gridspec.GridSpec(2, width)

        subplot = 0

        # Render point location
        if self.showmap:
            plt.subplot(gs[0, subplot])
            subplot += 1
            utils.point_plot(np.array([self.latitude, self.longitude]))
            if len(self.ids) > 1:
                plt.legend(self.ids, loc='best')

        plot_label = ""
        giops_name = gettext("Model")
        if len(self.additional_model_names) > 0:
            giops_name = "GIOPS"

        for idx, v in enumerate(self.variables):
            plt.subplot(gs[:, subplot])
            subplot += 1

            handles = []
            legend = []
            for i in range(0, len(self.forecast_data)):
                if len(self.ids) > 1:
                    id_label = self.ids[i] + " "
                else:
                    id_label = ""

                form = '-'
                if self.observed_data[i, idx, :].count() < 3:
                    form = 'o-'

                if self.error in ['climatology', 'observation']:
                    if self.error == 'climatology':
                        plot_label = gettext("Error wrt Climatology")
                        handles.append(
                            plt.plot(
                                self.observed_data[i, idx, :] -
                                self.climatology_data[i, idx, :],
                                self.depths[i], form))
                        legend.append("%s %s" %
                                      (id_label, gettext("Observed")))

                        data = self.climatology_data
                    else:
                        plot_label = gettext("Error wrt Observation")

                        data = self.observed_data

                    handles.append(
                        plt.plot(
                            self.forecast_data[i, idx, :] - data[i, idx, :],
                            self.depths[i], form))
                    legend.append("%s %s" % (id_label, giops_name))

                    for j, m in enumerate(self.additional_model_names):
                        handles.append(
                            plt.plot(
                                self.additional_model_data[j, i, idx, :] -
                                data[i, idx, :], self.depths[i], form))
                        legend.append("%s %s" % (id_label, m))

                    if self.error == 'observation' and self.climatology:
                        handles.append(
                            plt.plot(
                                self.climatology_data[i, idx, :] -
                                self.observed_data[i, idx, :], self.depths[i],
                                form))
                        legend.append("%s %s" %
                                      (id_label, gettext("Climatology")))
                    lim = np.abs(plt.xlim()).max()
                    plt.xlim([-lim, lim])
                else:
                    plot_label = gettext("Class 4")
                    handles.append(
                        plt.plot(self.observed_data[i, idx, :], self.depths[i],
                                 form))
                    legend.append("%s %s" % (id_label, gettext("Observed")))
                    handles.append(
                        plt.plot(self.forecast_data[i, idx, :], self.depths[i],
                                 form))
                    legend.append("%s %s" % (id_label, giops_name))
                    for j, m in enumerate(self.additional_model_names):
                        handles.append(
                            plt.plot(self.additional_model_data[j, i, idx, :],
                                     self.depths[i], form))
                        legend.append("%s %s" % (id_label, m))

                    if self.climatology:
                        handles.append(
                            plt.plot(self.climatology_data[i, idx, :],
                                     self.depths[i], form))
                        legend.append("%s %s" %
                                      (id_label, gettext("Climatology")))

            plt.xlim([np.floor(plt.xlim()[0]), np.ceil(plt.xlim()[1])])

            plt.gca().xaxis.set_label_position('top')
            plt.gca().xaxis.set_ticks_position('top')
            plt.xlabel("%s (%s)" %
                       (v, utils.mathtext(self.variable_units[idx])),
                       fontsize=14)
            plt.gca().invert_yaxis()
            plt.ylabel(gettext("Depth (%s)") % utils.mathtext(self.depth_unit),
                       fontsize=14)
            plt.grid(True)

        leg = fig.legend([x[0] for x in handles],
                         legend,
                         loc='lower left',
                         bbox_to_anchor=(0.05, 0.05))
        for legobj in leg.legendHandles:
            legobj.set_linewidth(4.0)

        names = [
            "%s (%0.2f, %0.2f)" % x
            for x in zip(self.ids, self.latitude, self.longitude)
        ]

        plt.suptitle("%s\n%s" %
                     ("\n".join(wrap(", ".join(names), 60)), plot_label),
                     fontsize=15)
        fig.tight_layout(pad=3, w_pad=4)
        fig.subplots_adjust(top=0.85)

        return super(Class4Plotter, self).plot(fig)
    def plot(self):

        if self.filetype == "geotiff":
            f, fname = tempfile.mkstemp()
            os.close(f)

            driver = gdal.GetDriverByName("GTiff")
            outRaster = driver.Create(
                fname,
                self.latitude.shape[1],
                self.longitude.shape[0],
                1,
                gdal.GDT_Float64,
            )
            x = np.array([self.longitude[0, 0], self.longitude[-1, -1]])
            y = np.array([self.latitude[0, 0], self.latitude[-1, -1]])
            outRasterSRS = osr.SpatialReference()

            pts = self.plot_projection.transform_points(
                self.pc_projection, x, y)
            x = pts[:, 0]
            y = pts[:, 1]
            outRasterSRS.ImportFromProj4(self.plot_projection.proj4_init)

            pixelWidth = (x[-1] - x[0]) / self.longitude.shape[0]
            pixelHeight = (y[-1] - y[0]) / self.latitude.shape[0]
            outRaster.SetGeoTransform(
                (x[0], pixelWidth, 0, y[0], 0, pixelHeight))

            outband = outRaster.GetRasterBand(1)
            d = self.data.astype(np.float64)
            ndv = d.fill_value
            outband.WriteArray(d.filled(ndv))
            outband.SetNoDataValue(ndv)
            outRaster.SetProjection(outRasterSRS.ExportToWkt())
            outband.FlushCache()
            outRaster = None

            with open(fname, "r", encoding="latin-1") as f:
                buf = f.read()
            os.remove(fname)

            return (buf, self.mime, self.filename.replace(".geotiff", ".tif"))
        # Figure size
        figuresize = list(map(float, self.size.split("x")))
        fig, map_plot = basemap.load_map(
            self.plot_projection,
            self.plot_extent,
            figuresize,
            self.dpi,
            self.plot_res,
        )

        ax = plt.gca()

        if self.scale:
            vmin = self.scale[0]
            vmax = self.scale[1]
        else:
            vmin, vmax = utils.normalize_scale(
                self.data,
                self.dataset_config.variable[f"{self.variables[0]}"])

        c = map_plot.imshow(
            self.data,
            vmin=vmin,
            vmax=vmax,
            cmap=self.cmap,
            extent=self.plot_extent,
            transform=self.plot_projection,
            origin="lower",
            zorder=0,
        )

        if len(self.quiver_data) == 2:
            qx, qy = self.quiver_data
            qx, qy = self.plot_projection.transform_vectors(
                self.pc_projection, self.quiver_longitude,
                self.quiver_latitude, qx, qy)
            pts = self.plot_projection.transform_points(
                self.pc_projection, self.quiver_longitude,
                self.quiver_latitude)
            x = pts[:, :, 0]
            y = pts[:, :, 1]

            qx = np.ma.masked_where(np.ma.getmask(self.quiver_data[0]), qx)
            qy = np.ma.masked_where(np.ma.getmask(self.quiver_data[1]), qy)

            if self.quiver["magnitude"] != "length":
                qx = qx / self.quiver_magnitude
                qy = qy / self.quiver_magnitude
                qscale = 50
            else:
                qscale = None

            if self.quiver["magnitude"] == "color":
                if (self.quiver["colormap"] is None
                        or self.quiver["colormap"] == "default"):
                    qcmap = colormap.colormaps.get("speed")
                else:
                    qcmap = colormap.colormaps.get(self.quiver["colormap"])
                q = map_plot.quiver(
                    x,
                    y,
                    qx,
                    qy,
                    self.quiver_magnitude,
                    width=0.0035,
                    headaxislength=4,
                    headlength=4,
                    scale=qscale,
                    pivot="mid",
                    cmap=qcmap,
                    transform=self.plot_projection,
                )
            else:
                q = map_plot.quiver(
                    x,
                    y,
                    qx,
                    qy,
                    width=0.0025,
                    headaxislength=4,
                    headlength=4,
                    scale=qscale,
                    pivot="mid",
                    transform=self.plot_projection,
                    zorder=6,
                )

            if self.quiver["magnitude"] == "length":
                unit_length = np.mean(self.quiver_magnitude) * 2
                unit_length = np.round(unit_length,
                                       -int(np.floor(np.log10(unit_length))))
                if unit_length >= 1:
                    unit_length = int(unit_length)

                plt.quiverkey(
                    q,
                    0.65,
                    0.01,
                    unit_length,
                    self.quiver_name.title() + " " + str(unit_length) + " " +
                    utils.mathtext(self.quiver_unit),
                    coordinates="figure",
                    labelpos="E",
                )

        if self.show_bathymetry:
            # Plot bathymetry on top
            cs = map_plot.contour(
                self.longitude,
                self.latitude,
                self.bathymetry,
                linewidths=0.5,
                norm=FuncNorm((lambda x: np.log10(x), lambda x: 10**x),
                              vmin=1,
                              vmax=6000),
                cmap="Greys",
                levels=[100, 200, 500, 1000, 2000, 3000, 4000, 5000, 6000],
                transform=self.pc_projection,
                zorder=4,
            )
            plt.clabel(cs, fontsize="x-large", fmt="%1.0fm")

        if self.area and self.show_area:
            for a in self.area:
                polys = []
                for co in a["polygons"] + a["innerrings"]:
                    coords = np.array(co).transpose()
                    coords_transform = self.plot_projection.transform_points(
                        self.pc_projection, coords[1], coords[0])
                    mx = coords_transform[:, 0]
                    my = coords_transform[:, 1]
                    map_coords = list(zip(mx, my))
                    polys.append(Polygon(map_coords))

                paths = []
                for poly in polys:
                    paths.append(poly.get_path())
                path = Path.make_compound_path(*paths)

                for ec, lw in zip(["w", "k"], [5, 3]):
                    poly = PathPatch(
                        path,
                        fill=None,
                        edgecolor=ec,
                        linewidth=lw,
                        transform=self.plot_projection,
                        zorder=3,
                    )
                    map_plot.add_patch(poly)

            if self.names is not None and len(self.names) > 1:
                for idx, name in enumerate(self.names):
                    pts = self.plot_projection.transform_points(
                        self.pc_projection, self.centroids[idx].x,
                        self.centroids[idx].y)
                    x = pts[:, 0]
                    y = pts[:, 1]
                    plt.annotate(
                        xy=(x, y),
                        s=name,
                        ha="center",
                        va="center",
                        size=12,
                        # weight='bold'
                    )

        if len(self.contour_data) > 0:
            if self.contour_data[0].min() != self.contour_data[0].max():
                cmin, cmax = utils.normalize_scale(
                    self.contour_data[0],
                    self.dataset_config.variable[self.contour["variable"]],
                )
                levels = None
                if (self.contour.get("levels") is not None
                        and self.contour["levels"] != "auto"
                        and self.contour["levels"] != ""):
                    try:
                        levels = list(
                            set([
                                float(xx)
                                for xx in self.contour["levels"].split(",")
                                if xx.strip()
                            ]))
                        levels.sort()
                    except ValueError:
                        pass

                if levels is None:
                    levels = np.linspace(cmin, cmax, 5)
                cmap = self.contour["colormap"]
                if cmap is not None:
                    cmap = colormap.colormaps.get(cmap)
                    if cmap is None:
                        cmap = colormap.find_colormap(self.contour_name)

                if not self.contour.get("hatch"):
                    contours = map_plot.contour(
                        self.longitude,
                        self.latitude,
                        self.contour_data[0],
                        linewidths=2,
                        levels=levels,
                        cmap=cmap,
                        transform=self.pc_projection,
                        zorder=5,
                    )
                else:
                    hatches = [
                        "//", "xx", "\\\\", "--", "||", "..", "oo", "**"
                    ]
                    if len(levels) + 1 < len(hatches):
                        hatches = hatches[0:len(levels) + 2]
                    map_plot.contour(
                        self.longitude,
                        self.latitude,
                        self.contour_data[0],
                        linewidths=1,
                        levels=levels,
                        colors="k",
                        transform=self.pc_projection,
                        zorder=5,
                    )
                    contours = map_plot.contourf(
                        self.longitude,
                        self.latitude,
                        self.contour_data[0],
                        colors=["none"],
                        levels=levels,
                        hatches=hatches,
                        vmin=cmin,
                        vmax=cmax,
                        extend="both",
                        transform=self.pc_projection,
                        zorder=5,
                    )

                if self.contour["legend"]:
                    handles, l = contours.legend_elements()
                    labels = []
                    for i, lab in enumerate(l):
                        if self.contour.get("hatch"):
                            if self.contour_unit == "fraction":
                                if i == 0:
                                    labels.append(
                                        "$x \\leq {0: .0f}\\%$".format(
                                            levels[i] * 100))
                                elif i == len(levels):
                                    labels.append("$x > {0: .0f}\\%$".format(
                                        levels[i - 1] * 100))
                                else:
                                    labels.append(
                                        "${0:.0f}\\% < x \\leq {1:.0f}\\%$".
                                        format(levels[i - 1] * 100,
                                               levels[i] * 100))
                            else:
                                if i == 0:
                                    labels.append("$x \\leq %.3g$" % levels[i])
                                elif i == len(levels):
                                    labels.append("$x > %.3g$" % levels[i - 1])
                                else:
                                    labels.append("$%.3g < x \\leq %.3g$" %
                                                  (levels[i - 1], levels[i]))
                        else:
                            if self.contour_unit == "fraction":
                                labels.append("{0:.0%}".format(levels[i]))
                            else:
                                labels.append(
                                    "%.3g %s" %
                                    (levels[i],
                                     utils.mathtext(self.contour_unit)))

                    ax = plt.gca()

                    if self.contour_unit != "fraction" and not self.contour.get(
                            "hatch"):
                        contour_title = "%s (%s)" % (
                            self.contour_name,
                            utils.mathtext(self.contour_unit),
                        )
                    else:
                        contour_title = self.contour_name

                    leg = ax.legend(
                        handles[::-1],
                        labels[::-1],
                        loc="lower left",
                        fontsize="medium",
                        frameon=True,
                        framealpha=0.75,
                        title=contour_title,
                    )
                    leg.get_title().set_fontsize("medium")
                    if not self.contour.get("hatch"):
                        for legobj in leg.legendHandles:
                            legobj.set_linewidth(3)

        title = self.plotTitle

        if self.plotTitle is None or self.plotTitle == "":
            area_title = "\n".join(wrap(", ".join(self.names), 60)) + "\n"

            title = "%s %s %s, %s" % (
                area_title,
                self.variable_name.title(),
                self.depth_label,
                self.date_formatter(self.timestamp),
            )
        plt.title(title.strip())
        axpos = map_plot.get_position()
        pos_x = axpos.x0 + axpos.width + 0.01
        pos_y = axpos.y0
        cax = fig.add_axes([pos_x, pos_y, 0.03, axpos.height])
        bar = plt.colorbar(c, cax=cax)
        bar.set_label(
            "%s (%s)" %
            (self.variable_name.title(), utils.mathtext(self.variable_unit)),
            fontsize=14,
        )

        if (self.quiver is not None and self.quiver["variable"] != ""
                and self.quiver["variable"] != "none"
                and self.quiver["magnitude"] == "color"):
            pos_x = axpos.x0
            pos_y = axpos.y0 - 0.05
            bax = fig.add_axes([pos_x, pos_y, axpos.width, 0.03])
            qbar = plt.colorbar(q, orientation="horizontal", cax=bax)
            qbar.set_label(
                self.quiver_name.title() + " " +
                utils.mathtext(self.quiver_unit),
                fontsize=14,
            )

        return super(MapPlotter, self).plot(fig)
Ejemplo n.º 14
0
    def plot(self):
        if self.filetype == 'geotiff':
            f, fname = tempfile.mkstemp()
            os.close(f)

            driver = gdal.GetDriverByName('GTiff')
            outRaster = driver.Create(fname, self.latitude.shape[1],
                                      self.longitude.shape[0], 1,
                                      gdal.GDT_Float64)
            x = [self.longitude[0, 0], self.longitude[-1, -1]]
            y = [self.latitude[0, 0], self.latitude[-1, -1]]
            outRasterSRS = osr.SpatialReference()

            x, y = self.basemap(x, y)
            outRasterSRS.ImportFromProj4(self.basemap.proj4string)

            pixelWidth = (x[-1] - x[0]) / self.longitude.shape[0]
            pixelHeight = (y[-1] - y[0]) / self.latitude.shape[0]
            outRaster.SetGeoTransform(
                (x[0], pixelWidth, 0, y[0], 0, pixelHeight))

            outband = outRaster.GetRasterBand(1)
            d = self.data.astype("Float64")
            ndv = d.fill_value
            outband.WriteArray(d.filled(ndv))
            outband.SetNoDataValue(ndv)
            outRaster.SetProjection(outRasterSRS.ExportToWkt())
            outband.FlushCache()
            outRaster = None

            with open(fname, 'r', encoding="latin-1") as f:
                buf = f.read()
            os.remove(fname)

            return (buf, self.mime, self.filename.replace(".geotiff", ".tif"))
        # Figure size
        figuresize = list(map(float, self.size.split("x")))
        fig = plt.figure(figsize=figuresize, dpi=self.dpi)
        ax = plt.gca()

        if self.scale:
            vmin = self.scale[0]
            vmax = self.scale[1]
        else:
            vmin = np.amin(self.data)
            vmax = np.amax(self.data)
            if self.compare:
                vmax = max(abs(vmax), abs(vmin))
                vmin = -vmax

        c = self.basemap.imshow(self.data,
                                vmin=vmin,
                                vmax=vmax,
                                cmap=self.cmap)

        if len(self.quiver_data) == 2:
            qx, qy = self.quiver_data
            qx, qy, x, y = self.basemap.rotate_vector(qx,
                                                      qy,
                                                      self.quiver_longitude,
                                                      self.quiver_latitude,
                                                      returnxy=True)
            quiver_mag = np.sqrt(qx**2 + qy**2)

            if self.quiver['magnitude'] != 'length':
                qx = qx / quiver_mag
                qy = qy / quiver_mag
                qscale = 50
            else:
                qscale = None

            if self.quiver['magnitude'] == 'color':
                if self.quiver['colormap'] is None or \
                   self.quiver['colormap'] == 'default':
                    qcmap = colormap.colormaps.get('speed')
                else:
                    qcmap = colormap.colormaps.get(self.quiver['colormap'])
                q = self.basemap.quiver(
                    x,
                    y,
                    qx,
                    qy,
                    quiver_mag,
                    width=0.0035,
                    headaxislength=4,
                    headlength=4,
                    scale=qscale,
                    pivot='mid',
                    cmap=qcmap,
                )
            else:
                q = self.basemap.quiver(
                    x,
                    y,
                    qx,
                    qy,
                    width=0.0025,
                    headaxislength=4,
                    headlength=4,
                    scale=qscale,
                    pivot='mid',
                )

            if self.quiver['magnitude'] == 'length':
                unit_length = np.mean(quiver_mag) * 2
                unit_length = np.round(unit_length,
                                       -int(np.floor(np.log10(unit_length))))
                if unit_length >= 1:
                    unit_length = int(unit_length)

                plt.quiverkey(q,
                              .65,
                              .01,
                              unit_length,
                              self.quiver_name.title() + " " +
                              str(unit_length) + " " +
                              utils.mathtext(self.quiver_unit),
                              coordinates='figure',
                              labelpos='E')

        if self.show_bathymetry:
            # Plot bathymetry on top
            cs = self.basemap.contour(
                self.longitude,
                self.latitude,
                self.bathymetry,
                latlon=True,
                linewidths=0.5,
                norm=LogNorm(vmin=1, vmax=6000),
                cmap=mcolors.LinearSegmentedColormap.from_list(
                    'transparent_gray', [(0, 0, 0, 0.5), (0, 0, 0, 0.1)]),
                levels=[100, 200, 500, 1000, 2000, 3000, 4000, 5000, 6000])
            plt.clabel(cs, fontsize='xx-small', fmt='%1.0fm')

        if self.area and self.show_area:
            for a in self.area:
                polys = []
                for co in a['polygons'] + a['innerrings']:
                    coords = np.array(co).transpose()
                    mx, my = self.basemap(coords[1], coords[0])
                    map_coords = list(zip(mx, my))
                    polys.append(Polygon(map_coords))

                paths = []
                for poly in polys:
                    paths.append(poly.get_path())
                path = concatenate_paths(paths)

                poly = PathPatch(path,
                                 fill=None,
                                 edgecolor='#ffffff',
                                 linewidth=5)
                plt.gca().add_patch(poly)
                poly = PathPatch(path, fill=None, edgecolor='k', linewidth=2)
                plt.gca().add_patch(poly)

            if self.names is not None and len(self.names) > 1:
                for idx, name in enumerate(self.names):
                    x, y = self.basemap(self.centroids[idx].y,
                                        self.centroids[idx].x)
                    plt.annotate(
                        xy=(x, y),
                        s=name,
                        ha='center',
                        va='center',
                        size=12,
                        # weight='bold'
                    )

        if len(self.contour_data) > 0:
            if (self.contour_data[0].min() != self.contour_data[0].max()):
                cmin, cmax = utils.normalize_scale(self.contour_data[0],
                                                   self.contour_name,
                                                   self.contour_unit)
                levels = None
                if self.contour.get('levels') is not None and \
                    self.contour['levels'] != 'auto' and \
                        self.contour['levels'] != '':
                    try:
                        levels = list(
                            set([
                                float(xx)
                                for xx in self.contour['levels'].split(",")
                                if xx.strip()
                            ]))
                        levels.sort()
                    except ValueError:
                        pass

                if levels is None:
                    levels = np.linspace(cmin, cmax, 5)
                cmap = self.contour['colormap']
                if cmap is not None:
                    cmap = colormap.colormaps.get(cmap)
                    if cmap is None:
                        cmap = colormap.find_colormap(self.contour_name)

                if not self.contour.get('hatch'):
                    contours = self.basemap.contour(self.longitude,
                                                    self.latitude,
                                                    self.contour_data[0],
                                                    latlon=True,
                                                    linewidths=2,
                                                    levels=levels,
                                                    cmap=cmap)
                else:
                    hatches = [
                        '//', 'xx', '\\\\', '--', '||', '..', 'oo', '**'
                    ]
                    if len(levels) + 1 < len(hatches):
                        hatches = hatches[0:len(levels) + 2]
                    self.basemap.contour(self.longitude,
                                         self.latitude,
                                         self.contour_data[0],
                                         latlon=True,
                                         linewidths=1,
                                         levels=levels,
                                         colors='k')
                    contours = self.basemap.contourf(self.longitude,
                                                     self.latitude,
                                                     self.contour_data[0],
                                                     latlon=True,
                                                     colors=['none'],
                                                     levels=levels,
                                                     hatches=hatches,
                                                     vmin=cmin,
                                                     vmax=cmax,
                                                     extend='both')

                if self.contour['legend']:
                    handles, l = contours.legend_elements()
                    labels = []
                    for i, lab in enumerate(l):
                        if self.contour.get('hatch'):
                            if self.contour_unit == 'fraction':
                                if i == 0:
                                    labels.append(
                                        "$x \\leq {0: .0f}\\%$".format(
                                            levels[i] * 100))
                                elif i == len(levels):
                                    labels.append("$x > {0: .0f}\\%$".format(
                                        levels[i - 1] * 100))
                                else:
                                    labels.append(
                                        "${0:.0f}\\% < x \\leq {1:.0f}\\%$".
                                        format(levels[i - 1] * 100,
                                               levels[i] * 100))
                            else:
                                if i == 0:
                                    labels.append("$x \\leq %.3g$" % levels[i])
                                elif i == len(levels):
                                    labels.append("$x > %.3g$" % levels[i - 1])
                                else:
                                    labels.append("$%.3g < x \\leq %.3g$" %
                                                  (levels[i - 1], levels[i]))
                        else:
                            if self.contour_unit == 'fraction':
                                labels.append("{0:.0%}".format(levels[i]))
                            else:
                                labels.append(
                                    "%.3g %s" %
                                    (levels[i],
                                     utils.mathtext(self.contour_unit)))

                    ax = plt.gca()

                    if self.contour_unit != 'fraction' and not \
                            self.contour.get('hatch'):
                        contour_title = "%s (%s)" % (self.contour_name,
                                                     utils.mathtext(
                                                         self.contour_unit))
                    else:
                        contour_title = self.contour_name

                    leg = ax.legend(handles[::-1],
                                    labels[::-1],
                                    loc='lower left',
                                    fontsize='medium',
                                    frameon=True,
                                    framealpha=0.75,
                                    title=contour_title)
                    leg.get_title().set_fontsize('medium')
                    if not self.contour.get('hatch'):
                        for legobj in leg.legendHandles:
                            legobj.set_linewidth(3)

        # Map Info
        self.basemap.drawmapboundary(fill_color=(0.3, 0.3, 0.3), zorder=-1)
        self.basemap.drawcoastlines(linewidth=0.5)
        self.basemap.fillcontinents(color='grey', lake_color='dimgrey')

        def find_lines(values):
            if np.amax(values) - np.amin(values) < 1:
                return [values.mean()]
            elif np.amax(values) - np.amin(values) < 25:
                return np.round(
                    np.arange(np.amin(values), np.amax(values),
                              round(np.amax(values) - np.amin(values)) / 5))
            else:
                return np.arange(round(np.amin(values), -1),
                                 round(np.amax(values), -1), 5)

        parallels = find_lines(self.latitude)
        meridians = find_lines(self.longitude)
        self.basemap.drawparallels(parallels,
                                   labels=[1, 0, 0, 0],
                                   color=(0, 0, 0, 0.5))
        self.basemap.drawmeridians(meridians,
                                   labels=[0, 0, 0, 1],
                                   color=(0, 0, 0, 0.5),
                                   latmax=85)

        title = self.plotTitle

        if self.plotTitle is None or self.plotTitle == "":
            area_title = "\n".join(wrap(", ".join(self.names), 60)) + "\n"

            title = "%s %s %s, %s" % (area_title, self.variable_name.title(),
                                      self.depth_label,
                                      self.date_formatter(self.timestamp))
        plt.title(title.strip())
        ax = plt.gca()
        divider = make_axes_locatable(ax)
        cax = divider.append_axes("right", size="5%", pad=0.05)
        bar = plt.colorbar(c, cax=cax)
        bar.set_label(
            "%s (%s)" %
            (self.variable_name.title(), utils.mathtext(self.variable_unit)),
            fontsize=14)

        if self.quiver is not None and \
            self.quiver['variable'] != '' and \
            self.quiver['variable'] != 'none' and \
                self.quiver['magnitude'] == 'color':
            bax = divider.append_axes("bottom", size="5%", pad=0.35)
            qbar = plt.colorbar(q, orientation='horizontal', cax=bax)
            qbar.set_label(self.quiver_name.title() + " " +
                           utils.mathtext(self.quiver_unit),
                           fontsize=14)

        fig.tight_layout(pad=3, w_pad=4)

        return super(MapPlotter, self).plot(fig)
Ejemplo n.º 15
0
    def plot(self):
        if self.showmap:
            width = 2
            width_ratios = [3, 7]
        else:
            width = 1
            width_ratios = [1]

        numplots = len(self.variables) + len(self.trackvariables)
        if "votemper" in self.variables and "sst" in self.trackvariables:
            numplots -= 1

        if self.latlon:
            numplots += 2

        figuresize = list(map(float, self.size.split("x")))
        figuresize[1] *= numplots
        fig = plt.figure(figsize=figuresize, dpi=self.dpi)
        gs = gridspec.GridSpec(numplots, width, width_ratios=width_ratios)

        if self.showmap:
            # Plot the path on a map
            if numplots > 1:
                plt.subplot(gs[:, 0])
            else:
                plt.subplot(gs[0])

            utils.path_plot(self.points.transpose(), False)

        # Plot observed
        if self.showmap:
            subplot = 1
            subplot_inc = 2
        else:
            subplot = 0
            subplot_inc = 1

        for j, v in enumerate(self.trackvariables):
            ax = plt.subplot(gs[subplot])
            subplot += subplot_inc

            # Is the depth changing?
            if len(np.unique(self.depth)) == 1:
                ax.plot(self.distances, self.data[j])
                ax.set_xlim(self.distances[0], self.distances[-1])
                ax.set_xlabel("Distance (km)")
            else:
                self.data[j, np.where(self.depth <= 0)] = np.nan

                RES = (50, 100)

                dd = np.empty((RES[0] + 1, RES[1] + 1))
                dd[:, :] = np.nan
                x = np.linspace(0, max(self.distances), RES[1])
                y = np.linspace(0, max(self.depth), RES[0])

                di = np.digitize(self.distances, x)
                de = np.digitize(self.depth, y)

                co = np.array(list(zip(di, de)))
                dd[co[:, 1], co[:, 0]] = self.data[j]

                c = ax.pcolormesh(x,
                                  y,
                                  np.ma.masked_invalid(dd[:-1, :-1]),
                                  cmap=self.track_cmaps[j],
                                  shading='gouraud')
                ax.set_xlim(0, max(self.distances))

                ax.invert_yaxis()
                ax.set_xlabel("Distance (km)")

                ax.set_ylim(max(self.depth), 0)
                divider = make_axes_locatable(ax)
                cax = divider.append_axes("right", size="5%", pad="5%")
                bar = plt.colorbar(c, cax=cax)

            legend = [self.name]

            if len(legend) > 1:
                leg = plt.legend(legend, loc='best')
                for legobj in leg.legendHandles:
                    legobj.set_linewidth(4.0)

            if len(np.unique(self.depth)) == 1:
                if self.data_units[j] is not None:
                    ax.set_ylabel("%s (%s)" %
                                  (self.data_names[j],
                                   utils.mathtext(self.data_units[j])))
                else:
                    ax.set_ylabel(self.data_names[j])
            else:
                if self.data_units[j] is not None:
                    bar.set_label("%s (%s)" %
                                  (self.data_names[j],
                                   utils.mathtext(self.data_units[j])))
                else:
                    bar.set_label(self.data_names[j])

                ax.set_ylabel("Depth (m)")

        for idx, v in enumerate(self.variables):
            if np.isnan(self.model_data[idx]).all():
                continue

            ax = plt.subplot(gs[subplot])
            subplot += subplot_inc

            if len(np.unique(self.depth)) > 1:
                mdist = np.linspace(0, self.model_dist[-1], 100)
                f = interp1d(
                    self.model_dist,
                    self.model_data[idx],
                    assume_sorted=True,
                    bounds_error=False,
                )
                mdata = f(mdist)
                mdata = np.ma.masked_invalid(mdata)
                mdata = np.ma.masked_greater(mdata, mdata.fill_value)

                c = ax.pcolormesh(
                    mdist,
                    self.model_depths,
                    mdata,
                    cmap=self.cmaps[idx],
                    shading='gouraud',
                )
                ax.invert_yaxis()
                ax.set_ylim(max(self.depth), 0)

                divider = make_axes_locatable(ax)
                cax = divider.append_axes("right", size="5%", pad="5%")
                bar = plt.colorbar(c, cax=cax)
            else:
                ax.plot(self.model_dist, self.model_data[idx])

            ax.set_xlim(
                self.model_dist[0],
                self.model_dist[-1],
            )
            ax.set_xlabel("Distance (km)")

            if len(np.unique(self.depth)) > 1:
                ax.set_ylabel("Depth (m)")
                bar.set_label("%s (%s)" %
                              (self.variable_names[idx],
                               utils.mathtext(self.variable_units[idx])))
            else:
                ax.set_ylabel("%s (%s)" %
                              (self.variable_names[idx],
                               utils.mathtext(self.variable_units[idx])))
            plt.setp(ax.get_xticklabels(), rotation=30)

        # latlon
        if self.latlon:
            for j, label in enumerate([
                    gettext("Latitude (degrees)"),
                    gettext("Longitude (degrees)")
            ]):
                plt.subplot(gs[subplot])
                subplot += subplot_inc

                plt.plot(self.times, self.points[:, j])

                plt.ylabel(label)
                plt.setp(plt.gca().get_xticklabels(), rotation=30)

        fig.suptitle(
            gettext("Track Plot (Observed %s - %s, Modelled %s - %s)") %
            (self.times[0].strftime("%Y-%m-%d"),
             self.times[-1].strftime("%Y-%m-%d"),
             self.model_times[0].strftime("%Y-%m-%d"),
             self.model_times[-1].strftime("%Y-%m-%d")))
        fig.tight_layout(pad=3, w_pad=4)
        return super().plot(fig)
Ejemplo n.º 16
0
def scale(args):
    dataset_name = args.get('dataset')
    scale = args.get('scale')
    scale = [float(component) for component in scale.split(',')]

    variable = args.get('variable')
    anom = False
    if variable.endswith('_anom'):
        variable = variable[0:-5]
        anom = True

    variable = variable.split(',')

    with open_dataset(get_dataset_url(dataset_name)) as dataset:
        variable_unit = get_variable_unit(dataset_name,
                                          dataset.variables[variable[0]])
        variable_name = get_variable_name(dataset_name,
                                          dataset.variables[variable[0]])

    if variable_unit.startswith("Kelvin"):
        variable_unit = "Celsius"

    if anom:
        cmap = colormap.colormaps['anomaly']
        variable_name = gettext("%s Anomaly") % variable_name
    else:
        cmap = colormap.find_colormap(variable_name)

    if len(variable) == 2:
        if not anom:
            cmap = colormap.colormaps.get('speed')

        variable_name = re.sub(
            r"(?i)( x | y |zonal |meridional |northward |eastward )", " ",
            variable_name)
        variable_name = re.sub(r" +", " ", variable_name)

    fig = plt.figure(figsize=(2, 5), dpi=75)
    ax = fig.add_axes([0.05, 0.05, 0.25, 0.9])
    norm = matplotlib.colors.Normalize(vmin=scale[0], vmax=scale[1])

    formatter = ScalarFormatter()
    formatter.set_powerlimits((-3, 4))
    bar = ColorbarBase(ax,
                       cmap=cmap,
                       norm=norm,
                       orientation='vertical',
                       format=formatter)
    bar.set_label("%s (%s)" %
                  (variable_name.title(), utils.mathtext(variable_unit)),
                  fontsize=12)
    # Increase tick font size
    bar.ax.tick_params(labelsize=12)

    buf = BytesIO()
    plt.savefig(buf,
                format='png',
                dpi='figure',
                transparent=False,
                bbox_inches='tight',
                pad_inches=0.05)
    plt.close(fig)

    buf.seek(0)  # Move buffer back to beginning
    return buf