Ejemplo n.º 1
0
def save_pkl(header,
             data,
             plot=True,
             curve_fit=None,
             annotation=None,
             location=None,
             time=True,
             filename=None,
             matlab=False):
    location = mk_dir(path=location, time=time)

    if not filename:
        if 'name' in header:
            filename = '{0} {1}'.format(header['type'], header['name'])
        else:
            filename = '{0}'.format(header['type'])

    f = open('{0}/{1}.pkl'.format(location, filename), 'wb')
    if header:
        data_pkl = (2, data, header)
    else:
        data_pkl = data
    pickle.dump(data_pkl, f)
    f.close()
    if plot:
        plotting.plot_measurement(data,
                                  filename,
                                  save=location,
                                  annotation=annotation)

    if matlab:
        matfilename = '{0}/{1}.mat'.format(location, filename)
        scipy.io.savemat(matfilename, mdict=data)
Ejemplo n.º 2
0
        )

        predicted_position_history.append(FlatParticle.get_mean_position(particles))

        if PLOT:
            ax[0].clear()
            ax[0].set_xlim([-5, 20])
            ax[0].set_ylim([-5, 20])
            plot_landmarks(ax[0], landmarks)
            plot_history(ax[0], real_position_history, color='green')
            plot_history(ax[0], predicted_position_history, color='orange')
            if(visible_measurements.size != 0):
                plot_connections(ax[0], vehicle.position, visible_measurements + vehicle.position[:2])
            plot_particles_weight(ax[0], particles)
            if(visible_measurements.size != 0):
                plot_measurement(ax[0], vehicle.position[:2], visible_measurements, color="red")

            ax[1].clear()
            ax[1].set_xlim([-5, 20])
            ax[1].set_ylim([-5, 20])
            best = np.argmax(FlatParticle.w(particles))
            plot_landmarks(ax[1], landmarks, color="green")
            plot_landmarks(ax[1], FlatParticle.get_landmarks(particles, best), color="orange")
            covariances = FlatParticle.get_covariances(particles, best)

            for i, landmark in enumerate(FlatParticle.get_landmarks(particles, best)):
                plot_confidence_ellipse(ax[1], landmark, covariances[i], n_std=3)


        if FlatParticle.neff(particles) < 0.6*N:
            print("resampling..")
                visible_landmarks.append(landmark)
                landmark_indices.append(i)

        z_real = np.array(z_real)
        visible_landmarks = np.array(visible_landmarks, dtype=np.float)
        # plot_measurement(ax, real_position[:2], z_real, color="red")

        start = time.time()
        update(particles, z_real[landmark_indices], measurement_variance)
        print("took: ", (time.time() - start))
        # plt.pause(2)

        predicted_position_history.append(
            Particle.get_mean_position(particles))

        if PLOT:
            ax.clear()
            ax.set_xlim([0, 15])
            ax.set_ylim([0, 15])
            plot_landmarks(ax, landmarks)
            plot_history(ax, real_position_history, color='green')
            plot_history(ax, predicted_position_history, color='orange')
            plot_connections(ax, real_position,
                             z_real[landmark_indices, :] + real_position[:2])
            plot_particles_weight(ax, particles)
            plot_measurement(ax, real_position[:2], z_real, color="red")

        if neff(particles) < N / 2:
            print("resample", neff(particles))
            particles = resample_particles(particles)
Ejemplo n.º 4
0
        # print(ss)

        z_real = []
        visible_landmarks = []
        landmark_indices = []
        for i, landmark in enumerate(landmarks):
            z = get_measurement_stochastic(ss[:2], landmark, sigmas)
            z_real.append(z)

            if dist(landmark, ss) < MAX_DIST:
                visible_landmarks.append(landmark)
                landmark_indices.append(i)

        z_real = np.array(z_real)
        visible_landmarks = np.array(visible_landmarks, dtype=np.float)
        plot_measurement(ax, ss[:2], z_real, color="red")

        # print(z_real + ss[:2])

        update(particles, landmark_indices, z_real, sigmas)
        plt.pause(0.01)

        slam_history.append(get_mean(particles))

        ax.clear()
        ax.set_xlim([0, 17])
        ax.set_ylim([0, 17])
        plot_landmarks(ax, landmarks)
        plot_history(ax, ss_history, color='green')
        plot_history(ax, slam_history, color='orange')
        plot_connections(ax, ss, z_real[landmark_indices, :] + ss[:2])
Ejemplo n.º 5
0
def sweep(measurer,
          *params,
          filename=None,
          root_dir=None,
          plot=True,
          header=None,
          output=True):
    '''
	Performs a n-d parametric sweep.
	Usage: sweep(measurer, (param1_values, param1_setter, [param1_name]), (param2_values, param2_setter), ... , filename=None)
	measurer: an object that supports get_points(), measure(), get_dtype() and get_opts() methods.
	
	Returns: dict of ndarrays each corresponding to a measurment in the sweep
	'''
    print("Started at: ", time.strftime("%b %d %Y %H:%M:%S", time.localtime()))
    start_time = time.time()

    # extracting sweep parameters from list
    # check if it is a list of pairs
    sweep_dim = tuple([len(param[0]) for param in params])
    sweep_dim_vals = tuple([param[0] for param in params])
    sweep_dim_names = tuple([
        param[2] if len(param) > 2 else 'param_{0}'.format(param_id)
        for param_id, param in enumerate(params)
    ])
    sweep_dim_setters = tuple(param[1] for param in params)

    # determining return type of measurer: in could be 2 traces (im, re)
    point_types = measurer.get_dtype()
    meas_opts = measurer.get_opts()
    points = measurer.get_points()  # should return dict of meas_name:points
    point_dim_names = {
        mname: tuple([cname for cname, cvals in mxvals])
        for mname, mxvals in points.items()
    }
    point_dim = {
        mname: tuple([len(cvals) for cname, cvals in mxvals])
        for mname, mxvals in points.items()
    }
    point_dim_vals = {
        mname: tuple([cvals for cname, cvals in mxvals])
        for mname, mxvals in points.items()
    }
    #point_dim = {mname:tuple([len(mxvals[cname]) for cname in point_dim_names[mname]]) for mname, mxvals in points.items()}
    #point_dim_vals = {mname:tuple([mxvals[1] for cname in point_dim_names[mname]]) for mname, mxvals in points.items()}
    # initializing empty ndarrays for measurment results
    data = {
        mname:
        np.zeros(sweep_dim + point_dim[mname], dtype=point_types[mname]) *
        np.nan
        for mname, mxvals in points.items()
    }

    def non_unity_dims(mname):
        return tuple(dim for dim in data[mname].shape if dim > 1)

    def non_unity_dim_names(mname):
        all_dim_names = sweep_dim_names + point_dim_names[mname]
        return tuple(dim_name
                     for dim, dim_name in zip(data[mname].shape, all_dim_names)
                     if dim > 1)

    def non_unity_dim_vals(mname):
        all_dim_vals = sweep_dim_vals + point_dim_vals[mname]
        return tuple(dim_name
                     for dim, dim_name in zip(data[mname].shape, all_dim_vals)
                     if dim > 1)

    ascii_files = {mname: None for mname in points.keys()}
    mk_measurement = lambda x: {
        mname:
        (non_unity_dim_names(mname), non_unity_dim_vals(mname),
         np.reshape(data[mname], non_unity_dims(mname)), meas_opts[mname])
        for mname in points.keys()
    }

    if root_dir is None:
        data_dir = save_pkl.mk_dir()
    else:
        data_dir = root_dir

    #opening on-the-fly ascii files
    if not filename is None and output:

        def data_to_str(data, fmt='{:e}\t'):
            if hasattr(data, '__iter__'):
                return ''.join([fmt.format(d) for d in data])
            else:
                return fmt.format(data)

        for mname in points.keys():
            # if the file has more than 1.000.000 points or more than 2 dimensions don't save to ascii
            if data[mname].size < 1e6 and len(non_unity_dims(mname)) <= 2:
                if point_types[mname] is complex:
                    ascii_files[mname] = {
                        np.abs: open(data_dir + filename + '_amp.dat', 'w'),
                        np.angle: open(data_dir + filename + '_ph.dat', 'w')
                    }
                if point_types[mname] is float:
                    ascii_files[mname] = {
                        (lambda x: x): open(data_dir + filename + '.dat', 'w')
                    }

    # opening plot windows
    if plot:
        plot_update_start = time.time()
        plot_axes = plotting.plot_measurement(mk_measurement(0))
        last_plot_update = time.time()
        plot_update_time = plot_update_start - last_plot_update

    # starting sweep
    start_time = time.time()
    try:
        internal_print("First sweep...")
        # looping over all indeces at the same time
        all_indeces = itertools.product(*([i for i in range(d)]
                                          for d in sweep_dim))
        vals = [None for d in sweep_dim]  # set initial parameter vals to None
        done_sweeps = 0
        total_sweeps = np.prod([d for d in sweep_dim])
        for indeces in all_indeces:
            # check which values have changed this sweep
            old_vals = vals
            vals = [
                params[param_id][0][val_id]
                for param_id, val_id in enumerate(indeces)
            ]
            changed_vals = [
                old_val != val for old_val, val in zip(old_vals, vals)
            ]
            # set to new param vals
            for val, setter, changed in zip(vals, sweep_dim_setters,
                                            changed_vals):
                if changed:
                    setter(val)
            #measuring
            mpoint = measurer.measure()
            #saving data to containers
            for mname in points.keys():
                mpoint_m = mpoint[mname]
                data[mname][[(i) for i in indeces] + [...]] = mpoint_m
                data_flat = np.reshape(data[mname], non_unity_dims(mname))
                mpoint_m_flat = np.reshape(
                    mpoint_m,
                    tuple(dim for dim in point_dim[mname] if dim > 1))

                #Save data to text file (on the fly)
                if ascii_files[mname]:
                    for fmt, ascii_file in ascii_files[mname].items():
                        ascii_file.write(
                            data_to_str(fmt(mpoint_m_flat)) + '\n')
                        ascii_file.flush()
                #Plot data (on the fly)
                # measure when we started updating plot
            plot_update_start = time.time()
            # if the last plot update was more than 20 times the time we need to update the plot, update
            # this is done to conserve computational resources
            if plot:
                if plot_update_start - last_plot_update > 10 * plot_update_time:
                    plotting.update_plot_measurement(mk_measurement(0),
                                                     plot_axes)
            '''
				if plot_windows[mname]:
					for fmt, plot in plot_windows[mname].items():
						update_plot(plot, non_unity_dim_vals(mname), fmt(data_flat))
						plt.pause(0.01)
				last_plot_update = time.time()
				plot_update_time = last_plot_update - plot_update_start
			'''

            done_sweeps += 1
            avg_time = (time.time() - start_time) / done_sweeps
            param_val_mes = ',\t'.join([
                '{0}: {1:6.4g}'.format(param[2], val)
                for param, val in zip(params, vals)
            ])
            stat_mes_fmt = '\rTime left: {0},\tparameter values: {1},\taverage cycle time: {2:4.2g}s\t'
            stat_mes = stat_mes_fmt.format(
                format_time_delta(avg_time * (total_sweeps - done_sweeps)),
                param_val_mes, avg_time)

            internal_print(stat_mes)
        print("\nElapsed time: " + format_time_delta(time.time() - start_time))

    finally:
        for mname in points.keys():
            header = {
                'name': filename,
                'type': mname,
                'params': non_unity_dim_names(mname)
            }
            #sweep_xrange_pkl = non_unity_dim_vals(mname)
            #data_pkl = np.reshape(data[mname], non_unity_dims(mname))
            #if len(sweep_xrange_pkl)<2:
            #	sweep_xrange_pkl=sweep_xrange_pkl+tuple([0]*(2-len(sweep_xrange_pkl)))
            #data_pkl = tuple(sweep_xrange_pkl)+(np.abs(data_pkl), np.angle(data_pkl))

            #save_pkl.save_pkl(header, data_pkl, location = data_dir)
            save_pkl.save_pkl(header, mk_measurement(0), location=data_dir)

            if ascii_files[mname]:
                for fmt, ascii_file in ascii_files[mname].items():
                    ascii_file.close()

    return mk_measurement(0)