Ejemplo n.º 1
0
def partialcase_to_fm_format(caseid, partialcase, case_impact, stepsz, cid_list, \
                             impact_list, step_dict, next_step_mapping, \
                             negative_samples, seed, \
                             normalize, pred_id):
    x_datalist = list()
    x_row_inds = list()
    x_col_inds = list()
    x_shape = np.zeros(shape=(2, ))

    y_datalist = list()

    pred_id_list = list()

    if partialcase.shape[0] <= 2:
        # not enough events to make a step
        return np.asarray(x_datalist), np.asarray(x_row_inds), \
                np.asarray(x_col_inds), np.asarray(x_shape), \
                np.asarray(y_datalist), np.asarray(pred_id_list)
    # there should negative samples + 1 rows
    if negative_samples >= 0 and \
       negative_samples < len(list(next_step_mapping.keys())):
        num_of_rows = negative_samples + 1
    else:
        num_of_rows = len(list(next_step_mapping.keys()))
    x_shape[0] = num_of_rows
    num_of_steps = 0
    all_steps = fct.reduce(lambda x, y: x + y.shape[0], step_dict.values(), 0)
    x_shape[1] = cid_list.shape[0] + all_steps + \
            impact_list.shape[0] + step_dict[2].shape[0]
    x_shape = x_shape.astype(np.int)

    # make into 2-steps
    steps = lutils.case_to_steps(partialcase, 2)
    partialsteps = steps[:-1]
    to_predict = steps[-1]
    possible = next_step_mapping[partialcase[-2]]

    # pick negative samples
    if negative_samples > -1:
        rand_negatives = filter(lambda s: s != to_predict, possible)
        # need to check if negative_samples is larger than len(rand_negatives)
        rand_negatives = list(rand_negatives)
        random_sz = negative_samples
        if negative_samples > len(rand_negatives):
            # use the size of rand_negatives if this is bigger
            random_sz = len(rand_negatives)
        rand_negatives = np.random.choice(list(rand_negatives), \
                                       size=random_sz, \
                                       replace=False)
        samples = np.append(rand_negatives, [
            to_predict,
        ])
    else:
        samples = filter(lambda s: s != to_predict, possible)
        samples = np.append(list(samples), [
            to_predict,
        ])

    # create block for cid
    cid_repeat = np.asarray([
        caseid,
    ]).repeat(len(samples))
    cid_datalist, cid_row_inds, cid_col_inds, cid_shape = \
            rutils.single_to_fm_format(cid_repeat, cid_list)

    # create block for taken steps
    taken_datalist, taken_row_inds, taken_col_inds, taken_shape = \
            rutils.mk_step_block(partialcase[:-1], step_dict, stepsz, \
                                 repeat=len(samples), \
                                 normalize=normalize)

    # create block for amount requested
    amt_repeat = np.asarray([
        case_impact,
    ]).repeat(len(samples))
    amt_datalist, amt_row_inds, amt_col_inds, amt_shape = \
            rutils.single_to_fm_format(amt_repeat, impact_list)

    # create block for samples
    #    print('Samples: {}'.format(samples))
    next_datalist, next_row_inds, next_col_inds, next_shape = \
            rutils.single_to_fm_format(samples, step_dict[2])

    # shift taken columns by |cid_list|
    taken_col_inds = taken_col_inds + cid_list.shape[0]

    # shift amt columns by |cid_list| + |step_list|
    amt_col_inds = amt_col_inds + cid_list.shape[0] + all_steps

    # shift next columns by |cid_list| + |step_list| + |impact_list|
    next_col_inds = next_col_inds + cid_list.shape[0] + all_steps + \
        impact_list.shape[0]

    x_datalist = np.concatenate((cid_datalist, taken_datalist, \
                                 amt_datalist, next_datalist))
    x_row_inds = np.concatenate((cid_row_inds, taken_row_inds, \
                                 amt_row_inds, next_row_inds))
    x_col_inds = np.concatenate((cid_col_inds, taken_col_inds, \
                                 amt_col_inds, next_col_inds))
    x_row_inds = x_row_inds.astype(np.int)
    x_col_inds = x_col_inds.astype(np.int)

    y_datalist = np.asarray([np.int(step) for step in samples == to_predict], \
                            dtype=np.int)

    pred_id_list = np.ones(len(y_datalist)) * pred_id

    return x_datalist, x_row_inds, x_col_inds, x_shape, \
            y_datalist, pred_id_list
Ejemplo n.º 2
0
def partialcase_to_fm_format(caseid, partialcase, cid_list, \
                             activity_list, negative_samples, seed, \
                             normalize, pred_id):
    x_datalist = list()
    x_row_inds = list()
    x_col_inds = list()
    x_shape = np.zeros(shape=(2, ))

    y_datalist = list()

    pred_id_list = list()

    if partialcase.shape[0] <= 2:
        # not enough events to make a step
        return np.asarray(x_datalist), np.asarray(x_row_inds), \
                np.asarray(x_col_inds), np.asarray(x_shape), \
                np.asarray(y_datalist), np.asarray(pred_id_list)
    # there should negative samples + 1 rows
    if negative_samples >= 0 and \
       negative_samples < activity_list.shape[0]:
        num_of_rows = negative_samples + 1
    else:
        num_of_rows = activity_list.shape[0]
    x_shape[0] = num_of_rows
    x_shape[1] = cid_list.shape[0] + activity_list.shape[0] * 2
    x_shape = x_shape.astype(np.int)

    # make into 2-steps
    subpartialcase = partialcase[:-1]
    to_predict = partialcase[-1]
    possible = activity_list

    # pick negative samples
    if negative_samples > -1:
        rand_negatives = filter(lambda s: s != to_predict, possible)
        # need to check if negative_samples is larger than len(rand_negatives)
        rand_negatives = list(rand_negatives)
        random_sz = negative_samples
        if negative_samples > len(rand_negatives):
            # use the size of rand_negatives if this is bigger
            random_sz = len(rand_negatives)
        rand_negatives = np.random.choice(list(rand_negatives), \
                                       size=random_sz, \
                                       replace=False)
        samples = np.append(rand_negatives, [
            to_predict,
        ])
    else:
        samples = filter(lambda s: s != to_predict, possible)
        samples = np.append(list(samples), [
            to_predict,
        ])

    # create block for cid
    cid_repeat = np.asarray([
        caseid,
    ]).repeat(len(samples))
    cid_datalist, cid_row_inds, cid_col_inds, cid_shape = \
            rutils.single_to_fm_format(cid_repeat, cid_list)

    # create block for taken acts
    taken_repeat = np.asarray([
        subpartialcase,
    ]).repeat(len(samples), axis=0)
    taken_datalist, taken_row_inds, taken_col_inds, taken_shape = \
            rutils.multiple_to_fm_format(taken_repeat, activity_list)

    # create block for samples
    #    print('Samples: {}'.format(samples))
    next_datalist, next_row_inds, next_col_inds, next_shape = \
            rutils.single_to_fm_format(samples, activity_list)

    # shift taken columns by |cid_list|
    taken_col_inds = taken_col_inds + cid_list.shape[0]

    # shift next columns by |cid_list| + |activity_list|
    next_col_inds = next_col_inds + cid_list.shape[0] + activity_list.shape[0]

    x_datalist = np.concatenate((cid_datalist, taken_datalist, next_datalist))
    x_row_inds = np.concatenate((cid_row_inds, taken_row_inds, next_row_inds))
    x_col_inds = np.concatenate((cid_col_inds, taken_col_inds, next_col_inds))
    x_row_inds = x_row_inds.astype(np.int)
    x_col_inds = x_col_inds.astype(np.int)

    y_datalist = np.asarray([np.int(step) for step in samples == to_predict], \
                            dtype=np.int)

    pred_id_list = np.ones(len(y_datalist)) * pred_id

    return x_datalist, x_row_inds, x_col_inds, x_shape, \
            y_datalist, pred_id_list
def variant_to_fm_format(steps, step_list, activity_list, \
                           rev_step_mapping, minpartialsz=2,\
                           negative_samples=3, seed=123, \
                           normalize=True, pred_id=0):
    '''
    Method to make matrix representation of step case. Matrix will contain
    the following features:
        - steps taken
        - executed activities
        - step to be predicted
    '''
    # create objects to be returned
    x_datalist = list()
    x_row_inds = list()
    x_col_inds = list()
    x_shape = np.zeros(shape=(2,))

    y_datalist = list()

    # list of pred_id to make later identification faster
    pred_id_list = list()

    # base step, steps is shorter or equal to minimum partial size, 
    # return it since no prediction to be made
    if steps.shape[0] <= minpartialsz:
        return np.asarray(x_datalist), np.asarray(x_row_inds), \
                np.asarray(x_col_inds), x_shape, \
                np.asarray(y_datalist), np.asarray(pred_id_list)

    for ind in range(minpartialsz, steps.shape[0]):
        partialcase = steps[:ind]
        laststep = steps[ind - 1]

        # actual next step
        gt_next_step = steps[ind]
        # get the next activity and predict for it
        gt_next_act = rev_step_mapping[gt_next_step][-1]
        # check if it is bound with other things
        get_act = lambda act: act.split('+')[0]
        gt_next_act = get_act(gt_next_act)

        # sample negative samples
        if negative_samples > -1:
            np.random.seed(seed=seed)
            random_negative_samples = \
                    list(filter(lambda act: act != gt_next_act, activity_list))
            picked_inds = np.random.choice(np.arange(len(random_negative_samples)), \
                                                       size=negative_samples, \
                                                       replace=False)
            random_negative_samples = list(map(lambda ind: \
                                               random_negative_samples[ind], \
                                               picked_inds))
            samples = np.append(random_negative_samples, [gt_next_act,])
        else:
            # select all the possible next steps
            samples = list(filter(lambda act: act != gt_next_act, activity_list))
            samples = np.append(samples, [gt_next_act,])

        # create the taken steps part
        taken_repeat = np.asarray([partialcase for _ in range(len(samples))])
        taken_datalist, taken_row_inds, taken_col_inds, taken_shape = \
                rutils.multiple_to_fm_format(taken_repeat, step_list, normalize)

        # create the taken activities part
        t_acts = list(map(lambda step: rev_step_mapping[step], partialcase))
        t_acts = list(map(lambda step: get_act(step[-1]), t_acts))
        t_acts = np.asarray(t_acts)
        # need to add the first activity of the first step
        if ARTIFICIAL_START not in t_acts:
            t_acts = np.append([ARTIFICIAL_START,], t_acts)
    #    print('t_acts: {}'.format(t_acts))
        not_in = list(filter(lambda act: act not in activity_list, t_acts))
        assert len(not_in) ==  0, 't_acts not in activity list: \
            {} with {} items.'.format(str(not_in), len(not_in))
        t_acts_repeat = np.asarray([t_acts for _ in range(len(samples))])
        t_acts_datalist, t_acts_row_inds, t_acts_col_inds, t_acts_shape = \
                rutils.multiple_to_fm_format(t_acts_repeat, activity_list, normalize)

        # create the last executed activity part
        '''
        l_act = rev_step_mapping[laststep][-1]
        assert l_act in activity_list, '{} not in activity list: {}'\
                .format(l_act, activity_list)
        l_act_repeat = np.asarray([l_act,]).repeat(len(samples))
        l_act_datalist, l_act_row_inds, l_act_col_inds, l_act_shape = \
                rutils.single_to_fm_format(l_act_repeat, activity_list)
        '''

        # samples
        next_datalist, next_row_inds, next_col_inds, next_shape = \
                rutils.single_to_fm_format(samples, activity_list)

        # create the matrix representation of step case in fm format
        # by combining all the above info
        # check dimensions
        assert  (taken_shape[0] == next_shape[0]) and \
                (next_shape[0] == t_acts_shape[0]), \
                'taken shape: {}, \
                next shape: {}, t_acts shape: {}' \
                .format(taken_shape, next_shape, \
                        t_acts_shape)
        assert taken_shape[1] == len(step_list), \
                'taken shape: {}, step list shape: {}'\
                .format(taken_shape, len(step_list))
        assert next_shape[1] == len(activity_list), \
                'next shape: {}, activity list shape: {}'\
                .format(next_shape, len(activity_list))
        assert t_acts_shape[1] == len(activity_list), \
                'taken acts shape: {}, activity list shape: {}'\
                .format(t_acts_shape, len(activity_list))

        # shift taken activities columns by |step_list|
        t_acts_col_inds = t_acts_col_inds + len(step_list)
        # shift next columns by |step_list| + 2 * |activity_list|
        next_col_inds = next_col_inds + len(step_list) + \
                len(activity_list)

        x_datalist_i = np.concatenate((taken_datalist, t_acts_datalist, \
                                       next_datalist))
        x_row_inds_i = np.concatenate((taken_row_inds, t_acts_row_inds, \
                                       next_row_inds))
        x_col_inds_i = np.concatenate((taken_col_inds, t_acts_col_inds, \
                                       next_col_inds))
        num_of_cols = len(step_list) + 2 * activity_list.shape[0]
        x_shape_i = np.asarray((len(samples), num_of_cols))

    #    print('creating x shape: {}'.format(x_shape))

        # create the target y datalist, putting 1 for the next step
        # and putting 0 for the negative samples
        y_datalist_i = np.asarray([np.int(act) for act in samples == \
                                   gt_next_act])

        assert Counter(y_datalist_i)[1] == 1, \
                'y_datalist_i: {}'.format(y_datalist_i)
    #    print('y_datalist: {}'.format(y_datalist))

        # pred_id_list, should all be the same prediction number
        pred_id_list_i = np.ones(len(y_datalist_i)) * pred_id

        # check the dimensions make sense
        # column should be the same
        if len(x_datalist) > 0:
            assert x_shape[1] == x_shape_i[1], \
                    'x_shape: {} not equal x_shape_i: {}'\
                    .format(x_shape, x_shape_i)
            # shift rows of x_row_inds1 by number of existing rows
            x_row_inds_i = x_row_inds_i + x_shape[0]

            x_datalist = np.concatenate((x_datalist, x_datalist_i))
            x_row_inds = np.concatenate((x_row_inds, x_row_inds_i))
            x_col_inds = np.concatenate((x_col_inds, x_col_inds_i))
            x_shape = np.asarray((x_shape[0] + x_shape_i[0], x_shape[1]))

            y_datalist = np.concatenate((y_datalist, y_datalist_i))

            pred_id_list = np.concatenate((pred_id_list, pred_id_list_i))
        else:
            x_datalist = x_datalist_i
            x_row_inds = x_row_inds_i
            x_col_inds = x_col_inds_i
            x_shape = x_shape_i

            y_datalist = y_datalist_i

            pred_id_list = pred_id_list_i

        pred_id += 1

    return x_datalist, x_row_inds, x_col_inds, x_shape, y_datalist, \
        pred_id_list
Ejemplo n.º 4
0
def step_case_to_fm_format(caseid, steps, caseid_list, step_list,\
                           next_step_mapping, minpartialsz=2,\
                           negative_samples=3, seed=123, \
                           normalize=True, pred_id=0):
    # create objects to be returned
    x_datalist = list()
    x_row_inds = list()
    x_col_inds = list()
    x_shape = np.zeros(shape=(2,))
    
    y_datalist = list()

    # list of pred_id to make later identification faster
    pred_id_list = list()

    # base step, steps is shorter or equal to minimum partial size, 
    # return it since no prediction to be made
    if steps.shape[0] <= minpartialsz:
        return np.asarray(x_datalist), np.asarray(x_row_inds), \
                np.asarray(x_col_inds), x_shape, \
                np.asarray(y_datalist), np.asarray(pred_id_list)

    for ind in range(minpartialsz, steps.shape[0]):
        partialcase = steps[:ind]
        laststep = steps[ind - 1]
        possible_next_step_list = next_step_mapping[laststep]

        assert len(possible_next_step_list) > 0

        # actual next step
        gt_next_step = steps[ind]

        # sample negative samples
        if negative_samples > -1:
            np.random.seed(seed=seed)
            random_negative_samples = \
                    list(filter(lambda step: step != gt_next_step, \
                                                  possible_next_step_list))
            picked_inds = np.random.choice(np.arange(len(random_negative_samples)), \
                                                       size=negative_samples, \
                                                       replace=False)
            random_negative_samples = list(map(lambda ind: \
                                               random_negative_samples[ind], \
                                               picked_inds))
            samples = np.append(random_negative_samples, [gt_next_step,])
        else:
            # select all the possible next steps
            samples = list(filter(lambda step: step != gt_next_step, \
                                  possible_next_step_list))
            samples = np.append(samples, [gt_next_step,])
            
        # repeat caseids for |samples| times
        cid_repeat = np.asarray([caseid,]).repeat(len(samples))
        cid_datalist, cid_row_inds, cid_col_inds, cid_shape = \
               rutils.single_to_fm_format(cid_repeat, caseid_list)
        
        # create the taken steps part
        taken_repeat = np.asarray([partialcase for _ in range(len(samples))])
        taken_datalist, taken_row_inds, taken_col_inds, taken_shape = \
                rutils.multiple_to_fm_format(taken_repeat, step_list, normalize)

        # samples
        next_datalist, next_row_inds, next_col_inds, next_shape = \
                rutils.single_to_fm_format(samples, step_list)
   
        # create the matrix representation of step case in fm format
        # by combining all the above info
        # check dimensions
        assert (cid_shape[0] == taken_shape[0]) and \
                (taken_shape[0] == next_shape[0]), \
                'cid shape: {}, taken shape: {}, next shape: {}'\
                .format(cid_shape, taken_shape, next_shape)
        assert cid_shape[1] == len(caseid_list), \
                'cid shape: {}, taken shape: {}, next shape: {}'\
                .format(cid_shape, taken_shape, next_shape)
        assert taken_shape[1] == len(step_list), \
                'taken shape: {}, step list shape: {}'\
                .format(taken_shape, len(step_list))
        assert next_shape[1] == len(step_list), \
                'next shape: {}, step list shape: {}'\
                .format(next_shape, len(step_list))

        # shift taken columns by |caseid_list|
        taken_col_inds = taken_col_inds + len(caseid_list)
        # shift next columns by |caseid_list| + |step_list|
        next_col_inds = next_col_inds + len(caseid_list) + len(step_list)

        x_datalist_i = np.concatenate((cid_datalist, taken_datalist, \
                                     next_datalist))
        x_row_inds_i = np.concatenate((cid_row_inds, taken_row_inds, \
                                     next_row_inds)) 
        x_col_inds_i = np.concatenate((cid_col_inds, taken_col_inds, \
                                     next_col_inds))
        x_shape_i = np.asarray((len(samples), len(caseid_list) + \
                              2 * len(step_list)))

    #    print('creating x shape: {}'.format(x_shape))

        # create the target y datalist, putting 1 for the next step
        # and putting 0 for the negative samples
        y_datalist_i = np.asarray([np.int(step) for step in samples == gt_next_step])
        
    #    print('y_datalist: {}'.format(y_datalist))

        # pred_id_list, should all be the same prediction number 
        pred_id_list_i = np.ones(len(y_datalist_i)) * pred_id

        # append to current results and shift results if needed
        if len(x_datalist) > 0:
            assert x_shape[1] == x_shape_i[1], \
                    'x_shape: {} not equal x_shape_i: {}'\
                    .format(x_shape, x_shape_i)

            # shift rows of x_row_inds_i by number of existing rows
            x_row_inds_i = x_row_inds_i + x_shape[0]
            
            x_datalist = np.concatenate((x_datalist, x_datalist_i))
            x_row_inds = np.concatenate((x_row_inds, x_row_inds_i))
            x_col_inds = np.concatenate((x_col_inds, x_col_inds_i))
            x_shape = np.asarray((x_shape[0] + x_shape_i[0], x_shape[1]))

            y_datalist = np.concatenate((y_datalist, y_datalist_i))

            pred_id_list = np.concatenate((pred_id_list, pred_id_list_i))
        else:
            x_datalist = x_datalist_i
            x_row_inds = x_row_inds_i
            x_col_inds = x_col_inds_i
            x_shape = x_shape_i
            y_datalist = y_datalist_i
            pred_id_list = pred_id_list_i

        # increment pred id
        pred_id += 1

    return x_datalist, x_row_inds, x_col_inds, x_shape, y_datalist, \
        pred_id_list