Ejemplo n.º 1
0
    def test_convert_to_pmag_list(self):
        # np.nan and None should both be converted to a string
        directory = os.path.join(WD, 'data_files', '3_0', 'Megiddo')
        fname = os.path.join(directory, "sites.txt")
        df = cb.MagicDataFrame(fname)

        df.df.loc['mgq04t1', 'age_high'] = np.nan
        df.df.loc['mgq04t1', 'age_low'] = None
        for val in df.df.loc['mgq04t1', 'age_high'].values:
            self.assertTrue(np.isnan(val))

        for val in df.df.loc['mgq04t1', 'age_low'].values:
            self.assertTrue(val is None)

        lst = df.convert_to_pmag_data_list()
        relevant_lst = pmag.get_dictitem(lst, 'site', 'mgq04t1', 'T')
        # make sure np.nan/None values are converted to ''
        for i in relevant_lst:
            self.assertEqual(i['age_high'], '')
            self.assertEqual(i['age_low'], '')
        # make sure numeric values are string-i-fied
        self.assertEqual(str, type(relevant_lst[0]['age']))
Ejemplo n.º 2
0
    def test_convert_to_pmag_list(self):
        # np.nan and None should both be converted to a string
        directory = os.path.join(WD, 'data_files', '3_0', 'Megiddo')
        fname = os.path.join(directory, "sites.txt")
        df = cb.MagicDataFrame(fname)

        df.df.loc['mgq04t1', 'age_high'] = np.nan
        df.df.loc['mgq04t1', 'age_low'] = None
        for val in df.df.loc['mgq04t1', 'age_high'].values:
            self.assertTrue(np.isnan(val))

        for val in df.df.loc['mgq04t1', 'age_low'].values:
            self.assertTrue(val is None)

        lst = df.convert_to_pmag_data_list()
        relevant_lst = pmag.get_dictitem(lst, 'site', 'mgq04t1', 'T')
        # make sure np.nan/None values are converted to ''
        for i in relevant_lst:
            self.assertEqual(i['age_high'], '')
            self.assertEqual(i['age_low'], '')
        # make sure numeric values are string-i-fied
        self.assertEqual(str, type(relevant_lst[0]['age']))
Ejemplo n.º 3
0
def main():
    """
    NAME
        make_magic_plots.py

    DESCRIPTION
        inspects magic directory for available data and makes plots

    SYNTAX
        make_magic_plots.py [command line options]

    INPUT
        magic files

    OPTIONS
        -h prints help message and quits
        -f FILE specifies input file name
        -fmt [png,eps,svg,jpg,pdf] specify format, default is png
    """
    if '-h' in sys.argv:
        print(main.__doc__)
        sys.exit()
    # reset log files
    for fname in ['log.txt', 'errors.txt']:
        f = os.path.join(os.getcwd(), fname)
        if os.path.exists(f):
            os.remove(f)
    image_recs = []
    dirlist = ['./']
    dir_path = os.getcwd()
    #
    if '-fmt' in sys.argv:
        ind = sys.argv.index("-fmt")
        fmt = sys.argv[ind + 1]
    else:
        fmt = 'png'
    if '-f' in sys.argv:
        ind = sys.argv.index("-f")
        filelist = [sys.argv[ind + 1]]
    else:
        filelist = os.listdir(dir_path)
    ## initialize some variables
    samp_file = 'samples.txt'
    meas_file = 'measurements.txt'
    #loc_key = 'location'
    loc_file = 'locations.txt'
    method_key = 'method_codes'
    dec_key = 'dir_dec'
    inc_key = 'dir_inc'
    tilt_corr_key = "dir_tilt_correction"
    aniso_tilt_corr_key = "aniso_tilt_correction"
    hyst_bcr_key = "hyst_bcr"
    hyst_mr_key = "hyst_mr_moment"
    hyst_ms_key = "hyst_ms_moment"
    hyst_bc_key = "hyst_bc"
    Mkeys = ['magnitude', 'magn_moment', 'magn_volume', 'magn_mass']
    results_file = 'sites.txt'
    hyst_file = 'specimens.txt'
    aniso_file = 'specimens.txt'
    # create contribution and propagate data throughout
    full_con = cb.Contribution()
    full_con.propagate_location_to_measurements()
    full_con.propagate_location_to_specimens()
    full_con.propagate_location_to_samples()
    if not full_con.tables:
        print('-E- No MagIC tables could be found in this directory')
        error_log("No MagIC tables found")
        return
    # try to get the contribution id for error logging
    con_id = ""
    if 'contribution' in full_con.tables:
        if 'id' in full_con.tables['contribution'].df.columns:
            con_id = full_con.tables['contribution'].df.iloc[0]['id']
    # check to see if propagation worked, otherwise you can't plot by location
    lowest_table = None
    for table in full_con.ancestry:
        if table in full_con.tables:
            lowest_table = table
            break

    do_full_directory = False
    # check that locations propagated down to the lowest table in the contribution
    if 'location' in full_con.tables[lowest_table].df.columns:
        if 'locations' not in full_con.tables:
            info_log(
                'location names propagated to {}, but could not be validated'.
                format(lowest_table))
        # are there any locations in the lowest table?
        elif not all(full_con.tables[lowest_table].df['location'].isnull()):
            locs = full_con.tables['locations'].df.index.unique()
            lowest_locs = full_con.tables[lowest_table].df['location'].unique()
            incorrect_locs = set(lowest_locs).difference(set(locs))
            # are they actual locations?
            if not incorrect_locs:
                info_log(
                    'location names propagated to {}'.format(lowest_table))
            else:
                do_full_directory = True
                error_log(
                    'location names did not propagate fully to {} table (looks like there are some naming inconsistencies between tables)'
                    .format(lowest_table),
                    con_id=con_id)
        else:
            do_full_directory = True
            error_log(
                'could not propagate location names down to {} table'.format(
                    lowest_table),
                con_id=con_id)
    else:
        do_full_directory = True
        error_log('could not propagate location names down to {} table'.format(
            lowest_table),
                  con_id=con_id)

    all_data = {}
    all_data['measurements'] = full_con.tables.get('measurements', None)
    all_data['specimens'] = full_con.tables.get('specimens', None)
    all_data['samples'] = full_con.tables.get('samples', None)
    all_data['sites'] = full_con.tables.get('sites', None)
    all_data['locations'] = full_con.tables.get('locations', None)
    if 'locations' in full_con.tables:
        locations = full_con.tables['locations'].df.index.unique()
    else:
        locations = ['']
    dirlist = [
        loc for loc in locations if cb.not_null(loc, False) and loc != 'nan'
    ]
    if not dirlist:
        dirlist = ["./"]
    if do_full_directory:
        dirlist = ["./"]

    # plot the whole contribution as one location
    if dirlist == ["./"]:
        error_log('plotting the entire contribution as one location',
                  con_id=con_id)
        for fname in os.listdir("."):
            if fname.endswith(".txt"):
                shutil.copy(fname, "tmp_" + fname)

    # if possible, go through all data by location
    # use tmp_*.txt files to separate out by location

    for loc in dirlist:
        print('\nworking on: ', loc)

        def get_data(dtype, loc_name):
            """
            Extract data of type dtype for location loc_name.
            Write tmp_dtype.txt files if possible.
            """
            if cb.not_null(all_data[dtype], False):
                data_container = all_data[dtype]
                if loc_name == "./":
                    data_df = data_container.df
                else:
                    # awkward workaround for chars like "(" and "?" that break in regex
                    try:
                        data_df = data_container.df[data_container.df[
                            'location'].astype(str).str.contains(loc_name,
                                                                 na=False)]
                    except:  #sre_constants.error:
                        data_df = data_container.df[
                            data_container.df['location'] == loc_name]

                data = data_container.convert_to_pmag_data_list(df=data_df)
                res = data_container.write_magic_file(
                    'tmp_{}.txt'.format(dtype), df=data_df)
                if not res:
                    return [], []
                return data, data_df
            return [], []

        meas_data, meas_df = get_data('measurements', loc)
        spec_data, spec_df = get_data('specimens', loc)
        samp_data, samp_df = get_data('samples', loc)
        site_data, site_df = get_data('sites', loc)
        loc_data, loc_df = get_data('locations', loc)

        con = cb.Contribution(read_tables=[])
        con.tables['measurements'] = cb.MagicDataFrame(df=meas_df,
                                                       dtype="measurements")
        con.tables['specimens'] = cb.MagicDataFrame(df=spec_df,
                                                    dtype="specimens")
        con.tables['samples'] = cb.MagicDataFrame(df=samp_df, dtype="samples")
        con.tables['sites'] = cb.MagicDataFrame(df=site_df, dtype="sites")
        con.tables['locations'] = cb.MagicDataFrame(df=loc_df,
                                                    dtype="locations")

        if loc == "./":  # if you can't sort by location, do everything together
            con = full_con
            try:
                meas_data = con.tables[
                    'measurements'].convert_to_pmag_data_list()
            except KeyError:
                meas_data = None
            try:
                spec_data = con.tables['specimens'].convert_to_pmag_data_list()
            except KeyError:
                spec_data = None
            try:
                samp_data = con.tables['samples'].convert_to_pmag_data_list()
            except KeyError:
                samp_data = None
            try:
                site_data = con.tables['sites'].convert_to_pmag_data_list()
            except KeyError:
                site_data = None

        crd = 's'
        if 'samples' in con.tables:
            if 'azimuth' in con.tables['samples'].df.columns:
                if any(con.tables['samples'].df['azimuth'].dropna()):
                    crd = 'g'
        if crd == 's':
            print('using specimen coordinates')
        else:
            print('using geographic coordinates')
        if meas_file in filelist and meas_data:  # start with measurement data
            print('working on plotting measurements data')
            data = meas_data
            file_type = 'measurements'
            # looking for  zeq_magic possibilities
            # get all non blank method codes
            AFZrecs = pmag.get_dictitem(data, method_key, 'LT-AF-Z', 'has')
            # get all non blank method codes
            TZrecs = pmag.get_dictitem(data, method_key, 'LT-T-Z', 'has')
            # get all non blank method codes
            MZrecs = pmag.get_dictitem(data, method_key, 'LT-M-Z', 'has')
            # get all dec measurements
            Drecs = pmag.get_dictitem(data, dec_key, '', 'F')
            # get all inc measurements
            Irecs = pmag.get_dictitem(data, inc_key, '', 'F')
            for key in Mkeys:
                Mrecs = pmag.get_dictitem(data, key, '',
                                          'F')  # get intensity data
                if len(Mrecs) > 0:
                    break
            # potential for stepwise demag curves
            if len(AFZrecs) > 0 or len(TZrecs) > 0 or len(MZrecs) > 0 and len(
                    Drecs) > 0 and len(Irecs) > 0 and len(Mrecs) > 0:
                #CMD = 'zeq_magic.py -f tmp_measurements.txt -fsp tmp_specimens.txt -fsa tmp_samples.txt -fsi tmp_sites.txt -sav -fmt ' + fmt + ' -crd ' + crd + " -new"
                CMD = "ipmag.zeq_magic(crd={}, n_plots='all', contribution={}, image_records=True)".format(
                    crd, con)
                print(CMD)
                info_log(CMD, loc)
                res, outfiles, zeq_images = ipmag.zeq_magic(crd=crd,
                                                            n_plots='all',
                                                            contribution=con,
                                                            image_records=True)
                image_recs.extend(zeq_images)
            # looking for  thellier_magic possibilities
            if len(pmag.get_dictitem(data, method_key, 'LP-PI-TRM',
                                     'has')) > 0:
                #CMD = 'thellier_magic.py -f tmp_measurements.txt -fsp tmp_specimens.txt -sav -fmt ' + fmt
                CMD = "ipmag.thellier_magic(n_specs='all', fmt='png', contribution={}, image_records=True)".format(
                    con)
                print(CMD)
                info_log(CMD, loc)
                res, outfiles, thellier_images = ipmag.thellier_magic(
                    n_specs='all',
                    fmt="png",
                    contribution=con,
                    image_records=True)
                image_recs.extend(thellier_images)
            # looking for hysteresis possibilities
            if len(pmag.get_dictitem(data, method_key, 'LP-HYS',
                                     'has')) > 0:  # find hyst experiments
                # check for reqd columns
                missing = check_for_reqd_cols(data, ['treat_temp'])
                if missing:
                    error_log(
                        'LP-HYS method code present, but required column(s) [{}] missing'
                        .format(", ".join(missing)),
                        loc,
                        "quick_hyst.py",
                        con_id=con_id)
                else:
                    #CMD = 'quick_hyst.py -f tmp_measurements.txt -sav -fmt ' + fmt
                    CMD = "ipmag.quick_hyst(fmt='png', n_plots='all', contribution={}, image_records=True)".format(
                        con)
                    print(CMD)
                    info_log(CMD, loc)
                    res, outfiles, quick_hyst_recs = ipmag.quick_hyst(
                        fmt="png",
                        n_plots='all',
                        contribution=con,
                        image_records=True)
                    image_recs.extend(quick_hyst_recs)
            # equal area plots of directional data
            # at measurement level (by specimen)
            if data:
                missing = check_for_reqd_cols(data, ['dir_dec', 'dir_inc'])
                if not missing:
                    #CMD = "eqarea_magic.py -f tmp_measurements.txt -obj spc -sav -no-tilt -fmt " + fmt
                    CMD = "ipmag.eqarea_magic(fmt='png', n_plots='all', ignore_tilt=True, plot_by='spc', contribution={}, source_table='measurements', image_records=True)".format(
                        con)
                    print(CMD)
                    info_log(CMD, loc, "eqarea_magic.py")
                    res, outfiles, eqarea_spc_images = ipmag.eqarea_magic(
                        fmt="png",
                        n_plots='all',
                        ignore_tilt=True,
                        plot_by="spc",
                        contribution=con,
                        source_table="measurements",
                        image_records=True)
                    image_recs.extend(eqarea_spc_images)

        else:
            if VERBOSE:
                print('-I- No measurement data found')

        # site data
        if results_file in filelist and site_data:
            print('-I- result file found', results_file)
            data = site_data
            file_type = 'sites'
            print('-I- working on site directions')
            print('number of datapoints: ', len(data), loc)
            dec_key = 'dir_dec'
            inc_key = 'dir_inc'
            int_key = 'int_abs'
            SiteDIs = pmag.get_dictitem(data, dec_key, "", 'F')  # find decs
            SiteDIs = pmag.get_dictitem(SiteDIs, inc_key, "",
                                        'F')  # find decs and incs
            dir_data_found = len(SiteDIs)
            print('{} Dec/inc pairs found'.format(dir_data_found))
            if SiteDIs:
                # then convert tilt_corr_key to correct format
                old_SiteDIs = SiteDIs
                SiteDIs = []
                for rec in old_SiteDIs:
                    if tilt_corr_key not in rec:
                        rec[tilt_corr_key] = "0"
                    # make sure tilt_corr_key is a correct format
                    try:
                        rec[tilt_corr_key] = str(int(float(
                            rec[tilt_corr_key])))
                    except ValueError:
                        rec[tilt_corr_key] = "0"
                    SiteDIs.append(rec)

                print('number of individual directions: ', len(SiteDIs))
                # tilt corrected coordinates
                SiteDIs_t = pmag.get_dictitem(SiteDIs,
                                              tilt_corr_key,
                                              '100',
                                              'T',
                                              float_to_int=True)
                print('number of tilt corrected directions: ', len(SiteDIs_t))
                SiteDIs_g = pmag.get_dictitem(
                    SiteDIs, tilt_corr_key, '0', 'T',
                    float_to_int=True)  # geographic coordinates
                print('number of geographic  directions: ', len(SiteDIs_g))
                SiteDIs_s = pmag.get_dictitem(
                    SiteDIs, tilt_corr_key, '-1', 'T',
                    float_to_int=True)  # sample coordinates
                print('number of sample  directions: ', len(SiteDIs_s))
                SiteDIs_x = pmag.get_dictitem(SiteDIs, tilt_corr_key, '',
                                              'T')  # no coordinates
                print('number of no coordinates  directions: ', len(SiteDIs_x))
                if len(SiteDIs_t) > 0 or len(SiteDIs_g) > 0 or len(
                        SiteDIs_s) > 0 or len(SiteDIs_x) > 0:
                    CRD = ""
                    if len(SiteDIs_t) > 0:
                        CRD = ' -crd t'
                        crd = "t"
                    elif len(SiteDIs_g) > 0:
                        CRD = ' -crd g'
                        crd = "g"
                    elif len(SiteDIs_s) > 0:
                        CRD = ' -crd s'
                        crd = "s"
                    #CMD = 'eqarea_magic.py -f tmp_sites.txt -fsp tmp_specimens.txt -fsa tmp_samples.txt -flo tmp_locations.txt -sav -fmt ' + fmt + CRD
                    CMD = "ipmag.eqarea_magic(crd={}, fmt='png', n_plots='all', contribution={}, source_table='sites')".format(
                        crd, con)
                    print(CMD)
                    info_log(CMD, loc)
                    res, outfiles, eqarea_site_recs = ipmag.eqarea_magic(
                        crd=crd,
                        fmt="png",
                        n_plots='all',
                        contribution=con,
                        source_table="sites",
                        image_records=True)
                    image_recs.extend(eqarea_site_recs)
                else:
                    if dir_data_found:
                        error_log(
                            '{} dec/inc pairs found, but no equal area plots were made'
                            .format(dir_data_found),
                            loc,
                            "equarea_magic.py",
                            con_id=con_id)
            #
            print('-I- working on VGP map')
            VGPs = pmag.get_dictitem(SiteDIs, 'vgp_lat', "",
                                     'F')  # are there any VGPs?
            if len(VGPs) > 0:  # YES!
                #CMD = 'vgpmap_magic.py -f tmp_sites.txt -prj moll -res c -sym ro 5 -sav -fmt png'
                CMD = "ipmag.vgpmap_magic(proj='moll', sym='ro', size=5, fmt='png', contribution={})".format(
                    con)
                print(CMD)
                info_log(CMD, loc, 'vgpmap_magic.py')
                res, outfiles, vgpmap_recs = ipmag.vgpmap_magic(
                    proj='moll',
                    sym='ro',
                    size=5,
                    fmt="png",
                    contribution=con,
                    image_records=True)
                image_recs.extend(vgpmap_recs)
            else:
                print('-I- No vgps found')

            print('-I- Look for intensities')
            # is there any intensity data?
            if site_data:
                if int_key in site_data[0].keys():
                    # old way, wasn't working right:
                    #CMD = 'magic_select.py  -key ' + int_key + ' 0. has -F tmp1.txt -f tmp_sites.txt'
                    Selection = pmag.get_dictkey(site_data, int_key, dtype="f")
                    selection = [i * 1e6 for i in Selection if i != 0]
                    loc = loc.replace(" ", "_")
                    if loc == "./":
                        loc_name = ""
                    else:
                        loc_name = loc
                    histfile = 'LO:_' + loc_name + \
                        '_TY:_intensities_histogram:_.' + fmt
                    CMD = "histplot.py -twin -b 1 -xlab 'Intensity (uT)' -sav -f intensities.txt -F " + histfile
                    CMD = "ipmag.histplot(data=selection, outfile=histfile, xlab='Intensity (uT)', binsize=1, norm=-1, save_plots=True)".format(
                        histfile)
                    info_log(CMD, loc)
                    print(CMD)
                    ipmag.histplot(data=selection,
                                   outfile=histfile,
                                   xlab="Intensity (uT)",
                                   binsize=1,
                                   norm=-1,
                                   save_plots=True)
                    histplot_rec = {
                        'file': histfile,
                        'type': 'Other',
                        'title': 'Intensity histogram',
                        'software_packages': version.version,
                        'keywords': "",
                        'timestamp': datetime.date.today().isoformat()
                    }
                    image_recs.append(histplot_rec)
                else:
                    print('-I- No intensities found')
            else:
                print('-I- No intensities found')

        ##
        if hyst_file in filelist and spec_data:
            print('working on hysteresis', hyst_file)
            data = spec_data
            file_type = 'specimens'
            hdata = pmag.get_dictitem(data, hyst_bcr_key, '', 'F')
            hdata = pmag.get_dictitem(hdata, hyst_mr_key, '', 'F')
            hdata = pmag.get_dictitem(hdata, hyst_ms_key, '', 'F')
            # there are data for a dayplot
            hdata = pmag.get_dictitem(hdata, hyst_bc_key, '', 'F')
            if len(hdata) > 0:
                CMD = "ipmag.dayplot_magic(save=True, fmt='png', contribution={}, image_records=True)".format(
                    con)
                info_log(CMD, loc)
                print(CMD)
                res, outfiles, dayplot_recs = ipmag.dayplot_magic(
                    save=True, fmt='png', contribution=con, image_records=True)
                image_recs.extend(dayplot_recs)
            else:
                print('no hysteresis data found')
        if aniso_file in filelist and spec_data:  # do anisotropy plots if possible
            print('working on anisotropy', aniso_file)
            data = spec_data
            file_type = 'specimens'

            # make sure there is some anisotropy data
            if not data:
                print('No anisotropy data found')
            elif 'aniso_s' not in data[0]:
                print('No anisotropy data found')
            else:
                # get specimen coordinates
                if aniso_tilt_corr_key not in data[0]:
                    sdata = data
                else:
                    sdata = pmag.get_dictitem(data,
                                              aniso_tilt_corr_key,
                                              '-1',
                                              'T',
                                              float_to_int=True)
                # get specimen coordinates
                gdata = pmag.get_dictitem(data,
                                          aniso_tilt_corr_key,
                                          '0',
                                          'T',
                                          float_to_int=True)
                # get specimen coordinates
                tdata = pmag.get_dictitem(data,
                                          aniso_tilt_corr_key,
                                          '100',
                                          'T',
                                          float_to_int=True)
                if len(sdata) > 3:
                    CMD = "ipmag.aniso_magic(iboot=0, ihext=1, crd='s', fmt='png', contribution={})".format(
                        con)
                    print(CMD)
                    info_log(CMD, loc)
                    res, files, aniso_recs = ipmag.aniso_magic(
                        iboot=0,
                        ihext=1,
                        crd="s",
                        fmt="png",
                        contribution=con,
                        image_records=True)
                    image_recs.extend(aniso_recs)
                if len(gdata) > 3:
                    CMD = "ipmag.aniso_magic(iboot=0, ihext=1, crd='g', fmt='png', contribution={})".format(
                        con)
                    print(CMD)
                    info_log(CMD, loc)
                    res, files, aniso_recs = ipmag.aniso_magic(
                        iboot=0,
                        ihext=1,
                        crd="g",
                        fmt="png",
                        contribution=con,
                        image_records=True)
                    image_recs.extend(aniso_recs)
                if len(tdata) > 3:
                    CMD = "ipmag.aniso_magic(iboot=0, ihext=1, crd='g', fmt='png', contribution={})".format(
                        con)
                    print(CMD)
                    info_log(CMD, loc)
                    res, files, aniso_recs = ipmag.aniso_magic(
                        iboot=0,
                        ihext=1,
                        crd="t",
                        fmt="png",
                        contribution=con,
                        image_records=True)
                    image_recs.extend(aniso_recs)

        # remove temporary files
        for fname in glob.glob('tmp*.txt'):
            os.remove(fname)

    # now we need full contribution data
    if loc_file in filelist and loc_data:
        #data, file_type = pmag.magic_read(loc_file)  # read in location data
        data = loc_data
        print('-I- working on pole map')
        poles = pmag.get_dictitem(data, 'pole_lat', "",
                                  'F')  # are there any poles?
        poles = pmag.get_dictitem(poles, 'pole_lon', "",
                                  'F')  # are there any poles?
        if len(poles) > 0:  # YES!
            CMD = 'polemap_magic.py -sav -fmt png -rev gv 40'
            CMD = 'ipmag.polemap_magic(flip=True, rsym="gv", rsymsize=40, fmt="png", contribution={})'.format(
                full_con)
            print(CMD)
            info_log(CMD, "all locations", "polemap_magic.py")
            res, outfiles, polemap_recs = ipmag.polemap_magic(
                flip=True,
                rsym="gv",
                rsymsize=40,
                fmt="png",
                contribution=full_con,
                image_records=True)
            image_recs.extend(polemap_recs)
        else:
            print('-I- No poles found')

    if image_recs:
        new_image_file = os.path.join(dir_path, 'new_images.txt')
        old_image_file = os.path.join(dir_path, 'images.txt')
        pmag.magic_write(new_image_file, image_recs, 'images')
        if os.path.exists(old_image_file):
            ipmag.combine_magic([old_image_file, new_image_file],
                                outfile=old_image_file,
                                magic_table="images",
                                dir_path=dir_path)
        else:
            os.rename(new_image_file, old_image_file)
    if set_env.isServer:
        thumbnails.make_thumbnails(dir_path)
Ejemplo n.º 4
0
def main():
    """
    NAME
        lowrie_magic.py

    DESCRIPTION
       plots intensity decay curves for Lowrie experiments

    SYNTAX 
        lowrie_magic.py -h [command line options]
    
    INPUT 
       takes magic_measurements formatted input files
    
    OPTIONS
        -h prints help message and quits
        -f FILE: specify input file, default is magic_measurements.txt
        -N do not normalize by maximum magnetization
        -fmt [svg, pdf, eps, png] specify fmt, default is svg
        -sav saves plots and quits
    """
    fmt, plot = 'svg', 0
    FIG = {}  # plot dictionary
    FIG['lowrie'] = 1  # demag is figure 1
    pmagplotlib.plot_init(FIG['lowrie'], 6, 6)
    norm = 1  # default is to normalize by maximum axis
    in_file, dir_path = 'magic_measurements.txt', '.'
    if len(sys.argv) > 1:
        if '-WD' in sys.argv:
            ind = sys.argv.index('-WD')
            dir_path = sys.argv[ind + 1]
        if '-h' in sys.argv:
            print(main.__doc__)
            sys.exit()
        if '-N' in sys.argv: norm = 0  # don't normalize
        if '-sav' in sys.argv: plot = 1  # don't normalize
        if '-fmt' in sys.argv:  # sets input filename
            ind = sys.argv.index("-fmt")
            fmt = sys.argv[ind + 1]
        if '-f' in sys.argv:  # sets input filename
            ind = sys.argv.index("-f")
            in_file = sys.argv[ind + 1]
    else:
        print(main.__doc__)
        print('you must supply a file name')
        sys.exit()
    in_file = dir_path + '/' + in_file
    print(in_file)
    PmagRecs, file_type = pmag.magic_read(in_file)
    if file_type != "magic_measurements":
        print('bad input file')
        sys.exit()
    PmagRecs = pmag.get_dictitem(PmagRecs, 'magic_method_codes', 'LP-IRM-3D',
                                 'has')  # get all 3D IRM records
    if len(PmagRecs) == 0:
        print('no records found')
        sys.exit()
    specs = pmag.get_dictkey(PmagRecs, 'er_specimen_name', '')
    sids = []
    for spec in specs:
        if spec not in sids:
            sids.append(spec)  # get list of unique specimen names
    for spc in sids:  # step through the specimen names
        print(spc)
        specdata = pmag.get_dictitem(PmagRecs, 'er_specimen_name', spc,
                                     'T')  # get all this one's data
        DIMs, Temps = [], []
        for dat in specdata:  # step through the data
            DIMs.append([
                float(dat['measurement_dec']),
                float(dat['measurement_inc']),
                float(dat['measurement_magn_moment'])
            ])
            Temps.append(float(dat['treatment_temp']) - 273.)
        carts = pmag.dir2cart(DIMs).transpose()
        if norm == 1:  # want to normalize
            nrm = (DIMs[0][2])  # normalize by NRM
            ylab = "M/M_o"
        else:
            nrm = 1.  # don't normalize
            ylab = "Magnetic moment (Am^2)"
        xlab = "Temperature (C)"
        pmagplotlib.plotXY(FIG['lowrie'],
                           Temps,
                           old_div(abs(carts[0]), nrm),
                           sym='r-')
        pmagplotlib.plotXY(FIG['lowrie'],
                           Temps,
                           old_div(abs(carts[0]), nrm),
                           sym='ro')  # X direction
        pmagplotlib.plotXY(FIG['lowrie'],
                           Temps,
                           old_div(abs(carts[1]), nrm),
                           sym='c-')
        pmagplotlib.plotXY(FIG['lowrie'],
                           Temps,
                           old_div(abs(carts[1]), nrm),
                           sym='cs')  # Y direction
        pmagplotlib.plotXY(FIG['lowrie'],
                           Temps,
                           old_div(abs(carts[2]), nrm),
                           sym='k-')
        pmagplotlib.plotXY(FIG['lowrie'],
                           Temps,
                           old_div(abs(carts[2]), nrm),
                           sym='k^',
                           title=spc,
                           xlab=xlab,
                           ylab=ylab)  # Z direction
        files = {'lowrie': 'lowrie:_' + spc + '_.' + fmt}
        if plot == 0:
            pmagplotlib.drawFIGS(FIG)
            ans = input('S[a]ve figure? [q]uit, <return> to continue   ')
            if ans == 'a':
                pmagplotlib.saveP(FIG, files)
            elif ans == 'q':
                sys.exit()
        else:
            pmagplotlib.saveP(FIG, files)
        pmagplotlib.clearFIG(FIG['lowrie'])
Ejemplo n.º 5
0
def main(command_line=True, **kwargs):
    """
    NAME
        iodp_jr6_magic.py

    DESCRIPTION
        converts shipboard .jr6 format files to magic_measurements format files

    SYNTAX
        iodp_jr6_magic.py [command line options]

    OPTIONS
        -h: prints the help message and quits.
        -f FILE: specify  input file, or
        -F FILE: specify output file, default is magic_measurements.txt
        -fsa FILE: specify  er_samples.txt file for sample name lookup ,
           default is 'er_samples.txt'
        -loc HOLE : specify hole name (U1456A)
        -A: don't average replicate measurements

    INPUT
        JR6 .jr6 format file
    """
    def fix_separation(filename, new_filename):
        old_file = open(filename, 'r')
        data = old_file.readlines()
        new_data = []
        for line in data:
            new_line = line.replace('-', ' -')
            new_line = new_line.replace('  ', ' ')
            new_data.append(new_line)
        new_file = open(new_filename, 'w')
        for s in new_data:
            new_file.write(s)
        old_file.close()
        new_file.close()
        return new_filename

    def old_fix_separation(filename, new_filename):
        old_file = open(filename, 'r')
        data = old_file.readlines()
        new_data = []
        for line in data:
            new_line = []
            for i in line.split():
                if '-' in i[1:]:
                    lead_char = '-' if i[0] == '-' else ''
                    if lead_char:
                        v = i[1:].split('-')
                    else:
                        v = i.split('-')
                    new_line.append(lead_char + v[0])
                    new_line.append('-' + v[1])
                else:
                    new_line.append(i)
            new_line = (' '.join(new_line)) + '\n'
            new_data.append(new_line)
        new_file = open(new_filename, 'w')
        for s in new_data:
            new_file.write(s)
        new_file.close()
        old_file.close()
        return new_filename


# initialize some stuff

    noave = 0
    volume = 2.5**3  #default volume is a 2.5cm cube
    inst = ""
    samp_con, Z = '5', ""
    missing = 1
    demag = "N"
    er_location_name = "unknown"
    citation = 'This study'
    args = sys.argv
    meth_code = "LP-NO"
    version_num = pmag.get_version()
    dir_path = '.'
    MagRecs = []
    samp_file = 'er_samples.txt'
    meas_file = 'magic_measurements.txt'
    mag_file = ''
    #
    # get command line arguments
    #
    if command_line:
        if '-WD' in sys.argv:
            ind = sys.argv.index('-WD')
            dir_path = sys.argv[ind + 1]
        if '-ID' in sys.argv:
            ind = sys.argv.index('-ID')
            input_dir_path = sys.argv[ind + 1]
        else:
            input_dir_path = dir_path
        output_dir_path = dir_path
        if "-h" in args:
            print(main.__doc__)
            return False
        if '-F' in args:
            ind = args.index("-F")
            meas_file = args[ind + 1]
        if '-fsa' in args:
            ind = args.index("-fsa")
            samp_file = args[ind + 1]
            if samp_file[0] != '/':
                samp_file = os.path.join(input_dir_path, samp_file)
            try:
                open(samp_file, 'r')
                ErSamps, file_type = pmag.magic_read(samp_file)
            except:
                print(samp_file, ' not found: ')
                print(
                    '   download csv file and import to MagIC with iodp_samples_magic.py'
                )
        if '-f' in args:
            ind = args.index("-f")
            mag_file = args[ind + 1]
        if "-loc" in args:
            ind = args.index("-loc")
            er_location_name = args[ind + 1]
        if "-A" in args:
            noave = 1
    if not command_line:
        dir_path = kwargs.get('dir_path', '.')
        input_dir_path = kwargs.get('input_dir_path', dir_path)
        output_dir_path = dir_path
        meas_file = kwargs.get('meas_file', 'magic_measurements.txt')
        mag_file = kwargs.get('mag_file', '')
        samp_file = kwargs.get('samp_file', 'er_samples.txt')
        specnum = kwargs.get('specnum', 1)
        samp_con = kwargs.get('samp_con', '1')
        if len(str(samp_con)) > 1:
            samp_con, Z = samp_con.split('-')
        else:
            Z = ''
        er_location_name = kwargs.get('er_location_name', '')
        noave = kwargs.get('noave', 0)  # default (0) means DO average
        meth_code = kwargs.get('meth_code', "LP-NO")

    # format variables
    meth_code = meth_code + ":FS-C-DRILL-IODP:SP-SS-C:SO-V"
    meth_code = meth_code.strip(":")
    if mag_file:
        mag_file = os.path.join(input_dir_path, mag_file)
    samp_file = os.path.join(input_dir_path, samp_file)
    meas_file = os.path.join(output_dir_path, meas_file)

    # validate variables
    if not mag_file:
        print("You must provide an IODP_jr6 format file")
        return False, "You must provide an IODP_jr6 format file"
    if not os.path.exists(mag_file):
        print(
            'The input file you provided: {} does not exist.\nMake sure you have specified the correct filename AND correct input directory name.'
            .format(mag_file))
        return False, 'The input file you provided: {} does not exist.\nMake sure you have specified the correct filename AND correct input directory name.'.format(
            mag_file)
    if not os.path.exists(samp_file):
        print(
            "Your input directory:\n{}\nmust contain an er_samples.txt file, or you must explicitly provide one"
            .format(input_dir_path))
        return False, "Your input directory:\n{}\nmust contain an er_samples.txt file, or you must explicitly provide one".format(
            input_dir_path)

    # parse data
    temp = os.path.join(output_dir_path, 'temp.txt')
    fix_separation(mag_file, temp)
    samples, filetype = pmag.magic_read(samp_file)
    with open(temp, 'r') as finput:
        lines = finput.readlines()
    os.remove(temp)
    for line in lines:
        MagRec = {}
        line = line.split()
        spec_text_id = line[0].split('_')[1]
        SampRecs = pmag.get_dictitem(samples, 'er_sample_alternatives',
                                     spec_text_id, 'has')
        if len(SampRecs) > 0:  # found one
            MagRec['er_specimen_name'] = SampRecs[0]['er_sample_name']
            MagRec['er_sample_name'] = MagRec['er_specimen_name']
            MagRec['er_site_name'] = MagRec['er_specimen_name']
            MagRec["er_citation_names"] = "This study"
            MagRec['er_location_name'] = er_location_name
            MagRec['magic_software_packages'] = version_num
            MagRec["treatment_temp"] = '%8.3e' % (273)  # room temp in kelvin
            MagRec["measurement_temp"] = '%8.3e' % (273)  # room temp in kelvin
            MagRec["measurement_flag"] = 'g'
            MagRec["measurement_standard"] = 'u'
            MagRec["measurement_number"] = '1'
            MagRec["treatment_ac_field"] = '0'

            volume = float(SampRecs[0]['sample_volume'])
            x = float(line[4])
            y = float(line[3])
            negz = float(line[2])
            cart = np.array([x, y, -negz]).transpose()
            direction = pmag.cart2dir(cart).transpose()
            expon = float(line[5])
            magn_volume = direction[2] * (10.0**expon)
            moment = magn_volume * volume

            MagRec["measurement_magn_moment"] = str(moment)
            MagRec["measurement_magn_volume"] = str(
                magn_volume)  #str(direction[2] * (10.0 ** expon))
            MagRec["measurement_dec"] = '%7.1f' % (direction[0])
            MagRec["measurement_inc"] = '%7.1f' % (direction[1])

            step = line[1]
            if step == 'NRM':
                meas_type = "LT-NO"
            elif step[0:2] == 'AD':
                meas_type = "LT-AF-Z"
                treat = float(step[2:])
                MagRec["treatment_ac_field"] = '%8.3e' % (
                    treat * 1e-3)  # convert from mT to tesla
            elif step[0:2] == 'TD':
                meas_type = "LT-T-Z"
                treat = float(step[2:])
                MagRec["treatment_temp"] = '%8.3e' % (treat + 273.
                                                      )  # temp in kelvin
            elif step[0:3] == 'ARM':  #
                meas_type = "LT-AF-I"
                treat = float(row['step'][3:])
                MagRec["treatment_ac_field"] = '%8.3e' % (
                    treat * 1e-3)  # convert from mT to tesla
                MagRec["treatment_dc_field"] = '%8.3e' % (
                    50e-6)  # assume 50uT DC field
                MagRec[
                    "measurement_description"] = 'Assumed DC field - actual unknown'
            elif step[0:3] == 'IRM':  #
                meas_type = "LT-IRM"
                treat = float(step[3:])
                MagRec["treatment_dc_field"] = '%8.3e' % (
                    treat * 1e-3)  # convert from mT to tesla
            else:
                print('unknown treatment type for ', row)
                return False, 'unknown treatment type for ', row

            MagRec['magic_method_codes'] = meas_type
            MagRecs.append(MagRec.copy())

        else:
            print('sample name not found: ', row['specname'])
    MagOuts = pmag.measurements_methods(MagRecs, noave)
    file_created, error_message = pmag.magic_write(meas_file, MagOuts,
                                                   'magic_measurements')
    if file_created:
        return True, meas_file
    else:
        return False, 'Results not written to file'
Ejemplo n.º 6
0
def main():
    """
    NAME
        lowrie.py

    DESCRIPTION
       plots intensity decay curves for Lowrie experiments

    SYNTAX 
        lowrie -h [command line options]
    
    INPUT 
       takes SIO formatted input files
    
    OPTIONS
        -h prints help message and quits
        -f FILE: specify input file
        -N do not normalize by maximum magnetization
        -fmt [svg, pdf, eps, png] specify fmt, default is svg
        -sav save plots and quit
    """
    fmt, plot = "svg", 0
    FIG = {}  # plot dictionary
    FIG["lowrie"] = 1  # demag is figure 1
    pmagplotlib.plot_init(FIG["lowrie"], 6, 6)
    norm = 1  # default is to normalize by maximum axis
    if len(sys.argv) > 1:
        if "-h" in sys.argv:
            print main.__doc__
            sys.exit()
        if "-N" in sys.argv:
            norm = 0  # don't normalize
        if "-sav" in sys.argv:
            plot = 1  # don't normalize
        if "-fmt" in sys.argv:  # sets input filename
            ind = sys.argv.index("-fmt")
            fmt = sys.argv[ind + 1]
        if "-f" in sys.argv:  # sets input filename
            ind = sys.argv.index("-f")
            in_file = sys.argv[ind + 1]
        else:
            print main.__doc__
            print "you must supply a file name"
            sys.exit()
    else:
        print main.__doc__
        print "you must supply a file name"
        sys.exit()
    data = open(in_file).readlines()  # open the SIO format file
    PmagRecs = []  # set up a list for the results
    keys = ["specimen", "treatment", "csd", "M", "dec", "inc"]
    for line in data:
        PmagRec = {}
        rec = line.replace("\n", "").split()
        for k in range(len(keys)):
            PmagRec[keys[k]] = rec[k]
        PmagRecs.append(PmagRec)
    specs = pmag.get_dictkey(PmagRecs, "specimen", "")
    sids = []
    for spec in specs:
        if spec not in sids:
            sids.append(spec)  # get list of unique specimen names
    for spc in sids:  # step through the specimen names
        print spc
        specdata = pmag.get_dictitem(PmagRecs, "specimen", spc, "T")  # get all this one's data
        DIMs, Temps = [], []
        for dat in specdata:  # step through the data
            DIMs.append([float(dat["dec"]), float(dat["inc"]), float(dat["M"]) * 1e-3])
            Temps.append(float(dat["treatment"]))
        carts = pmag.dir2cart(DIMs).transpose()
        # if norm==1: # want to normalize
        #    nrm=max(max(abs(carts[0])),max(abs(carts[1])),max(abs(carts[2]))) # by maximum of x,y,z values
        #    ylab="M/M_max"
        if norm == 1:  # want to normalize
            nrm = DIMs[0][2]  # normalize by NRM
            ylab = "M/M_o"
        else:
            nrm = 1.0  # don't normalize
            ylab = "Magnetic moment (Am^2)"
        xlab = "Temperature (C)"
        pmagplotlib.plotXY(FIG["lowrie"], Temps, abs(carts[0]) / nrm, sym="r-")
        pmagplotlib.plotXY(FIG["lowrie"], Temps, abs(carts[0]) / nrm, sym="ro")  # X direction
        pmagplotlib.plotXY(FIG["lowrie"], Temps, abs(carts[1]) / nrm, sym="c-")
        pmagplotlib.plotXY(FIG["lowrie"], Temps, abs(carts[1]) / nrm, sym="cs")  # Y direction
        pmagplotlib.plotXY(FIG["lowrie"], Temps, abs(carts[2]) / nrm, sym="k-")
        pmagplotlib.plotXY(
            FIG["lowrie"], Temps, abs(carts[2]) / nrm, sym="k^", title=spc, xlab=xlab, ylab=ylab
        )  # Z direction
        files = {"lowrie": "lowrie:_" + spc + "_." + fmt}
        if plot == 0:
            pmagplotlib.drawFIGS(FIG)
            ans = raw_input("S[a]ve figure? [q]uit, <return> to continue   ")
            if ans == "a":
                pmagplotlib.saveP(FIG, files)
            elif ans == "q":
                sys.exit()
        else:
            pmagplotlib.saveP(FIG, files)
        pmagplotlib.clearFIG(FIG["lowrie"])
Ejemplo n.º 7
0
def main():
    """
    NAME
        sites_locations.py

    DESCRIPTION
        reads in er_sites.txt file and finds all locations and bounds of locations
        outputs er_locations.txt file

    SYNTAX
        sites_locations.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f: specimen input er_sites format file, default is "er_sites.txt"
        -F: locations table: default is "er_locations.txt"
    """
    # set defaults
    site_file = "er_sites.txt"
    loc_file = "er_locations.txt"
    Names, user = [], "unknown"
    Done = []
    version_num = pmag.get_version()
    args = sys.argv
    dir_path = '.'
    # get command line stuff
    if '-WD' in args:
        ind = args.index("-WD")
        dir_path = args[ind + 1]
    if "-h" in args:
        print(main.__doc__)
        sys.exit()
    if '-f' in args:
        ind = args.index("-f")
        site_file = args[ind + 1]
    if '-F' in args:
        ind = args.index("-F")
        loc_file = args[ind + 1]
    #
    site_file = dir_path + '/' + site_file
    loc_file = dir_path + '/' + loc_file
    Sites, file_type = pmag.magic_read(site_file)
    if file_type != 'er_sites':
        print(file_type)
        print(file_type, "This is not a valid er_sites file ")
        sys.exit()
    # read in site data
    #
    LocNames, Locations = [], []
    for site in Sites:
        if site['er_location_name'] not in LocNames:  # new location name
            LocNames.append(site['er_location_name'])
            sites_locs = pmag.get_dictitem(Sites, 'er_location_name',
                                           site['er_location_name'],
                                           'T')  # get all sites for this loc
            lats = pmag.get_dictkey(sites_locs, 'site_lat',
                                    'f')  # get all the latitudes as floats
            lons = pmag.get_dictkey(sites_locs, 'site_lon',
                                    'f')  # get all the longitudes as floats
            LocRec = {
                'er_citation_names': 'This study',
                'er_location_name': site['er_location_name'],
                'location_type': ''
            }
            LocRec['location_begin_lat'] = str(min(lats))
            LocRec['location_end_lat'] = str(max(lats))
            LocRec['location_begin_lon'] = str(min(lons))
            LocRec['location_end_lon'] = str(max(lons))
            Locations.append(LocRec)
    if len(Locations) > 0:
        pmag.magic_write(loc_file, Locations, "er_locations")
        print("Locations written to: ", loc_file)
Ejemplo n.º 8
0
def main(command_line=True, **kwargs):
    """
    NAME
        iodp_dscr_magic.py

    DESCRIPTION
        converts ODP LIMS discrete sample format files to magic_measurements format files


    SYNTAX
        iodp_descr_magic.py [command line options]

    OPTIONS
        -h: prints the help message and quits.
        -f FILE: specify input .csv file, default is all in directory
        -F FILE: specify output  measurements file, default is magic_measurements.txt
        -A : don't average replicate measurements
    INPUTS
     IODP discrete sample .csv file format exported from LIMS database
    """
    #
    # initialize defaults
    version_num = pmag.get_version()
    meas_file = 'magic_measurements.txt'
    csv_file = ''
    MagRecs, Specs = [], []
    citation = "This study"
    dir_path, demag = '.', 'NRM'
    args = sys.argv
    noave = 0
    # get command line args
    if command_line:
        if '-WD' in args:
            ind = args.index("-WD")
            dir_path = args[ind + 1]
        if '-ID' in args:
            ind = args.index('-ID')
            input_dir_path = args[ind + 1]
        else:
            input_dir_path = dir_path
        output_dir_path = dir_path
        if "-h" in args:
            print(main.__doc__)
            return False
        if "-A" in args: noave = 1
        if '-f' in args:
            ind = args.index("-f")
            csv_file = args[ind + 1]
        if '-F' in args:
            ind = args.index("-F")
            meas_file = args[ind + 1]

    if not command_line:
        dir_path = kwargs.get('dir_path', '.')
        input_dir_path = kwargs.get('input_dir_path', dir_path)
        output_dir_path = dir_path  # rename dir_path after input_dir_path is set
        noave = kwargs.get('noave', 0)  # default (0) is DO average
        csv_file = kwargs.get('csv_file', '')
        meas_file = kwargs.get('meas_file', 'magic_measurements.txt')

    # format variables

    meas_file = os.path.join(output_dir_path, meas_file)
    if csv_file == "":
        filelist = os.listdir(
            input_dir_path)  # read in list of files to import
    else:
        csv_file = os.path.join(input_dir_path, csv_file)
        filelist = [csv_file]
    # parsing the data
    file_found = False
    for fname in filelist:  # parse each file
        if fname[-3:].lower() == 'csv':
            file_found = True
            print('processing: ', fname)
            with open(fname, 'r') as finput:
                data = list(finput.readlines())
            keys = data[0].replace('\n',
                                   '').split(',')  # splits on underscores
            interval_key = "Offset (cm)"
            demag_key = "Demag level (mT)"
            offline_demag_key = "Treatment Value (mT or &deg;C)"
            offline_treatment_type = "Treatment type"
            run_key = "Test No."
            if "Inclination background + tray corrected  (deg)" in keys:
                inc_key = "Inclination background + tray corrected  (deg)"
            if "Inclination background &amp; tray corrected (deg)" in keys:
                inc_key = "Inclination background &amp; tray corrected (deg)"
            if "Declination background + tray corrected (deg)" in keys:
                dec_key = "Declination background + tray corrected (deg)"
            if "Declination background &amp; tray corrected (deg)" in keys:
                dec_key = "Declination background &amp; tray corrected (deg)"
            if "Intensity background + tray corrected  (A/m)" in keys:
                int_key = "Intensity background + tray corrected  (A/m)"
            if "Intensity background &amp; tray corrected (A/m)" in keys:
                int_key = "Intensity background &amp; tray corrected (A/m)"
            type = "Type"
            sect_key = "Sect"
            half_key = "A/W"
            # need to add volume_key to LORE format!
            if "Sample volume (cm^3)" in keys:
                volume_key = "Sample volume (cm^3)"
            if "Sample volume (cc)" in keys: volume_key = "Sample volume (cc)"
            if "Sample volume (cm&sup3;)" in keys:
                volume_key = "Sample volume (cm&sup3;)"
            for line in data[1:]:
                InRec = {}
                for k in range(len(keys)):
                    InRec[keys[k]] = line.split(',')[k]
                inst = "IODP-SRM"
                MagRec = {}
                expedition = InRec['Exp']
                location = InRec['Site'] + InRec['Hole']
                offsets = InRec[interval_key].split(
                    '.'
                )  # maintain consistency with er_samples convention of using top interval
                if len(offsets) == 1:
                    offset = int(offsets[0])
                else:
                    offset = int(offsets[0]) - 1
                #interval=str(offset+1)# maintain consistency with er_samples convention of using top interval
                interval = str(
                    offset
                )  # maintain consistency with er_samples convention of using top interval
                specimen = expedition + '-' + location + '-' + InRec[
                    'Core'] + InRec[type] + "-" + InRec[
                        sect_key] + '_' + InRec[half_key] + '_' + interval
                if specimen not in Specs: Specs.append(specimen)
                MagRec['er_expedition_name'] = expedition
                MagRec['er_location_name'] = location
                MagRec['er_site_name'] = specimen
                MagRec['er_citation_names'] = citation
                MagRec['er_specimen_name'] = specimen
                MagRec['er_sample_name'] = specimen
                MagRec['er_site_name'] = specimen
                # set up measurement record - default is NRM
                MagRec['magic_software_packages'] = version_num
                MagRec["treatment_temp"] = '%8.3e' % (273
                                                      )  # room temp in kelvin
                MagRec["measurement_temp"] = '%8.3e' % (
                    273)  # room temp in kelvin
                MagRec["treatment_ac_field"] = '0'
                MagRec["treatment_dc_field"] = '0'
                MagRec["treatment_dc_field_phi"] = '0'
                MagRec["treatment_dc_field_theta"] = '0'
                MagRec["measurement_flag"] = 'g'  # assume all data are "good"
                MagRec[
                    "measurement_standard"] = 'u'  # assume all data are "good"
                MagRec["measurement_csd"] = '0'  # assume all data are "good"
                volume = InRec[volume_key]
                MagRec["magic_method_codes"] = 'LT-NO'
                sort_by = 'treatment_ac_field'  # set default to AF demag
                if InRec[demag_key] != "0":
                    MagRec['magic_method_codes'] = 'LT-AF-Z'
                    inst = inst + ':IODP-SRM-AF'  # measured on shipboard in-line 2G AF
                    treatment_value = float(
                        InRec[demag_key].strip('"')) * 1e-3  # convert mT => T
                    if sort_by == "treatment_ac_field":
                        MagRec[
                            "treatment_ac_field"] = treatment_value  # AF demag in treat mT => T
                    else:
                        MagRec["treatment_ac_field"] = str(
                            treatment_value)  # AF demag in treat mT => T
                elif offline_treatment_type in list(
                        InRec.keys()) and InRec[offline_treatment_type] != "":
                    if "Lowrie" in InRec['Comments']:
                        MagRec['magic_method_codes'] = 'LP-IRM-3D'
                        treatment_value = float(InRec[offline_demag_key].strip(
                            '"')) + 273.  # convert C => K
                        MagRec["treatment_temp"] = treatment_value
                        MagRec["treatment_ac_field"] = "0"
                        sort_by = 'treatment_temp'
                    elif 'Isothermal' in InRec[offline_treatment_type]:
                        MagRec['magic_method_codes'] = 'LT-IRM'
                        treatment_value = float(InRec[offline_demag_key].strip(
                            '"')) * 1e-3  # convert mT => T
                        MagRec["treatment_dc_field"] = treatment_value
                        MagRec["treatment_ac_field"] = "0"
                        sort_by = 'treatment_dc_field'
                MagRec[
                    "measurement_standard"] = 'u'  # assume all data are "good"
                vol = float(volume) * 1e-6  # convert from cc to m^3
                if run_key in list(InRec.keys()):
                    run_number = InRec[run_key]
                    MagRec['external_database_ids'] = run_number
                    MagRec['external_database_names'] = 'LIMS'
                else:
                    MagRec['external_database_ids'] = ""
                    MagRec['external_database_names'] = ''
                MagRec[
                    'measurement_description'] = 'sample orientation: ' + InRec[
                        'Sample orientation']
                MagRec['measurement_inc'] = InRec[inc_key].strip('"')
                MagRec['measurement_dec'] = InRec[dec_key].strip('"')
                intens = InRec[int_key].strip('"')
                MagRec['measurement_magn_moment'] = '%8.3e' % (
                    float(intens) * vol
                )  # convert intensity from A/m to Am^2 using vol
                MagRec['magic_instrument_codes'] = inst
                MagRec['measurement_number'] = '1'
                MagRec['measurement_positions'] = ''
                MagRecs.append(MagRec)
    if not file_found:
        print("No .csv files were found")
        return False, "No .csv files were found"
    MagOuts = []
    for spec in Specs:
        Speclist = pmag.get_dictitem(MagRecs, 'er_specimen_name', spec, 'T')
        Meassorted = sorted(Speclist,
                            key=lambda x, y=None: int(
                                round(float(x[sort_by]) - float(y[sort_by])))
                            if y != None else 0)
        for rec in Meassorted:
            for key in list(rec.keys()):
                rec[key] = str(rec[key])
            MagOuts.append(rec)
    Fixed = pmag.measurements_methods(MagOuts, noave)
    Out, keys = pmag.fillkeys(Fixed)
    if pmag.magic_write(meas_file, Out, 'magic_measurements'):
        print('data stored in ', meas_file)
        return True, meas_file
    else:
        print('no data found.  bad magfile?')
        return False, 'no data found.  bad magfile?'
Ejemplo n.º 9
0
def main():
    """
    NAME
        atrm_magic.py

    DESCRIPTION
        Converts ATRM  data to best-fit tensor (6 elements plus sigma)
         Original program ARMcrunch written to accomodate ARM anisotropy data
          collected from 6 axial directions (+X,+Y,+Z,-X,-Y,-Z) using the
          off-axis remanence terms to construct the tensor. A better way to
          do the anisotropy of ARMs is to use 9,12 or 15 measurements in
          the Hext rotational scheme.
    
    SYNTAX 
        atrm_magic.py [-h][command line options]

    OPTIONS
        -h prints help message and quits
        -usr USER:   identify user, default is ""
        -f FILE: specify input file, default is atrm_measurements.txt
        -Fa FILE: specify anisotropy output file, default is trm_anisotropy.txt
        -Fr FILE: specify results output file, default is atrm_results.txt

    INPUT  
        Input for the present program is a TRM acquisition data with an optional baseline.
      The order of the measurements is:
    Decs=[0,90,0,180,270,0,0,90,0]
    Incs=[0,0,90,0,0,-90,0,0,90]
     The last two measurements are optional
    
    """
    # initialize some parameters
    args=sys.argv
    user=""
    meas_file="atrm_measurements.txt"
    rmag_anis="trm_anisotropy.txt"
    rmag_res="atrm_results.txt"
    dir_path='.'
    #
    # get name of file from command line
    #
    if '-WD' in args:
        ind=args.index('-WD')
        dir_path=args[ind+1]
    if "-h" in args:
        print main.__doc__
        sys.exit()
    if "-usr" in args:
        ind=args.index("-usr")
        user=sys.argv[ind+1]
    if "-f" in args:
        ind=args.index("-f")
        meas_file=sys.argv[ind+1]
    if "-Fa" in args:
        ind=args.index("-Fa")
        rmag_anis=args[ind+1]
    if "-Fr" in args:
        ind=args.index("-Fr")
        rmag_res=args[ind+1]
    meas_file=dir_path+'/'+meas_file
    rmag_anis=dir_path+'/'+rmag_anis
    rmag_res=dir_path+'/'+rmag_res
    # read in data
    meas_data,file_type=pmag.magic_read(meas_file)
    meas_data=pmag.get_dictitem(meas_data,'magic_method_codes','LP-AN-TRM','has')
    if file_type != 'magic_measurements':
        print file_type
        print file_type,"This is not a valid magic_measurements file " 
        sys.exit()
    #
    #
    # get sorted list of unique specimen names
    ssort=[]
    for rec in meas_data:
      spec=rec["er_specimen_name"]
      if spec not in ssort:ssort.append(spec)
    sids=sorted(ssort)
    #
    #
    # work on each specimen
    #
    specimen,npos=0,6
    RmagSpecRecs,RmagResRecs=[],[]
    while specimen < len(sids):
        nmeas=0 
        s=sids[specimen]
        RmagSpecRec={}
        RmagResRec={}
        BX,X=[],[]
        method_codes=[]
        Spec0=""
    #
    # find the data from the meas_data file for this sample
        # and get dec, inc, int and convert to x,y,z
        #
        data=pmag.get_dictitem(meas_data,'er_specimen_name',s,'T') # fish out data for this specimen name
        if len(data)>5:
            RmagSpecRec["rmag_anisotropy_name"]=data[0]["er_specimen_name"]
            RmagSpecRec["er_location_name"]=data[0]["er_location_name"]
            RmagSpecRec["er_specimen_name"]=data[0]["er_specimen_name"]
            RmagSpecRec["er_sample_name"]=data[0]["er_sample_name"]
            RmagSpecRec["er_site_name"]=data[0]["er_site_name"]
            RmagSpecRec["magic_experiment_names"]=RmagSpecRec["rmag_anisotropy_name"]+":ATRM"
            RmagSpecRec["er_citation_names"]="This study"
            RmagResRec["rmag_result_name"]=data[0]["er_specimen_name"]+":ATRM"
            RmagResRec["er_location_names"]=data[0]["er_location_name"]
            RmagResRec["er_specimen_names"]=data[0]["er_specimen_name"]
            RmagResRec["er_sample_names"]=data[0]["er_sample_name"]
            RmagResRec["er_site_names"]=data[0]["er_site_name"]
            RmagResRec["magic_experiment_names"]=RmagSpecRec["rmag_anisotropy_name"]+":ATRM"
            RmagResRec["er_citation_names"]="This study"
            RmagSpecRec["anisotropy_type"]="ATRM"
            if "magic_instrument_codes" in data[0].keys():
                RmagSpecRec["magic_instrument_codes"]=data[0]["magic_instrument_codes"]
            else:  
                RmagSpecRec["magic_instrument_codes"]=""
                RmagSpecRec["anisotropy_description"]="Hext statistics adapted to ATRM"
            for rec in data:
                meths=rec['magic_method_codes'].strip().split(':')
                Dir=[]
                Dir.append(float(rec["measurement_dec"]))
                Dir.append(float(rec["measurement_inc"]))
                Dir.append(float(rec["measurement_magn_moment"]))
                if "LT-T-Z" in meths:
                    BX.append(pmag.dir2cart(Dir)) # append baseline steps
                elif "LT-T-I" in meths: 
                    X.append(pmag.dir2cart(Dir))
                    nmeas+=1
    #
        if len(BX)==1:
            for i in range(len(X)-1):BX.append(BX[0]) # assume first 0 field step as baseline
        elif len(BX)== 0: # assume baseline is zero
            for i in range(len(X)):BX.append([0.,0.,0.]) # assume baseline of 0
        elif len(BX)!= len(X): # if BX isn't just one measurement or one in between every infield step, just assume it is zero
            print 'something odd about the baselines - just assuming zero'
            for i in range(len(X)):BX.append([0.,0.,0.]) # assume baseline of 0
        if nmeas<6: # must have at least 6 measurements right now - 
            print 'skipping specimen ',s,' too few measurements'
            specimen+=1
        else:
            B,H,tmpH=pmag.designATRM(npos)  # B matrix made from design matrix for positions
        #
        # subtract optional baseline and put in a work array
        #
            work=numpy.zeros((nmeas,3),'f')
            for i in range(nmeas):
                for j in range(3):
                    work[i][j]=X[i][j]-BX[i][j] # subtract baseline, if available
        #
        # calculate tensor elements
        # first put ARM components in w vector
        #
            w=numpy.zeros((npos*3),'f')
            index=0
            for i in range(npos):
                for j in range(3):
                    w[index]=work[i][j] 
                    index+=1
            s=numpy.zeros((6),'f') # initialize the s matrix
            for i in range(6):
                for j in range(len(w)):
                    s[i]+=B[i][j]*w[j] 
            trace=s[0]+s[1]+s[2]   # normalize by the trace
            for i in range(6):
                s[i]=s[i]/trace
            a=pmag.s2a(s)
            
        #------------------------------------------------------------
        #  Calculating dels is different than in the Kappabridge
        #  routine. Use trace normalized tensor (a) and the applied
        #  unit field directions (tmpH) to generate model X,Y,Z
        #  components. Then compare these with the measured values.
        #------------------------------------------------------------
            S=0.
            comp=numpy.zeros((npos*3),'f')
            for i in range(npos):
                for j in range(3):
                    index=i*3+j
                    compare=a[j][0]*tmpH[i][0]+a[j][1]*tmpH[i][1]+a[j][2]*tmpH[i][2]
                    comp[index]=compare
            for i in range(npos*3):
                d=w[i]/trace - comp[i] # del values
                S+=d*d
            nf=float(npos*3.-6.) # number of degrees of freedom
            if S >0: 
                sigma=numpy.sqrt(S/nf)
            else: sigma=0
            hpars=pmag.dohext(nf,sigma,s)
        #
        # prepare for output
        #
            RmagSpecRec["anisotropy_s1"]='%8.6f'%(s[0])
            RmagSpecRec["anisotropy_s2"]='%8.6f'%(s[1])
            RmagSpecRec["anisotropy_s3"]='%8.6f'%(s[2])
            RmagSpecRec["anisotropy_s4"]='%8.6f'%(s[3])
            RmagSpecRec["anisotropy_s5"]='%8.6f'%(s[4])
            RmagSpecRec["anisotropy_s6"]='%8.6f'%(s[5])
            RmagSpecRec["anisotropy_mean"]='%8.3e'%(trace/3)
            RmagSpecRec["anisotropy_sigma"]='%8.6f'%(sigma)
            RmagSpecRec["anisotropy_unit"]="Am^2"
            RmagSpecRec["anisotropy_n"]='%i'%(npos)
            RmagSpecRec["anisotropy_tilt_correction"]='-1'
            RmagSpecRec["anisotropy_F"]='%7.1f '%(hpars["F"]) # used by thellier_gui - must be taken out for uploading
            RmagSpecRec["anisotropy_F_crit"]=hpars["F_crit"] # used by thellier_gui - must be taken out for uploading
            RmagResRec["anisotropy_t1"]='%8.6f '%(hpars["t1"])
            RmagResRec["anisotropy_t2"]='%8.6f '%(hpars["t2"])
            RmagResRec["anisotropy_t3"]='%8.6f '%(hpars["t3"])
            RmagResRec["anisotropy_v1_dec"]='%7.1f '%(hpars["v1_dec"])
            RmagResRec["anisotropy_v2_dec"]='%7.1f '%(hpars["v2_dec"])
            RmagResRec["anisotropy_v3_dec"]='%7.1f '%(hpars["v3_dec"])
            RmagResRec["anisotropy_v1_inc"]='%7.1f '%(hpars["v1_inc"])
            RmagResRec["anisotropy_v2_inc"]='%7.1f '%(hpars["v2_inc"])
            RmagResRec["anisotropy_v3_inc"]='%7.1f '%(hpars["v3_inc"])
            RmagResRec["anisotropy_ftest"]='%7.1f '%(hpars["F"])
            RmagResRec["anisotropy_ftest12"]='%7.1f '%(hpars["F12"])
            RmagResRec["anisotropy_ftest23"]='%7.1f '%(hpars["F23"])
            RmagResRec["result_description"]='Critical F: '+hpars["F_crit"]+';Critical F12/F13: '+hpars["F12_crit"]
            if hpars["e12"]>hpars["e13"]:
                RmagResRec["anisotropy_v1_zeta_semi_angle"]='%7.1f '%(hpars['e12'])
                RmagResRec["anisotropy_v1_zeta_dec"]='%7.1f '%(hpars['v2_dec'])
                RmagResRec["anisotropy_v1_zeta_inc"]='%7.1f '%(hpars['v2_inc'])
                RmagResRec["anisotropy_v2_zeta_semi_angle"]='%7.1f '%(hpars['e12'])
                RmagResRec["anisotropy_v2_zeta_dec"]='%7.1f '%(hpars['v1_dec'])
                RmagResRec["anisotropy_v2_zeta_inc"]='%7.1f '%(hpars['v1_inc'])
                RmagResRec["anisotropy_v1_eta_semi_angle"]='%7.1f '%(hpars['e13'])
                RmagResRec["anisotropy_v1_eta_dec"]='%7.1f '%(hpars['v3_dec'])
                RmagResRec["anisotropy_v1_eta_inc"]='%7.1f '%(hpars['v3_inc'])
                RmagResRec["anisotropy_v3_eta_semi_angle"]='%7.1f '%(hpars['e13'])
                RmagResRec["anisotropy_v3_eta_dec"]='%7.1f '%(hpars['v1_dec'])
                RmagResRec["anisotropy_v3_eta_inc"]='%7.1f '%(hpars['v1_inc'])
            else:
                RmagResRec["anisotropy_v1_zeta_semi_angle"]='%7.1f '%(hpars['e13'])
                RmagResRec["anisotropy_v1_zeta_dec"]='%7.1f '%(hpars['v3_dec'])
                RmagResRec["anisotropy_v1_zeta_inc"]='%7.1f '%(hpars['v3_inc'])
                RmagResRec["anisotropy_v3_zeta_semi_angle"]='%7.1f '%(hpars['e13'])
                RmagResRec["anisotropy_v3_zeta_dec"]='%7.1f '%(hpars['v1_dec'])
                RmagResRec["anisotropy_v3_zeta_inc"]='%7.1f '%(hpars['v1_inc'])
                RmagResRec["anisotropy_v1_eta_semi_angle"]='%7.1f '%(hpars['e12'])
                RmagResRec["anisotropy_v1_eta_dec"]='%7.1f '%(hpars['v2_dec'])
                RmagResRec["anisotropy_v1_eta_inc"]='%7.1f '%(hpars['v2_inc'])
                RmagResRec["anisotropy_v2_eta_semi_angle"]='%7.1f '%(hpars['e12'])
                RmagResRec["anisotropy_v2_eta_dec"]='%7.1f '%(hpars['v1_dec'])
                RmagResRec["anisotropy_v2_eta_inc"]='%7.1f '%(hpars['v1_inc'])
            if hpars["e23"]>hpars['e12']:
                RmagResRec["anisotropy_v2_zeta_semi_angle"]='%7.1f '%(hpars['e23'])
                RmagResRec["anisotropy_v2_zeta_dec"]='%7.1f '%(hpars['v3_dec'])
                RmagResRec["anisotropy_v2_zeta_inc"]='%7.1f '%(hpars['v3_inc'])
                RmagResRec["anisotropy_v3_zeta_semi_angle"]='%7.1f '%(hpars['e23'])
                RmagResRec["anisotropy_v3_zeta_dec"]='%7.1f '%(hpars['v2_dec'])
                RmagResRec["anisotropy_v3_zeta_inc"]='%7.1f '%(hpars['v2_inc'])
                RmagResRec["anisotropy_v3_eta_semi_angle"]='%7.1f '%(hpars['e13'])
                RmagResRec["anisotropy_v3_eta_dec"]='%7.1f '%(hpars['v1_dec'])
                RmagResRec["anisotropy_v3_eta_inc"]='%7.1f '%(hpars['v1_inc'])
                RmagResRec["anisotropy_v2_eta_semi_angle"]='%7.1f '%(hpars['e12'])
                RmagResRec["anisotropy_v2_eta_dec"]='%7.1f '%(hpars['v1_dec'])
                RmagResRec["anisotropy_v2_eta_inc"]='%7.1f '%(hpars['v1_inc'])
            else:
                RmagResRec["anisotropy_v2_zeta_semi_angle"]='%7.1f '%(hpars['e12'])
                RmagResRec["anisotropy_v2_zeta_dec"]='%7.1f '%(hpars['v1_dec'])
                RmagResRec["anisotropy_v2_zeta_inc"]='%7.1f '%(hpars['v1_inc'])
                RmagResRec["anisotropy_v3_eta_semi_angle"]='%7.1f '%(hpars['e23'])
                RmagResRec["anisotropy_v3_eta_dec"]='%7.1f '%(hpars['v2_dec'])
                RmagResRec["anisotropy_v3_eta_inc"]='%7.1f '%(hpars['v2_inc'])
                RmagResRec["anisotropy_v3_zeta_semi_angle"]='%7.1f '%(hpars['e13'])
                RmagResRec["anisotropy_v3_zeta_dec"]='%7.1f '%(hpars['v1_dec'])
                RmagResRec["anisotropy_v3_zeta_inc"]='%7.1f '%(hpars['v1_inc'])
                RmagResRec["anisotropy_v2_eta_semi_angle"]='%7.1f '%(hpars['e23'])
                RmagResRec["anisotropy_v2_eta_dec"]='%7.1f '%(hpars['v3_dec'])
                RmagResRec["anisotropy_v2_eta_inc"]='%7.1f '%(hpars['v3_inc'])
            RmagResRec["tilt_correction"]='-1'
            RmagResRec["anisotropy_type"]='ATRM'
            RmagResRec["magic_method_codes"]='LP-AN-TRM:AE-H'
            RmagSpecRec["magic_method_codes"]='LP-AN-TRM:AE-H'
            RmagResRec["magic_software_packages"]=pmag.get_version()
            RmagSpecRec["magic_software_packages"]=pmag.get_version()
            RmagSpecRecs.append(RmagSpecRec)
            RmagResRecs.append(RmagResRec)
            specimen+=1
    pmag.magic_write(rmag_anis,RmagSpecRecs,'rmag_anisotropy')
    print "specimen tensor elements stored in ",rmag_anis
    pmag.magic_write(rmag_res,RmagResRecs,'rmag_results')
    print "specimen statistics and eigenparameters stored in ",rmag_res
Ejemplo n.º 10
0
def main():
    """
    NAME
        lowrie.py

    DESCRIPTION
       plots intensity decay curves for Lowrie experiments

    SYNTAX
        lowrie -h [command line options]

    INPUT
       takes SIO formatted input files

    OPTIONS
        -h prints help message and quits
        -f FILE: specify input file
        -N do not normalize by maximum magnetization
        -fmt [svg, pdf, eps, png] specify fmt, default is svg
        -sav save plots and quit
    """
    fmt, plot = 'svg', 0
    FIG = {}  # plot dictionary
    FIG['lowrie'] = 1  # demag is figure 1
    pmagplotlib.plot_init(FIG['lowrie'], 6, 6)
    norm = 1  # default is to normalize by maximum axis
    if len(sys.argv) > 1:
        if '-h' in sys.argv:
            print(main.__doc__)
            sys.exit()
        if '-N' in sys.argv:
            norm = 0  # don't normalize
        if '-sav' in sys.argv:
            plot = 1  # don't normalize
        if '-fmt' in sys.argv:  # sets input filename
            ind = sys.argv.index("-fmt")
            fmt = sys.argv[ind + 1]
        if '-f' in sys.argv:  # sets input filename
            ind = sys.argv.index("-f")
            in_file = sys.argv[ind + 1]
        else:
            print(main.__doc__)
            print('you must supply a file name')
            sys.exit()
    else:
        print(main.__doc__)
        print('you must supply a file name')
        sys.exit()
    data = pmag.open_file(in_file)
    PmagRecs = []  # set up a list for the results
    keys = ['specimen', 'treatment', 'csd', 'M', 'dec', 'inc']
    for line in data:
        PmagRec = {}
        rec = line.replace('\n', '').split()
        for k in range(len(keys)):
            PmagRec[keys[k]] = rec[k]
        PmagRecs.append(PmagRec)
    specs = pmag.get_dictkey(PmagRecs, 'specimen', '')
    sids = []
    for spec in specs:
        if spec not in sids:
            sids.append(spec)  # get list of unique specimen names
    for spc in sids:  # step through the specimen names
        print(spc)
        specdata = pmag.get_dictitem(
            PmagRecs, 'specimen', spc, 'T')  # get all this one's data
        DIMs, Temps = [], []
        for dat in specdata:  # step through the data
            DIMs.append([float(dat['dec']), float(
                dat['inc']), float(dat['M']) * 1e-3])
            Temps.append(float(dat['treatment']))
        carts = pmag.dir2cart(DIMs).transpose()
        # if norm==1: # want to normalize
        #    nrm=max(max(abs(carts[0])),max(abs(carts[1])),max(abs(carts[2]))) # by maximum of x,y,z values
        #    ylab="M/M_max"
        if norm == 1:  # want to normalize
            nrm = (DIMs[0][2])  # normalize by NRM
            ylab = "M/M_o"
        else:
            nrm = 1.  # don't normalize
            ylab = "Magnetic moment (Am^2)"
        xlab = "Temperature (C)"
        pmagplotlib.plotXY(FIG['lowrie'], Temps, old_div(
            abs(carts[0]), nrm), sym='r-')
        pmagplotlib.plotXY(FIG['lowrie'], Temps, old_div(
            abs(carts[0]), nrm), sym='ro')  # X direction
        pmagplotlib.plotXY(FIG['lowrie'], Temps, old_div(
            abs(carts[1]), nrm), sym='c-')
        pmagplotlib.plotXY(FIG['lowrie'], Temps, old_div(
            abs(carts[1]), nrm), sym='cs')  # Y direction
        pmagplotlib.plotXY(FIG['lowrie'], Temps, old_div(
            abs(carts[2]), nrm), sym='k-')
        pmagplotlib.plotXY(FIG['lowrie'], Temps, old_div(
            abs(carts[2]), nrm), sym='k^', title=spc, xlab=xlab, ylab=ylab)  # Z direction
        files = {'lowrie': 'lowrie:_' + spc + '_.' + fmt}
        if plot == 0:
            pmagplotlib.drawFIGS(FIG)
            ans = input('S[a]ve figure? [q]uit, <return> to continue   ')
            if ans == 'a':
                pmagplotlib.saveP(FIG, files)
            elif ans == 'q':
                sys.exit()
        else:
            pmagplotlib.saveP(FIG, files)
        pmagplotlib.clearFIG(FIG['lowrie'])
Ejemplo n.º 11
0
def main():
    """
    NAME
        scalc_magic.py

    DESCRIPTION
       calculates Sb from pmag_results files

    SYNTAX 
        scalc_magic -h [command line options]
    
    INPUT 
       takes magic formatted pmag_results table
       pmag_result_name must start with "VGP: Site"
       must have average_lat if spin axis is reference
    
    OPTIONS
        -h prints help message and quits
        -f FILE: specify input results file, default is 'pmag_results.txt'
        -c cutoff:  specify VGP colatitude cutoff value
        -k cutoff: specify kappa cutoff
        -crd [s,g,t]: specify coordinate system, default is geographic
        -v : use the VanDammme criterion 
        -a: use antipodes of reverse data: default is to use only normal
        -C: use all data without regard to polarity
        -r:  use reverse data only
        -p: do relative to principle axis
        -b: do bootstrap confidence bounds

     OUTPUT:
         if option -b used: N,  S_B, lower and upper bounds
         otherwise: N,  S_B, cutoff
    """
    in_file='pmag_results.txt'
    coord,kappa,cutoff="0",1.,90.
    nb,anti,spin,v,boot=1000,0,1,0,0
    coord_key='tilt_correction'
    rev=0
    if '-h' in sys.argv:
        print(main.__doc__)
        sys.exit()
    if '-f' in sys.argv:
        ind=sys.argv.index("-f")
        in_file=sys.argv[ind+1]
    if '-c' in sys.argv:
        ind=sys.argv.index('-c')
        cutoff=float(sys.argv[ind+1])
    if '-k' in sys.argv:
        ind=sys.argv.index('-k')
        kappa=float(sys.argv[ind+1])
    if '-crd' in sys.argv:
        ind=sys.argv.index("-crd")
        coord=sys.argv[ind+1]
        if coord=='s':coord="-1"
        if coord=='g':coord="0"
        if coord=='t':coord="100"
    if '-a' in sys.argv: anti=1
    if '-C' in sys.argv: cutoff=180. # no cutoff
    if '-r' in sys.argv: rev=1
    if '-p' in sys.argv: spin=0
    if '-v' in sys.argv: v=1
    if '-b' in sys.argv: boot=1
    data,file_type=pmag.magic_read(in_file)
    #
    #
    # find desired vgp lat,lon, kappa,N_site data:
    #
    #
    #
    A,Vgps,Pvgps=180.,[],[]
    VgpRecs=pmag.get_dictitem(data,'vgp_lat','','F') # get all non-blank vgp latitudes
    VgpRecs=pmag.get_dictitem(VgpRecs,'vgp_lon','','F') # get all non-blank vgp longitudes
    SiteRecs=pmag.get_dictitem(VgpRecs,'data_type','i','T') # get VGPs (as opposed to averaged)
    SiteRecs=pmag.get_dictitem(SiteRecs,coord_key,coord,'T') # get right coordinate system
    for rec in SiteRecs:
        if anti==1:
            if 90.-abs(float(rec['vgp_lat']))<=cutoff and float(rec['average_k'])>=kappa: 
                if float(rec['vgp_lat'])<0:
                    rec['vgp_lat']='%7.1f'%(-1*float(rec['vgp_lat']))
                    rec['vgp_lon']='%7.1f'%(float(rec['vgp_lon'])-180.)
                Vgps.append(rec)
                Pvgps.append([float(rec['vgp_lon']),float(rec['vgp_lat'])])
        elif rev==0: # exclude normals
            if 90.-(float(rec['vgp_lat']))<=cutoff and float(rec['average_k'])>=kappa: 
                Vgps.append(rec)
                Pvgps.append([float(rec['vgp_lon']),float(rec['vgp_lat'])])
        else: # include normals
            if 90.-abs(float(rec['vgp_lat']))<=cutoff and float(rec['average_k'])>=kappa: 
                if float(rec['vgp_lat'])<0:
                    rec['vgp_lat']='%7.1f'%(-1*float(rec['vgp_lat']))
                    rec['vgp_lon']='%7.1f'%(float(rec['vgp_lon'])-180.)
                    Vgps.append(rec)
                    Pvgps.append([float(rec['vgp_lon']),float(rec['vgp_lat'])])
    if spin==0: # do transformation to pole
        ppars=pmag.doprinc(Pvgps)
        for vgp in Vgps:
            vlon,vlat=pmag.dotilt(float(vgp['vgp_lon']),float(vgp['vgp_lat']),ppars['dec']-180.,90.-ppars['inc'])
            vgp['vgp_lon']=vlon
            vgp['vgp_lat']=vlat
            vgp['average_k']="0"
    S_B= pmag.get_Sb(Vgps)
    A=cutoff
    if v==1:
        thetamax,A=181.,180.
        vVgps,cnt=[],0
        for vgp in Vgps:vVgps.append(vgp) # make a copy of Vgps
        while thetamax>A:
            thetas=[]
            A=1.8*S_B+5
            cnt+=1
            for vgp in vVgps:thetas.append(90.-(float(vgp['vgp_lat'])))
            thetas.sort()
            thetamax=thetas[-1]
            if thetamax<A:break
            nVgps=[]
            for  vgp in vVgps:
                if 90.-(float(vgp['vgp_lat']))<thetamax:nVgps.append(vgp)
            vVgps=[]
            for vgp in nVgps:vVgps.append(vgp)
            S_B= pmag.get_Sb(vVgps)
        Vgps=[]
        for vgp in vVgps:Vgps.append(vgp) # make a new Vgp list
    SBs=[]
    if boot==1:
        for i in range(nb): # now do bootstrap 
            BVgps=[]
            if i%100==0: print(i,' out of ',nb)
            for k in range(len(Vgps)):
                random.seed()
                ind=random.randint(0,len(Vgps)-1)
                BVgps.append(Vgps[ind])
            SBs.append(pmag.get_Sb(BVgps))
        SBs.sort()
        low=int(.025*nb)
        high=int(.975*nb)
        print(len(Vgps),'%7.1f _ %7.1f ^ %7.1f %7.1f'%(S_B,SBs[low],SBs[high],A))
    else:
        print(len(Vgps),'%7.1f  %7.1f '%(S_B,A))
Ejemplo n.º 12
0
def main():
    """
    NAME
    specimens_results_magic.py

    DESCRIPTION
    combines pmag_specimens.txt file with age, location, acceptance criteria and
    outputs pmag_results table along with other MagIC tables necessary for uploading to the database

    SYNTAX
    specimens_results_magic.py [command line options]

    OPTIONS
    -h prints help message and quits
    -usr USER:   identify user, default is ""
    -f: specimen input magic_measurements format file, default is "magic_measurements.txt"
    -fsp: specimen input pmag_specimens format file, default is "pmag_specimens.txt"
    -fsm: sample input er_samples format file, default is "er_samples.txt"
    -fsi: specimen input er_sites format file, default is "er_sites.txt"
    -fla: specify a file with paleolatitudes for calculating VADMs, default is not to calculate VADMS
               format is:  site_name paleolatitude (space delimited file)
    -fa AGES: specify er_ages format file with age information
    -crd [s,g,t,b]:   specify coordinate system
        (s, specimen, g geographic, t, tilt corrected, b, geographic and tilt corrected)
        Default is to assume geographic
        NB: only the tilt corrected data will appear on the results table, if both g and t are selected.
        -cor [AC:CR:NL]: colon delimited list of required data adjustments for all specimens
            included in intensity calculations (anisotropy, cooling rate, non-linear TRM)
            unless specified, corrections will not be applied
        -pri [TRM:ARM] colon delimited list of priorities for anisotropy correction (-cor must also be set to include AC). default is TRM, then ARM
    -age MIN MAX UNITS:   specify age boundaries and units
    -exc:  use exiting selection criteria (in pmag_criteria.txt file), default is default criteria
    -C: no acceptance criteria
    -aD:  average directions per sample, default is NOT
    -aI:  average multiple specimen intensities per sample, default is by site
    -aC:  average all components together, default is NOT
    -pol:  calculate polarity averages
    -sam:  save sample level vgps and v[a]dms, default is by site
    -xSi:  skip the site level intensity calculation
    -p: plot directions and look at intensities by site, default is NOT
        -fmt: specify output for saved images, default is svg (only if -p set)
    -lat: use present latitude for calculating VADMs, default is not to calculate VADMs
    -xD: skip directions
    -xI: skip intensities
    OUPUT
    writes pmag_samples, pmag_sites, pmag_results tables
    """
# set defaults
    Comps=[] # list of components
    version_num=pmag.get_version()
    args=sys.argv
    DefaultAge=["none"]
    skipdirs,coord,excrit,custom,vgps,average,Iaverage,plotsites,opt=1,0,0,0,0,0,0,0,0
    get_model_lat=0 # this skips VADM calculation altogether, when get_model_lat=1, uses present day
    fmt='svg'
    dir_path="."
    model_lat_file=""
    Caverage=0
    infile='pmag_specimens.txt'
    measfile="magic_measurements.txt"
    sampfile="er_samples.txt"
    sitefile="er_sites.txt"
    agefile="er_ages.txt"
    specout="er_specimens.txt"
    sampout="pmag_samples.txt"
    siteout="pmag_sites.txt"
    resout="pmag_results.txt"
    critout="pmag_criteria.txt"
    instout="magic_instruments.txt"
    sigcutoff,OBJ="",""
    noDir,noInt=0,0
    polarity=0
    coords=['0']
    Dcrit,Icrit,nocrit=0,0,0
    corrections=[]
    nocorrection=['DA-NL','DA-AC','DA-CR']
    priorities=['DA-AC-ARM','DA-AC-TRM'] # priorities for anisotropy correction
# get command line stuff
    if "-h" in args:
        print(main.__doc__)
        sys.exit()
    if '-WD' in args:
        ind=args.index("-WD")
        dir_path=args[ind+1]
    if '-cor' in args:
        ind=args.index('-cor')
        cors=args[ind+1].split(':') # list of required data adjustments
        for cor in cors:
            nocorrection.remove('DA-'+cor)
            corrections.append('DA-'+cor)
    if '-pri' in args:
        ind=args.index('-pri')
        priorities=args[ind+1].split(':') # list of required data adjustments
        for p in priorities:
            p='DA-AC-'+p
    if '-f' in args:
        ind=args.index("-f")
        measfile=args[ind+1]
    if '-fsp' in args:
        ind=args.index("-fsp")
        infile=args[ind+1]
    if '-fsi' in args:
        ind=args.index("-fsi")
        sitefile=args[ind+1]
    if "-crd" in args:
        ind=args.index("-crd")
        coord=args[ind+1]
        if coord=='s':coords=['-1']
        if coord=='g':coords=['0']
        if coord=='t':coords=['100']
        if coord=='b':coords=['0','100']
    if "-usr" in args:
        ind=args.index("-usr")
        user=sys.argv[ind+1]
    else: user=""
    if "-C" in args: Dcrit,Icrit,nocrit=1,1,1 # no selection criteria
    if "-sam" in args: vgps=1 # save sample level VGPS/VADMs
    if "-xSi" in args:
        nositeints=1 # skip site level intensity
    else:
        nositeints=0
    if "-age" in args:
        ind=args.index("-age")
        DefaultAge[0]=args[ind+1]
        DefaultAge.append(args[ind+2])
        DefaultAge.append(args[ind+3])
    Daverage,Iaverage,Caverage=0,0,0
    if "-aD" in args: Daverage=1 # average by sample directions
    if "-aI" in args: Iaverage=1 # average by sample intensities
    if "-aC" in args: Caverage=1 # average all components together ???  why???
    if "-pol" in args: polarity=1 # calculate averages by polarity
    if '-xD' in args:noDir=1
    if '-xI' in args:
        noInt=1
    elif "-fla" in args:
        if '-lat' in args:
            print("you should set a paleolatitude file OR use present day lat - not both")
            sys.exit()
        ind=args.index("-fla")
        model_lat_file=dir_path+'/'+args[ind+1]
        get_model_lat=2
        mlat=open(model_lat_file,'r')
        ModelLats=[]
        for line in mlat.readlines():
            ModelLat={}
            tmp=line.split()
            ModelLat["er_site_name"]=tmp[0]
            ModelLat["site_model_lat"]=tmp[1]
            ModelLat["er_sample_name"]=tmp[0]
            ModelLat["sample_lat"]=tmp[1]
            ModelLats.append(ModelLat)
        get_model_lat=2
    elif '-lat' in args:
        get_model_lat=1
    if "-p" in args:
        plotsites=1
        if "-fmt" in args:
            ind=args.index("-fmt")
            fmt=args[ind+1]
        if noDir==0: # plot by site - set up plot window
            import pmagplotlib
            EQ={}
            EQ['eqarea']=1
            pmagplotlib.plot_init(EQ['eqarea'],5,5) # define figure 1 as equal area projection
            pmagplotlib.plotNET(EQ['eqarea']) # I don't know why this has to be here, but otherwise the first plot never plots...
            pmagplotlib.drawFIGS(EQ)
    if '-WD' in args:
        infile=dir_path+'/'+infile
        measfile=dir_path+'/'+measfile
        instout=dir_path+'/'+instout
        sampfile=dir_path+'/'+sampfile
        sitefile=dir_path+'/'+sitefile
        agefile=dir_path+'/'+agefile
        specout=dir_path+'/'+specout
        sampout=dir_path+'/'+sampout
        siteout=dir_path+'/'+siteout
        resout=dir_path+'/'+resout
        critout=dir_path+'/'+critout
    if "-exc" in args: # use existing pmag_criteria file
        if "-C" in args:
            print('you can not use both existing and no criteria - choose either -exc OR -C OR neither (for default)')
            sys.exit()
        crit_data,file_type=pmag.magic_read(critout)
        print("Acceptance criteria read in from ", critout)
    else  : # use default criteria (if nocrit set, then get really loose criteria as default)
        crit_data=pmag.default_criteria(nocrit)
        if nocrit==0:
            print("Acceptance criteria are defaults")
        else:
            print("No acceptance criteria used ")
    accept={}
    for critrec in crit_data:
        for key in list(critrec.keys()):
# need to migrate specimen_dang to specimen_int_dang for intensity data using old format
            if 'IE-SPEC' in list(critrec.keys()) and 'specimen_dang' in list(critrec.keys()) and 'specimen_int_dang' not in list(critrec.keys()):
                critrec['specimen_int_dang']=critrec['specimen_dang']
                del critrec['specimen_dang']
# need to get rid of ron shaars sample_int_sigma_uT
            if 'sample_int_sigma_uT' in list(critrec.keys()):
                critrec['sample_int_sigma']='%10.3e'%(eval(critrec['sample_int_sigma_uT'])*1e-6)
            if key not in list(accept.keys()) and critrec[key]!='':
                accept[key]=critrec[key]
    #
    #
    if "-exc" not in args and "-C" not in args:
        print("args",args)
        pmag.magic_write(critout,[accept],'pmag_criteria')
        print("\n Pmag Criteria stored in ",critout,'\n')
#
# now we're done slow dancing
#
    SiteNFO,file_type=pmag.magic_read(sitefile) # read in site data - has the lats and lons
    SampNFO,file_type=pmag.magic_read(sampfile) # read in site data - has the lats and lons
    height_nfo=pmag.get_dictitem(SiteNFO,'site_height','','F') # find all the sites with height info.
    if agefile !="":AgeNFO,file_type=pmag.magic_read(agefile) # read in the age information
    Data,file_type=pmag.magic_read(infile) # read in specimen interpretations
    IntData=pmag.get_dictitem(Data,'specimen_int','','F') # retrieve specimens with intensity data
    comment,orient="",[]
    samples,sites=[],[]
    for rec in Data: # run through the data filling in missing keys and finding all components, coordinates available
# fill in missing fields, collect unique sample and site names
        if 'er_sample_name' not in list(rec.keys()):
            rec['er_sample_name']=""
        elif rec['er_sample_name'] not in samples:
            samples.append(rec['er_sample_name'])
        if 'er_site_name' not in list(rec.keys()):
            rec['er_site_name']=""
        elif rec['er_site_name'] not in sites:
            sites.append(rec['er_site_name'])
        if 'specimen_int' not in list(rec.keys()):rec['specimen_int']=''
        if 'specimen_comp_name' not in list(rec.keys()) or rec['specimen_comp_name']=="":rec['specimen_comp_name']='A'
        if rec['specimen_comp_name'] not in Comps:Comps.append(rec['specimen_comp_name'])
        rec['specimen_tilt_correction']=rec['specimen_tilt_correction'].strip('\n')
        if "specimen_tilt_correction" not in list(rec.keys()): rec["specimen_tilt_correction"]="-1" # assume sample coordinates
        if rec["specimen_tilt_correction"] not in orient: orient.append(rec["specimen_tilt_correction"])  # collect available coordinate systems
        if "specimen_direction_type" not in list(rec.keys()): rec["specimen_direction_type"]='l'  # assume direction is line - not plane
        if "specimen_dec" not in list(rec.keys()): rec["specimen_direction_type"]=''  # if no declination, set direction type to blank
        if "specimen_n" not in list(rec.keys()): rec["specimen_n"]=''  # put in n
        if "specimen_alpha95" not in list(rec.keys()): rec["specimen_alpha95"]=''  # put in alpha95
        if "magic_method_codes" not in list(rec.keys()): rec["magic_method_codes"]=''
     #
     # start parsing data into SpecDirs, SpecPlanes, SpecInts
    SpecInts,SpecDirs,SpecPlanes=[],[],[]
    samples.sort() # get sorted list of samples and sites
    sites.sort()
    if noInt==0: # don't skip intensities
        IntData=pmag.get_dictitem(Data,'specimen_int','','F') # retrieve specimens with intensity data
        if nocrit==0: # use selection criteria
            for rec in IntData: # do selection criteria
                kill=pmag.grade(rec,accept,'specimen_int')
                if len(kill)==0: SpecInts.append(rec) # intensity record to be included in sample, site calculations
        else:
            SpecInts=IntData[:] # take everything - no selection criteria
    # check for required data adjustments
        if len(corrections)>0 and len(SpecInts)>0:
            for cor in corrections:
                SpecInts=pmag.get_dictitem(SpecInts,'magic_method_codes',cor,'has') # only take specimens with the required corrections
        if len(nocorrection)>0 and len(SpecInts)>0:
            for cor in nocorrection:
                SpecInts=pmag.get_dictitem(SpecInts,'magic_method_codes',cor,'not') # exclude the corrections not specified for inclusion
# take top priority specimen of its name in remaining specimens (only one per customer)
        PrioritySpecInts=[]
        specimens=pmag.get_specs(SpecInts) # get list of uniq specimen names
        for spec in specimens:
            ThisSpecRecs=pmag.get_dictitem(SpecInts,'er_specimen_name',spec,'T') # all the records for this specimen
            if len(ThisSpecRecs)==1:
                PrioritySpecInts.append(ThisSpecRecs[0])
            elif len(ThisSpecRecs)>1: # more than one
                prec=[]
                for p in priorities:
                    ThisSpecRecs=pmag.get_dictitem(SpecInts,'magic_method_codes',p,'has') # all the records for this specimen
                    if len(ThisSpecRecs)>0:prec.append(ThisSpecRecs[0])
                PrioritySpecInts.append(prec[0]) # take the best one
        SpecInts=PrioritySpecInts # this has the first specimen record
    if noDir==0: # don't skip directions
        AllDirs=pmag.get_dictitem(Data,'specimen_direction_type','','F') # retrieve specimens with directed lines and planes
        Ns=pmag.get_dictitem(AllDirs,'specimen_n','','F')  # get all specimens with specimen_n information
        if nocrit!=1: # use selection criteria
            for rec in Ns: # look through everything with specimen_n for "good" data
                kill=pmag.grade(rec,accept,'specimen_dir')
                if len(kill)==0: # nothing killed it
                    SpecDirs.append(rec)
        else: # no criteria
            SpecDirs=AllDirs[:] # take them all
# SpecDirs is now the list of all specimen directions (lines and planes) that pass muster
#
    PmagSamps,SampDirs=[],[] # list of all sample data and list of those that pass the DE-SAMP criteria
    PmagSites,PmagResults=[],[] # list of all site data and selected results
    SampInts=[]
    for samp in samples: # run through the sample names
        if Daverage==1: #  average by sample if desired
           SampDir=pmag.get_dictitem(SpecDirs,'er_sample_name',samp,'T') # get all the directional data for this sample
           if len(SampDir)>0: # there are some directions
               for coord in coords: # step through desired coordinate systems
                   CoordDir=pmag.get_dictitem(SampDir,'specimen_tilt_correction',coord,'T') # get all the directions for this sample
                   if len(CoordDir)>0: # there are some with this coordinate system
                       if Caverage==0: # look component by component
                           for comp in Comps:
                               CompDir=pmag.get_dictitem(CoordDir,'specimen_comp_name',comp,'T') # get all directions from this component
                               if len(CompDir)>0: # there are some
                                   PmagSampRec=pmag.lnpbykey(CompDir,'sample','specimen') # get a sample average from all specimens
                                   PmagSampRec["er_location_name"]=CompDir[0]['er_location_name'] # decorate the sample record
                                   PmagSampRec["er_site_name"]=CompDir[0]['er_site_name']
                                   PmagSampRec["er_sample_name"]=samp
                                   PmagSampRec["er_citation_names"]="This study"
                                   PmagSampRec["er_analyst_mail_names"]=user
                                   PmagSampRec['magic_software_packages']=version_num
                                   if nocrit!=1:PmagSampRec['pmag_criteria_codes']="ACCEPT"
                                   if agefile != "": PmagSampRec= pmag.get_age(PmagSampRec,"er_site_name","sample_inferred_",AgeNFO,DefaultAge)
                                   site_height=pmag.get_dictitem(height_nfo,'er_site_name',PmagSampRec['er_site_name'],'T')
                                   if len(site_height)>0:PmagSampRec["sample_height"]=site_height[0]['site_height'] # add in height if available
                                   PmagSampRec['sample_comp_name']=comp
                                   PmagSampRec['sample_tilt_correction']=coord
                                   PmagSampRec['er_specimen_names']= pmag.get_list(CompDir,'er_specimen_name') # get a list of the specimen names used
                                   PmagSampRec['magic_method_codes']= pmag.get_list(CompDir,'magic_method_codes') # get a list of the methods used
                                   if nocrit!=1: # apply selection criteria
                                       kill=pmag.grade(PmagSampRec,accept,'sample_dir')
                                   else:
                                       kill=[]
                                   if len(kill)==0:
                                       SampDirs.append(PmagSampRec)
                                       if vgps==1: # if sample level VGP info desired, do that now
                                           PmagResRec=pmag.getsampVGP(PmagSampRec,SiteNFO)
                                           if PmagResRec!="":PmagResults.append(PmagResRec)
                                       PmagSamps.append(PmagSampRec)
                       if Caverage==1: # average all components together  basically same as above
                           PmagSampRec=pmag.lnpbykey(CoordDir,'sample','specimen')
                           PmagSampRec["er_location_name"]=CoordDir[0]['er_location_name']
                           PmagSampRec["er_site_name"]=CoordDir[0]['er_site_name']
                           PmagSampRec["er_sample_name"]=samp
                           PmagSampRec["er_citation_names"]="This study"
                           PmagSampRec["er_analyst_mail_names"]=user
                           PmagSampRec['magic_software_packages']=version_num
                           if nocrit!=1:PmagSampRec['pmag_criteria_codes']=""
                           if agefile != "": PmagSampRec= pmag.get_age(PmagSampRec,"er_site_name","sample_inferred_",AgeNFO,DefaultAge)
                           site_height=pmag.get_dictitem(height_nfo,'er_site_name',site,'T')
                           if len(site_height)>0:PmagSampRec["sample_height"]=site_height[0]['site_height'] # add in height if available
                           PmagSampRec['sample_tilt_correction']=coord
                           PmagSampRec['sample_comp_name']= pmag.get_list(CoordDir,'specimen_comp_name') # get components used
                           PmagSampRec['er_specimen_names']= pmag.get_list(CoordDir,'er_specimen_name') # get specimne names averaged
                           PmagSampRec['magic_method_codes']= pmag.get_list(CoordDir,'magic_method_codes') # assemble method codes
                           if nocrit!=1: # apply selection criteria
                               kill=pmag.grade(PmagSampRec,accept,'sample_dir')
                               if len(kill)==0: # passes the mustard
                                   SampDirs.append(PmagSampRec)
                                   if vgps==1:
                                       PmagResRec=pmag.getsampVGP(PmagSampRec,SiteNFO)
                                       if PmagResRec!="":PmagResults.append(PmagResRec)
                           else: # take everything
                               SampDirs.append(PmagSampRec)
                               if vgps==1:
                                   PmagResRec=pmag.getsampVGP(PmagSampRec,SiteNFO)
                                   if PmagResRec!="":PmagResults.append(PmagResRec)
                           PmagSamps.append(PmagSampRec)
        if Iaverage==1: #  average by sample if desired
           SampI=pmag.get_dictitem(SpecInts,'er_sample_name',samp,'T') # get all the intensity data for this sample
           if len(SampI)>0: # there are some
               PmagSampRec=pmag.average_int(SampI,'specimen','sample') # get average intensity stuff
               PmagSampRec["sample_description"]="sample intensity" # decorate sample record
               PmagSampRec["sample_direction_type"]=""
               PmagSampRec['er_site_name']=SampI[0]["er_site_name"]
               PmagSampRec['er_sample_name']=samp
               PmagSampRec['er_location_name']=SampI[0]["er_location_name"]
               PmagSampRec["er_citation_names"]="This study"
               PmagSampRec["er_analyst_mail_names"]=user
               if agefile != "":   PmagSampRec=pmag.get_age(PmagSampRec,"er_site_name","sample_inferred_", AgeNFO,DefaultAge)
               site_height=pmag.get_dictitem(height_nfo,'er_site_name',PmagSampRec['er_site_name'],'T')
               if len(site_height)>0:PmagSampRec["sample_height"]=site_height[0]['site_height'] # add in height if available
               PmagSampRec['er_specimen_names']= pmag.get_list(SampI,'er_specimen_name')
               PmagSampRec['magic_method_codes']= pmag.get_list(SampI,'magic_method_codes')
               if nocrit!=1:  # apply criteria!
                   kill=pmag.grade(PmagSampRec,accept,'sample_int')
                   if len(kill)==0:
                       PmagSampRec['pmag_criteria_codes']="ACCEPT"
                       SampInts.append(PmagSampRec)
                       PmagSamps.append(PmagSampRec)
                   else:PmagSampRec={} # sample rejected
               else: # no criteria
                   SampInts.append(PmagSampRec)
                   PmagSamps.append(PmagSampRec)
                   PmagSampRec['pmag_criteria_codes']=""
               if vgps==1 and get_model_lat!=0 and PmagSampRec!={}: #
                   if get_model_lat==1: # use sample latitude
                       PmagResRec=pmag.getsampVDM(PmagSampRec,SampNFO)
                       del(PmagResRec['model_lat']) # get rid of the model lat key
                   elif get_model_lat==2: # use model latitude
                       PmagResRec=pmag.getsampVDM(PmagSampRec,ModelLats)
                       if PmagResRec!={}:PmagResRec['magic_method_codes']=PmagResRec['magic_method_codes']+":IE-MLAT"
                   if PmagResRec!={}:
                          PmagResRec['er_specimen_names']=PmagSampRec['er_specimen_names']
                          PmagResRec['er_sample_names']=PmagSampRec['er_sample_name']
                          PmagResRec['pmag_criteria_codes']='ACCEPT'
                          PmagResRec['average_int_sigma_perc']=PmagSampRec['sample_int_sigma_perc']
                          PmagResRec['average_int_sigma']=PmagSampRec['sample_int_sigma']
                          PmagResRec['average_int_n']=PmagSampRec['sample_int_n']
                          PmagResRec['vadm_n']=PmagSampRec['sample_int_n']
                          PmagResRec['data_type']='i'
                          PmagResults.append(PmagResRec)
    if len(PmagSamps)>0:
        TmpSamps,keylist=pmag.fillkeys(PmagSamps) # fill in missing keys from different types of records
        pmag.magic_write(sampout,TmpSamps,'pmag_samples') # save in sample output file
        print(' sample averages written to ',sampout)

#
#create site averages from specimens or samples as specified
#
    for site in sites:
        if Daverage==0: key,dirlist='specimen',SpecDirs # if specimen averages at site level desired
        if Daverage==1: key,dirlist='sample',SampDirs # if sample averages at site level desired
        tmp=pmag.get_dictitem(dirlist,'er_site_name',site,'T') # get all the sites with  directions
        tmp1=pmag.get_dictitem(tmp,key+'_tilt_correction',coords[-1],'T') # use only the last coordinate if Caverage==0
        sd=pmag.get_dictitem(SiteNFO,'er_site_name',site,'T') # fish out site information (lat/lon, etc.)
        if len(sd)>0:
            sitedat=sd[0]
            if Caverage==0: # do component wise averaging
                for comp in Comps:
                    siteD=pmag.get_dictitem(tmp1,key+'_comp_name',comp,'T') # get all components comp
                    if len(siteD)>0: # there are some for this site and component name
                        PmagSiteRec=pmag.lnpbykey(siteD,'site',key) # get an average for this site
                        PmagSiteRec['site_comp_name']=comp # decorate the site record
                        PmagSiteRec["er_location_name"]=siteD[0]['er_location_name']
                        PmagSiteRec["er_site_name"]=siteD[0]['er_site_name']
                        PmagSiteRec['site_tilt_correction']=coords[-1]
                        PmagSiteRec['site_comp_name']= pmag.get_list(siteD,key+'_comp_name')
                        if Daverage==1:
                            PmagSiteRec['er_sample_names']= pmag.get_list(siteD,'er_sample_name')
                        else:
                            PmagSiteRec['er_specimen_names']= pmag.get_list(siteD,'er_specimen_name')
        # determine the demagnetization code (DC3,4 or 5) for this site
                        AFnum=len(pmag.get_dictitem(siteD,'magic_method_codes','LP-DIR-AF','has'))
                        Tnum=len(pmag.get_dictitem(siteD,'magic_method_codes','LP-DIR-T','has'))
                        DC=3
                        if AFnum>0:DC+=1
                        if Tnum>0:DC+=1
                        PmagSiteRec['magic_method_codes']= pmag.get_list(siteD,'magic_method_codes')+':'+ 'LP-DC'+str(DC)
                        PmagSiteRec['magic_method_codes'].strip(":")
                        if plotsites==1:
                            print(PmagSiteRec['er_site_name'])
                            pmagplotlib.plotSITE(EQ['eqarea'],PmagSiteRec,siteD,key) # plot and list the data
                            pmagplotlib.drawFIGS(EQ)
                        PmagSites.append(PmagSiteRec)
            else: # last component only
                siteD=tmp1[:] # get the last orientation system specified
                if len(siteD)>0: # there are some
                    PmagSiteRec=pmag.lnpbykey(siteD,'site',key) # get the average for this site
                    PmagSiteRec["er_location_name"]=siteD[0]['er_location_name'] # decorate the record
                    PmagSiteRec["er_site_name"]=siteD[0]['er_site_name']
                    PmagSiteRec['site_comp_name']=comp
                    PmagSiteRec['site_tilt_correction']=coords[-1]
                    PmagSiteRec['site_comp_name']= pmag.get_list(siteD,key+'_comp_name')
                    PmagSiteRec['er_specimen_names']= pmag.get_list(siteD,'er_specimen_name')
                    PmagSiteRec['er_sample_names']= pmag.get_list(siteD,'er_sample_name')
                    AFnum=len(pmag.get_dictitem(siteD,'magic_method_codes','LP-DIR-AF','has'))
                    Tnum=len(pmag.get_dictitem(siteD,'magic_method_codes','LP-DIR-T','has'))
                    DC=3
                    if AFnum>0:DC+=1
                    if Tnum>0:DC+=1
                    PmagSiteRec['magic_method_codes']= pmag.get_list(siteD,'magic_method_codes')+':'+ 'LP-DC'+str(DC)
                    PmagSiteRec['magic_method_codes'].strip(":")
                    if Daverage==0:PmagSiteRec['site_comp_name']= pmag.get_list(siteD,key+'_comp_name')
                    if plotsites==1:
                        pmagplotlib.plotSITE(EQ['eqarea'],PmagSiteRec,siteD,key)
                        pmagplotlib.drawFIGS(EQ)
                    PmagSites.append(PmagSiteRec)
        else:
            print('site information not found in er_sites for site, ',site,' site will be skipped')
    for PmagSiteRec in PmagSites: # now decorate each dictionary some more, and calculate VGPs etc. for results table
        PmagSiteRec["er_citation_names"]="This study"
        PmagSiteRec["er_analyst_mail_names"]=user
        PmagSiteRec['magic_software_packages']=version_num
        if agefile != "": PmagSiteRec= pmag.get_age(PmagSiteRec,"er_site_name","site_inferred_",AgeNFO,DefaultAge)
        PmagSiteRec['pmag_criteria_codes']='ACCEPT'
        if 'site_n_lines' in list(PmagSiteRec.keys()) and 'site_n_planes' in list(PmagSiteRec.keys()) and PmagSiteRec['site_n_lines']!="" and PmagSiteRec['site_n_planes']!="":
            if int(PmagSiteRec["site_n_planes"])>0:
                PmagSiteRec["magic_method_codes"]=PmagSiteRec['magic_method_codes']+":DE-FM-LP"
            elif int(PmagSiteRec["site_n_lines"])>2:
                PmagSiteRec["magic_method_codes"]=PmagSiteRec['magic_method_codes']+":DE-FM"
            kill=pmag.grade(PmagSiteRec,accept,'site_dir')
            if len(kill)==0:
                PmagResRec={} # set up dictionary for the pmag_results table entry
                PmagResRec['data_type']='i' # decorate it a bit
                PmagResRec['magic_software_packages']=version_num
                PmagSiteRec['site_description']='Site direction included in results table'
                PmagResRec['pmag_criteria_codes']='ACCEPT'
                dec=float(PmagSiteRec["site_dec"])
                inc=float(PmagSiteRec["site_inc"])
                if 'site_alpha95' in list(PmagSiteRec.keys()) and PmagSiteRec['site_alpha95']!="":
                    a95=float(PmagSiteRec["site_alpha95"])
                else:a95=180.
                sitedat=pmag.get_dictitem(SiteNFO,'er_site_name',PmagSiteRec['er_site_name'],'T')[0] # fish out site information (lat/lon, etc.)
                lat=float(sitedat['site_lat'])
                lon=float(sitedat['site_lon'])
                plong,plat,dp,dm=pmag.dia_vgp(dec,inc,a95,lat,lon) # get the VGP for this site
                if PmagSiteRec['site_tilt_correction']=='-1':C=' (spec coord) '
                if PmagSiteRec['site_tilt_correction']=='0':C=' (geog. coord) '
                if PmagSiteRec['site_tilt_correction']=='100':C=' (strat. coord) '
                PmagResRec["pmag_result_name"]="VGP Site: "+PmagSiteRec["er_site_name"] # decorate some more
                PmagResRec["result_description"]="Site VGP, coord system = "+str(coord)+' component: '+comp
                PmagResRec['er_site_names']=PmagSiteRec['er_site_name']
                PmagResRec['pmag_criteria_codes']='ACCEPT'
                PmagResRec['er_citation_names']='This study'
                PmagResRec['er_analyst_mail_names']=user
                PmagResRec["er_location_names"]=PmagSiteRec["er_location_name"]
                if Daverage==1:
                    PmagResRec["er_sample_names"]=PmagSiteRec["er_sample_names"]
                else:
                    PmagResRec["er_specimen_names"]=PmagSiteRec["er_specimen_names"]
                PmagResRec["tilt_correction"]=PmagSiteRec['site_tilt_correction']
                PmagResRec["pole_comp_name"]=PmagSiteRec['site_comp_name']
                PmagResRec["average_dec"]=PmagSiteRec["site_dec"]
                PmagResRec["average_inc"]=PmagSiteRec["site_inc"]
                PmagResRec["average_alpha95"]=PmagSiteRec["site_alpha95"]
                PmagResRec["average_n"]=PmagSiteRec["site_n"]
                PmagResRec["average_n_lines"]=PmagSiteRec["site_n_lines"]
                PmagResRec["average_n_planes"]=PmagSiteRec["site_n_planes"]
                PmagResRec["vgp_n"]=PmagSiteRec["site_n"]
                PmagResRec["average_k"]=PmagSiteRec["site_k"]
                PmagResRec["average_r"]=PmagSiteRec["site_r"]
                PmagResRec["average_lat"]='%10.4f ' %(lat)
                PmagResRec["average_lon"]='%10.4f ' %(lon)
                if agefile != "": PmagResRec= pmag.get_age(PmagResRec,"er_site_names","average_",AgeNFO,DefaultAge)
                site_height=pmag.get_dictitem(height_nfo,'er_site_name',site,'T')
                if len(site_height)>0:PmagResRec["average_height"]=site_height[0]['site_height']
                PmagResRec["vgp_lat"]='%7.1f ' % (plat)
                PmagResRec["vgp_lon"]='%7.1f ' % (plong)
                PmagResRec["vgp_dp"]='%7.1f ' % (dp)
                PmagResRec["vgp_dm"]='%7.1f ' % (dm)
                PmagResRec["magic_method_codes"]= PmagSiteRec["magic_method_codes"]
                if PmagSiteRec['site_tilt_correction']=='0':PmagSiteRec['magic_method_codes']=PmagSiteRec['magic_method_codes']+":DA-DIR-GEO"
                if PmagSiteRec['site_tilt_correction']=='100':PmagSiteRec['magic_method_codes']=PmagSiteRec['magic_method_codes']+":DA-DIR-TILT"
                PmagSiteRec['site_polarity']=""
                if polarity==1: # assign polarity based on angle of pole lat to spin axis - may want to re-think this sometime
                    angle=pmag.angle([0,0],[0,(90-plat)])
                    if angle <= 55.: PmagSiteRec["site_polarity"]='n'
                    if angle > 55. and angle < 125.: PmagSiteRec["site_polarity"]='t'
                    if angle >= 125.: PmagSiteRec["site_polarity"]='r'
                PmagResults.append(PmagResRec)
    if polarity==1:
        crecs=pmag.get_dictitem(PmagSites,'site_tilt_correction','100','T') # find the tilt corrected data
        if len(crecs)<2:crecs=pmag.get_dictitem(PmagSites,'site_tilt_correction','0','T') # if there aren't any, find the geographic corrected data
        if len(crecs)>2: # if there are some,
            comp=pmag.get_list(crecs,'site_comp_name').split(':')[0] # find the first component
            crecs=pmag.get_dictitem(crecs,'site_comp_name',comp,'T') # fish out all of the first component
            precs=[]
            for rec in crecs:
                precs.append({'dec':rec['site_dec'],'inc':rec['site_inc'],'name':rec['er_site_name'],'loc':rec['er_location_name']})
            polpars=pmag.fisher_by_pol(precs) # calculate average by polarity
            for mode in list(polpars.keys()): # hunt through all the modes (normal=A, reverse=B, all=ALL)
                PolRes={}
                PolRes['er_citation_names']='This study'
                PolRes["pmag_result_name"]="Polarity Average: Polarity "+mode #
                PolRes["data_type"]="a"
                PolRes["average_dec"]='%7.1f'%(polpars[mode]['dec'])
                PolRes["average_inc"]='%7.1f'%(polpars[mode]['inc'])
                PolRes["average_n"]='%i'%(polpars[mode]['n'])
                PolRes["average_r"]='%5.4f'%(polpars[mode]['r'])
                PolRes["average_k"]='%6.0f'%(polpars[mode]['k'])
                PolRes["average_alpha95"]='%7.1f'%(polpars[mode]['alpha95'])
                PolRes['er_site_names']= polpars[mode]['sites']
                PolRes['er_location_names']= polpars[mode]['locs']
                PolRes['magic_software_packages']=version_num
                PmagResults.append(PolRes)

    if noInt!=1 and nositeints!=1:
      for site in sites: # now do intensities for each site
        if plotsites==1:print(site)
        if Iaverage==0: key,intlist='specimen',SpecInts # if using specimen level data
        if Iaverage==1: key,intlist='sample',PmagSamps # if using sample level data
        Ints=pmag.get_dictitem(intlist,'er_site_name',site,'T') # get all the intensities  for this site
        if len(Ints)>0: # there are some
            PmagSiteRec=pmag.average_int(Ints,key,'site') # get average intensity stuff for site table
            PmagResRec=pmag.average_int(Ints,key,'average') # get average intensity stuff for results table
            if plotsites==1: # if site by site examination requested - print this site out to the screen
                for rec in Ints:print(rec['er_'+key+'_name'],' %7.1f'%(1e6*float(rec[key+'_int'])))
                if len(Ints)>1:
                    print('Average: ','%7.1f'%(1e6*float(PmagResRec['average_int'])),'N: ',len(Ints))
                    print('Sigma: ','%7.1f'%(1e6*float(PmagResRec['average_int_sigma'])),'Sigma %: ',PmagResRec['average_int_sigma_perc'])
                input('Press any key to continue\n')
            er_location_name=Ints[0]["er_location_name"]
            PmagSiteRec["er_location_name"]=er_location_name # decorate the records
            PmagSiteRec["er_citation_names"]="This study"
            PmagResRec["er_location_names"]=er_location_name
            PmagResRec["er_citation_names"]="This study"
            PmagSiteRec["er_analyst_mail_names"]=user
            PmagResRec["er_analyst_mail_names"]=user
            PmagResRec["data_type"]='i'
            if Iaverage==0:
                PmagSiteRec['er_specimen_names']= pmag.get_list(Ints,'er_specimen_name') # list of all specimens used
                PmagResRec['er_specimen_names']= pmag.get_list(Ints,'er_specimen_name')
            PmagSiteRec['er_sample_names']= pmag.get_list(Ints,'er_sample_name') # list of all samples used
            PmagResRec['er_sample_names']= pmag.get_list(Ints,'er_sample_name')
            PmagSiteRec['er_site_name']= site
            PmagResRec['er_site_names']= site
            PmagSiteRec['magic_method_codes']= pmag.get_list(Ints,'magic_method_codes')
            PmagResRec['magic_method_codes']= pmag.get_list(Ints,'magic_method_codes')
            kill=pmag.grade(PmagSiteRec,accept,'site_int')
            if nocrit==1 or len(kill)==0:
                b,sig=float(PmagResRec['average_int']),""
                if(PmagResRec['average_int_sigma'])!="":sig=float(PmagResRec['average_int_sigma'])
                sdir=pmag.get_dictitem(PmagResults,'er_site_names',site,'T') # fish out site direction
                if len(sdir)>0 and  sdir[-1]['average_inc']!="": # get the VDM for this record using last average inclination (hope it is the right one!)
                        inc=float(sdir[0]['average_inc']) #
                        mlat=pmag.magnetic_lat(inc) # get magnetic latitude using dipole formula
                        PmagResRec["vdm"]='%8.3e '% (pmag.b_vdm(b,mlat)) # get VDM with magnetic latitude
                        PmagResRec["vdm_n"]=PmagResRec['average_int_n']
                        if 'average_int_sigma' in list(PmagResRec.keys()) and PmagResRec['average_int_sigma']!="":
                            vdm_sig=pmag.b_vdm(float(PmagResRec['average_int_sigma']),mlat)
                            PmagResRec["vdm_sigma"]='%8.3e '% (vdm_sig)
                        else:
                            PmagResRec["vdm_sigma"]=""
                mlat="" # define a model latitude
                if get_model_lat==1: # use present site latitude
                    mlats=pmag.get_dictitem(SiteNFO,'er_site_name',site,'T')
                    if len(mlats)>0: mlat=mlats[0]['site_lat']
                elif get_model_lat==2: # use a model latitude from some plate reconstruction model (or something)
                    mlats=pmag.get_dictitem(ModelLats,'er_site_name',site,'T')
                    if len(mlats)>0: PmagResRec['model_lat']=mlats[0]['site_model_lat']
                    mlat=PmagResRec['model_lat']
                if mlat!="":
                    PmagResRec["vadm"]='%8.3e '% (pmag.b_vdm(b,float(mlat))) # get the VADM using the desired latitude
                    if sig!="":
                        vdm_sig=pmag.b_vdm(float(PmagResRec['average_int_sigma']),float(mlat))
                        PmagResRec["vadm_sigma"]='%8.3e '% (vdm_sig)
                        PmagResRec["vadm_n"]=PmagResRec['average_int_n']
                    else:
                        PmagResRec["vadm_sigma"]=""
                sitedat=pmag.get_dictitem(SiteNFO,'er_site_name',PmagSiteRec['er_site_name'],'T') # fish out site information (lat/lon, etc.)
                if len(sitedat)>0:
                    sitedat=sitedat[0]
                    PmagResRec['average_lat']=sitedat['site_lat']
                    PmagResRec['average_lon']=sitedat['site_lon']
                else:
                    PmagResRec['average_lon']='UNKNOWN'
                    PmagResRec['average_lon']='UNKNOWN'
                PmagResRec['magic_software_packages']=version_num
                PmagResRec["pmag_result_name"]="V[A]DM: Site "+site
                PmagResRec["result_description"]="V[A]DM of site"
                PmagResRec["pmag_criteria_codes"]="ACCEPT"
                if agefile != "": PmagResRec= pmag.get_age(PmagResRec,"er_site_names","average_",AgeNFO,DefaultAge)
                site_height=pmag.get_dictitem(height_nfo,'er_site_name',site,'T')
                if len(site_height)>0:PmagResRec["average_height"]=site_height[0]['site_height']
                PmagSites.append(PmagSiteRec)
                PmagResults.append(PmagResRec)
    if len(PmagSites)>0:
        Tmp,keylist=pmag.fillkeys(PmagSites)
        pmag.magic_write(siteout,Tmp,'pmag_sites')
        print(' sites written to ',siteout)
    else: print("No Site level table")
    if len(PmagResults)>0:
        TmpRes,keylist=pmag.fillkeys(PmagResults)
        pmag.magic_write(resout,TmpRes,'pmag_results')
        print(' results written to ',resout)
    else: print("No Results level table")
Ejemplo n.º 13
0
def main():
    """
    NAME
        make_magic_plots.py

    DESCRIPTION
        inspects magic directory for available data and makes plots

    SYNTAX
        make_magic_plots.py [command line options]

    INPUT
        magic files

    OPTIONS
        -h prints help message and quits
        -f FILE specifies input file name
        -fmt [png,eps,svg,jpg,pdf] specify format, default is png
    """
    if '-h' in sys.argv:
        print(main.__doc__)
        sys.exit()
    # reset log files
    for fname in ['log.txt', 'errors.txt']:
        f = os.path.join(os.getcwd(), fname)
        if os.path.exists(f):
            os.remove(f)
    dirlist = ['./']
    dir_path = os.getcwd()
    #
    if '-fmt' in sys.argv:
        ind = sys.argv.index("-fmt")
        fmt = sys.argv[ind + 1]
    else:
        fmt = 'png'
    if '-f' in sys.argv:
        ind = sys.argv.index("-f")
        filelist = [sys.argv[ind + 1]]
    else:
        filelist = os.listdir(dir_path)
    ## initialize some variables
    samp_file = 'samples.txt'
    azimuth_key = 'azimuth'
    meas_file = 'measurements.txt'
    loc_key = 'location'
    loc_file = 'locations.txt'
    method_key = 'method_codes'
    dec_key = 'dir_dec'
    inc_key = 'dir_inc'
    tilt_corr_key = "dir_tilt_correction"
    aniso_tilt_corr_key = "aniso_tilt_correction"
    hyst_bcr_key = "hyst_bcr"
    hyst_mr_key = "hyst_mr_moment"
    hyst_ms_key = "hyst_ms_moment"
    hyst_bc_key = "hyst_bc"
    Mkeys = ['magnitude', 'magn_moment', 'magn_volume', 'magn_mass']
    results_file = 'sites.txt'
    hyst_file = 'specimens.txt'
    aniso_file = 'specimens.txt'
    # create contribution and propagate data throughout
    con = cb.Contribution()
    con.propagate_location_to_measurements()
    con.propagate_location_to_specimens()
    con.propagate_location_to_samples()
    if not con.tables:
        print('-E- No MagIC tables could be found in this directory')
        error_log("No MagIC tables found")
        return
    # try to get the contribution id for error logging
    con_id = ""
    if 'contribution' in con.tables:
        if 'id' in con.tables['contribution'].df.columns:
            con_id = con.tables['contribution'].df.iloc[0]['id']
    # check to see if propagation worked, otherwise you can't plot by location
    lowest_table = None
    for table in con.ancestry:
        if table in con.tables:
            lowest_table = table
            break

    do_full_directory = False
    # check that locations propagated down to the lowest table in the contribution
    if 'location' in con.tables[lowest_table].df.columns:
        if 'locations' not in con.tables:
            info_log('location names propagated to {}, but could not be validated'.format(lowest_table))
        # are there any locations in the lowest table?
        elif not all(con.tables[lowest_table].df['location'].isnull()):
            locs = con.tables['locations'].df.index.unique()
            lowest_locs = con.tables[lowest_table].df['location'].unique()
            incorrect_locs = set(lowest_locs).difference(set(locs))
            # are they actual locations?
            if not incorrect_locs:
                info_log('location names propagated to {}'.format(lowest_table))
            else:
                do_full_directory = True
                error_log('location names did not propagate fully to {} table (looks like there are some naming inconsistencies between tables)'.format(lowest_table), con_id=con_id)
        else:
            do_full_directory = True
            error_log('could not propagate location names down to {} table'.format(lowest_table), con_id=con_id)
    else:
        do_full_directory = True
        error_log('could not propagate location names down to {} table'.format(lowest_table), con_id=con_id)

    all_data = {}
    all_data['measurements'] = con.tables.get('measurements', None)
    all_data['specimens'] = con.tables.get('specimens', None)
    all_data['samples'] = con.tables.get('samples', None)
    all_data['sites'] = con.tables.get('sites', None)
    all_data['locations'] = con.tables.get('locations', None)
    if 'locations' in con.tables:
        locations = con.tables['locations'].df.index.unique()
    else:
        locations = ['']
    dirlist = [loc for loc in locations if cb.not_null(loc, False) and loc != 'nan']
    if not dirlist:
        dirlist = ["./"]
    if do_full_directory:
        dirlist = ["./"]

    # plot the whole contribution as one location
    if dirlist == ["./"]:
        error_log('plotting the entire contribution as one location', con_id=con_id)
        for fname in os.listdir("."):
            if fname.endswith(".txt"):
                shutil.copy(fname, "tmp_" + fname)

    # if possible, go through all data by location
    # use tmp_*.txt files to separate out by location

    for loc in dirlist:
        print('\nworking on: ', loc)

        def get_data(dtype, loc_name):
            """
            Extract data of type dtype for location loc_name.
            Write tmp_dtype.txt files if possible.
            """
            if cb.not_null(all_data[dtype], False):
                data_container = all_data[dtype]
                if loc_name == "./":
                    data_df = data_container.df
                else:
                    # awkward workaround for chars like "(" and "?" that break in regex
                    try:
                        data_df = data_container.df[data_container.df['location'].astype(str).str.contains(loc_name, na=False)]
                    except: #sre_constants.error:
                        data_df = data_container.df[data_container.df['location'] == loc_name]

                data = data_container.convert_to_pmag_data_list(df=data_df)
                res = data_container.write_magic_file('tmp_{}.txt'.format(dtype), df=data_df)
                if not res:
                    return []
                return data

        meas_data = get_data('measurements', loc)
        spec_data = get_data('specimens', loc)
        samp_data = get_data('samples', loc)
        site_data = get_data('sites', loc)
        loc_data = get_data('locations', loc)

        if loc == "./":  # if you can't sort by location, do everything together
            try:
                meas_data = con.tables['measurements'].convert_to_pmag_data_list()
            except KeyError:
                meas_data = None
            try:
                spec_data = con.tables['specimens'].convert_to_pmag_data_list()
            except KeyError:
                spec_data = None
            try:
                samp_data = con.tables['samples'].convert_to_pmag_data_list()
            except KeyError:
                samp_data = None
            try:
                site_data = con.tables['sites'].convert_to_pmag_data_list()
            except KeyError:
                site_data = None

        crd = 's'
        if samp_file in filelist and samp_data:  # find coordinate systems
            samps = samp_data
            file_type = "samples"
            # get all non blank sample orientations
            Srecs = pmag.get_dictitem(samps, azimuth_key, '', 'F')
            if len(Srecs) > 0:
                crd = 'g'
                print('using geographic coordinates')
            else:
                print('using specimen coordinates')
        else:
            if VERBOSE:
                print('-I- No sample data found')
        if meas_file in filelist and meas_data:  # start with measurement data
            print('working on measurements data')
            data = meas_data
            file_type = 'measurements'
            # looking for  zeq_magic possibilities
            # get all non blank method codes
            AFZrecs = pmag.get_dictitem(data, method_key, 'LT-AF-Z', 'has')
            # get all non blank method codes
            TZrecs = pmag.get_dictitem(data, method_key, 'LT-T-Z', 'has')
            # get all non blank method codes
            MZrecs = pmag.get_dictitem(data, method_key, 'LT-M-Z', 'has')
            # get all dec measurements
            Drecs = pmag.get_dictitem(data, dec_key, '', 'F')
            # get all inc measurements
            Irecs = pmag.get_dictitem(data, inc_key, '', 'F')
            for key in Mkeys:
                Mrecs = pmag.get_dictitem(
                    data, key, '', 'F')  # get intensity data
                if len(Mrecs) > 0:
                    break
            # potential for stepwise demag curves
            if len(AFZrecs) > 0 or len(TZrecs) > 0 or len(MZrecs) > 0 and len(Drecs) > 0 and len(Irecs) > 0 and len(Mrecs) > 0:
                CMD = 'zeq_magic.py -f tmp_measurements.txt -fsp tmp_specimens.txt -fsa tmp_samples.txt -fsi tmp_sites.txt -sav -fmt ' + fmt + ' -crd ' + crd + " -new"
                print(CMD)
                info_log(CMD, loc)
                os.system(CMD)
            # looking for  thellier_magic possibilities
            if len(pmag.get_dictitem(data, method_key, 'LP-PI-TRM', 'has')) > 0:
                CMD = 'thellier_magic.py -f tmp_measurements.txt -fsp tmp_specimens.txt -sav -fmt ' + fmt
                print(CMD)
                info_log(CMD, loc)
                os.system(CMD)
            # looking for hysteresis possibilities
            if len(pmag.get_dictitem(data, method_key, 'LP-HYS', 'has')) > 0:  # find hyst experiments
                # check for reqd columns
                missing = check_for_reqd_cols(data, ['treat_temp'])
                if missing:
                    error_log('LP-HYS method code present, but required column(s) [{}] missing'.format(", ".join(missing)), loc, "quick_hyst.py", con_id=con_id)
                else:
                    CMD = 'quick_hyst.py -f tmp_measurements.txt -sav -fmt ' + fmt
                    print(CMD)
                    info_log(CMD, loc)
                    os.system(CMD)
            # equal area plots of directional data
            # at measurment level (by specimen)

            if data:
                missing = check_for_reqd_cols(data, ['dir_dec', 'dir_inc'])
                if not missing:
                    CMD = "eqarea_magic.py -f tmp_measurements.txt -obj spc -sav -no-tilt -fmt " + fmt
                    print(CMD)
                    os.system(CMD)
                    info_log(CMD, loc, "eqarea_magic.py")

        else:
            if VERBOSE:
                print('-I- No measurement data found')

        # site data
        if results_file in filelist and site_data:
            print('-I- result file found', results_file)
            data = site_data
            file_type = 'sites'
            print('-I- working on site directions')
            print('number of datapoints: ', len(data), loc)
            dec_key = 'dir_dec'
            inc_key = 'dir_inc'
            int_key = 'int_abs'
            SiteDIs = pmag.get_dictitem(data, dec_key, "", 'F')  # find decs
            SiteDIs = pmag.get_dictitem(
                SiteDIs, inc_key, "", 'F')  # find decs and incs
            dir_data_found = len(SiteDIs)
            print('{} Dec/inc pairs found'.format(dir_data_found))
            if SiteDIs:
                # then convert tilt_corr_key to correct format
                old_SiteDIs = SiteDIs
                SiteDIs = []
                for rec in old_SiteDIs:
                    if tilt_corr_key not in rec:
                        rec[tilt_corr_key] = "0"
                    # make sure tilt_corr_key is a correct format
                    try:
                        rec[tilt_corr_key] = str(int(float(rec[tilt_corr_key])))
                    except ValueError:
                        rec[tilt_corr_key] = "0"
                    SiteDIs.append(rec)

                print('number of individual directions: ', len(SiteDIs))
                # tilt corrected coordinates
                SiteDIs_t = pmag.get_dictitem(SiteDIs, tilt_corr_key, '100',
                                              'T', float_to_int=True)
                print('number of tilt corrected directions: ', len(SiteDIs_t))
                SiteDIs_g = pmag.get_dictitem(
                    SiteDIs, tilt_corr_key, '0', 'T', float_to_int=True)  # geographic coordinates
                print('number of geographic  directions: ', len(SiteDIs_g))
                SiteDIs_s = pmag.get_dictitem(
                    SiteDIs, tilt_corr_key, '-1', 'T', float_to_int=True)  # sample coordinates
                print('number of sample  directions: ', len(SiteDIs_s))
                SiteDIs_x = pmag.get_dictitem(
                    SiteDIs, tilt_corr_key, '', 'T')  # no coordinates
                print('number of no coordinates  directions: ', len(SiteDIs_x))
                if len(SiteDIs_t) > 0 or len(SiteDIs_g) > 0 or len(SiteDIs_s) > 0 or len(SiteDIs_x) > 0:
                    CRD = ""
                    if len(SiteDIs_t) > 0:
                        CRD = ' -crd t'
                    elif len(SiteDIs_g) > 0:
                        CRD = ' -crd g'
                    elif len(SiteDIs_s) > 0:
                        CRD = ' -crd s'
                    CMD = 'eqarea_magic.py -f tmp_sites.txt -fsp tmp_specimens.txt -fsa tmp_samples.txt -flo tmp_locations.txt -sav -fmt ' + fmt + CRD
                    print(CMD)
                    info_log(CMD, loc)
                    os.system(CMD)
                else:
                    if dir_data_found:
                        error_log('{} dec/inc pairs found, but no equal area plots were made'.format(dir_data_found), loc, "equarea_magic.py", con_id=con_id)
            #
            print('-I- working on VGP map')
            VGPs = pmag.get_dictitem(
                SiteDIs, 'vgp_lat', "", 'F')  # are there any VGPs?
            if len(VGPs) > 0:  # YES!
                CMD = 'vgpmap_magic.py -f tmp_sites.txt -prj moll -res c -sym ro 5 -sav -fmt png'
                print(CMD)
                info_log(CMD, loc, 'vgpmap_magic.py')
                os.system(CMD)
            else:
                print('-I- No vgps found')

            print('-I- Look for intensities')
            # is there any intensity data?
            if site_data:
                if int_key in site_data[0].keys():
                    # old way, wasn't working right:
                    #CMD = 'magic_select.py  -key ' + int_key + ' 0. has -F tmp1.txt -f tmp_sites.txt'
                    Selection = pmag.get_dictkey(site_data, int_key, dtype="f")
                    with open('intensities.txt', 'w') as out:
                        for rec in Selection:
                            if rec != 0:
                                out.write(str(rec * 1e6) + "\n")

                    loc = loc.replace(" ", "_")
                    if loc == "./":
                        loc_name = ""
                    else:
                        loc_name = loc
                    histfile = 'LO:_' + loc_name + \
                        '_TY:_intensities_histogram:_.' + fmt
                    # maybe run histplot.main here instead, so you can return an error message
                    CMD = "histplot.py -twin -b 1 -xlab 'Intensity (uT)' -sav -f intensities.txt -F " + histfile
                    os.system(CMD)
                    info_log(CMD, loc)
                    print(CMD)
                else:
                    print('-I- No intensities found')
            else:
                print('-I- No intensities found')

        ##
        if hyst_file in filelist and spec_data:
            print('working on hysteresis', hyst_file)
            data = spec_data
            file_type = 'specimens'
            hdata = pmag.get_dictitem(data, hyst_bcr_key, '', 'F')
            hdata = pmag.get_dictitem(hdata, hyst_mr_key, '', 'F')
            hdata = pmag.get_dictitem(hdata, hyst_ms_key, '', 'F')
            # there are data for a dayplot
            hdata = pmag.get_dictitem(hdata, hyst_bc_key, '', 'F')
            if len(hdata) > 0:
                CMD = 'dayplot_magic.py -f tmp_specimens.txt -sav -fmt ' + fmt
                info_log(CMD, loc)
                print(CMD)
            else:
                print('no hysteresis data found')
        if aniso_file in filelist and spec_data:  # do anisotropy plots if possible
            print('working on anisotropy', aniso_file)
            data = spec_data
            file_type = 'specimens'

            # make sure there is some anisotropy data
            if not data:
                print('No anisotropy data found')
            elif 'aniso_s' not in data[0]:
                print('No anisotropy data found')
            else:
                # get specimen coordinates
                if aniso_tilt_corr_key not in data[0]:
                    sdata = data
                else:
                    sdata = pmag.get_dictitem(
                        data, aniso_tilt_corr_key, '-1', 'T', float_to_int=True)
                # get specimen coordinates
                gdata = pmag.get_dictitem(
                    data, aniso_tilt_corr_key, '0', 'T', float_to_int=True)
                # get specimen coordinates
                tdata = pmag.get_dictitem(
                    data, aniso_tilt_corr_key, '100', 'T', float_to_int=True)
                CRD = ""
                CMD = 'aniso_magic.py -x -B -sav -fmt ' + fmt + " -new"
                if len(sdata) > 3:
                    CMD = CMD + ' -crd s'
                    print(CMD)
                    info_log(CMD, loc)
                    os.system(CMD)
                if len(gdata) > 3:
                    CMD = CMD + ' -crd g'
                    print(CMD)
                    info_log(CMD, loc)
                    os.system(CMD)
                if len(tdata) > 3:
                    CMD = CMD + ' -crd t'
                    print(CMD)
                    info_log(CMD, loc)
                    os.system(CMD)
        # remove temporary files
        for fname in glob.glob('tmp*.txt'):
            os.remove(fname)
        try:
            os.remove('intensities.txt')
        except FileNotFoundError:
            pass
    if loc_file in filelist and loc_data:
        #data, file_type = pmag.magic_read(loc_file)  # read in location data
        data = loc_data
        print('-I- working on pole map')
        poles = pmag.get_dictitem(
            data, 'pole_lat', "", 'F')  # are there any poles?
        poles = pmag.get_dictitem(
            poles, 'pole_lon', "", 'F')  # are there any poles?
        if len(poles) > 0:  # YES!
            CMD = 'polemap_magic.py -sav -fmt png -rev gv 40'
            print(CMD)
            info_log(CMD, "all locations", "polemap_magic.py")
            os.system(CMD)
        else:
            print('-I- No poles found')
    thumbnails.make_thumbnails(dir_path)
Ejemplo n.º 14
0
def main():
    """
    NAME
        lowrie_magic.py

    DESCRIPTION
       plots intensity decay curves for Lowrie experiments

    SYNTAX
        lowrie_magic.py -h [command line options]

    INPUT
       takes measurements formatted input files

    OPTIONS
        -h prints help message and quits
        -f FILE: specify input file, default is magic_measurements.txt
        -N do not normalize by maximum magnetization
        -fmt [svg, pdf, eps, png] specify fmt, default is svg
        -sav saves plots and quits
        -DM [2, 3] MagIC data model number
    """
    if '-h' in sys.argv:
        print(main.__doc__)
        sys.exit()
    if len(sys.argv) <= 1:
        print(main.__doc__)
        print('you must supply a file name')
        sys.exit()
    FIG = {}  # plot dictionary
    FIG['lowrie'] = 1  # demag is figure 1
    pmagplotlib.plot_init(FIG['lowrie'], 6, 6)
    norm = 1  # default is to normalize by maximum axis
    in_file = pmag.get_named_arg("-f", "measurements.txt")
    dir_path = pmag.get_named_arg("-WD", ".")
    in_file = pmag.resolve_file_name(in_file, dir_path)
    data_model = pmag.get_named_arg("-DM", 3)
    data_model = int(float(data_model))
    fmt = pmag.get_named_arg("-fmt", "svg")
    if '-N' in sys.argv:
        norm = 0  # don't normalize
    if '-sav' in sys.argv:
        plot = 1  # silently save and quit
    else:
        plot = 0 # generate plots
    print(in_file)
    # read in data
    PmagRecs, file_type = pmag.magic_read(in_file)
    if data_model == 2 and file_type != "magic_measurements":
        print('bad input file', file_type)
        sys.exit()
    if data_model == 3 and file_type != "measurements":
        print('bad input file', file_type)
        sys.exit()

    if data_model == 2:
        meth_code_col = 'magic_method_codes'
        spec_col = 'er_specimen_name'
        dec_col = "measurement_dec"
        inc_col = 'measurement_inc'
        moment_col = 'measurement_magn_moment'
        temp_col = 'treatment_temp'
    else:
        meth_code_col = 'method_codes'
        spec_col = 'specimen'
        dec_col = 'dir_dec'
        inc_col = 'dir_inc'
        moment_col = 'magn_moment'
        temp_col = "treat_temp"

    PmagRecs = pmag.get_dictitem(
        PmagRecs, meth_code_col, 'LP-IRM-3D', 'has')  # get all 3D IRM records

    if len(PmagRecs) == 0:
        print('no records found with the method code LP-IRM-3D')
        sys.exit()

    specs = pmag.get_dictkey(PmagRecs, spec_col, '')
    sids = []
    for spec in specs:
        if spec not in sids:
            sids.append(spec)  # get list of unique specimen names
    for spc in sids:  # step through the specimen names
        print(spc)
        specdata = pmag.get_dictitem(
            PmagRecs, spec_col, spc, 'T')  # get all this one's data

        DIMs, Temps = [], []
        for dat in specdata:  # step through the data
            DIMs.append([float(dat[dec_col]), float(
                dat[inc_col]), float(dat[moment_col])])
            Temps.append(float(dat[temp_col])-273.)
        carts = pmag.dir2cart(DIMs).transpose()
        if norm == 1:  # want to normalize
            nrm = (DIMs[0][2])  # normalize by NRM
            ylab = "M/M_o"
        else:
            nrm = 1.  # don't normalize
            ylab = "Magnetic moment (Am^2)"
        xlab = "Temperature (C)"
        pmagplotlib.plot_xy(FIG['lowrie'], Temps, abs(carts[0]) / nrm, sym='r-')
        pmagplotlib.plot_xy(FIG['lowrie'], Temps, abs(carts[0]) / nrm, sym='ro')  # X direction
        pmagplotlib.plot_xy(FIG['lowrie'], Temps, abs(carts[1]) / nrm, sym='c-')
        pmagplotlib.plot_xy(FIG['lowrie'], Temps, abs(carts[1]) / nrm, sym='cs')  # Y direction
        pmagplotlib.plot_xy(FIG['lowrie'], Temps, abs(carts[2]) / nrm, sym='k-')
        pmagplotlib.plot_xy(FIG['lowrie'], Temps, abs(carts[2]) / nrm, sym='k^', title=spc, xlab=xlab, ylab=ylab)  # Z direction
        files = {'lowrie': 'lowrie:_'+spc+'_.'+fmt}
        if plot == 0:
            pmagplotlib.draw_figs(FIG)
            ans = input('S[a]ve figure? [q]uit, <return> to continue   ')
            if ans == 'a':
                pmagplotlib.save_plots(FIG, files)
            elif ans == 'q':
                sys.exit()
        else:
            pmagplotlib.save_plots(FIG, files)
        pmagplotlib.clearFIG(FIG['lowrie'])
Ejemplo n.º 15
0
def main():
    """
    NAME
        sites_locations.py

    DESCRIPTION
        reads in er_sites.txt file and finds all locations and bounds of locations
        outputs er_locations.txt file

    SYNTAX
        sites_locations.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f: specimen input er_sites format file, default is "er_sites.txt"
        -F: locations table: default is "er_locations.txt"
    """
# set defaults
    site_file="er_sites.txt"
    loc_file="er_locations.txt"
    Names,user=[],"unknown"
    Done=[]
    version_num=pmag.get_version()
    args=sys.argv
    dir_path='.'
# get command line stuff
    if '-WD' in args:
        ind=args.index("-WD")
        dir_path=args[ind+1]
    if "-h" in args:
        print(main.__doc__)
        sys.exit()
    if '-f' in args:
        ind=args.index("-f")
        site_file=args[ind+1]
    if '-F' in args:
        ind=args.index("-F")
        loc_file=args[ind+1]
    #
    site_file=dir_path+'/'+site_file
    loc_file=dir_path+'/'+loc_file
    Sites,file_type=pmag.magic_read(site_file)
    if file_type != 'er_sites':
        print(file_type)
        print(file_type,"This is not a valid er_sites file ")
        sys.exit()
    # read in site data
    #
    LocNames,Locations=[],[]
    for site in Sites:
        if site['er_location_name'] not in LocNames: # new location name
            LocNames.append(site['er_location_name'])
            sites_locs=pmag.get_dictitem(Sites,'er_location_name',site['er_location_name'],'T') # get all sites for this loc
            lats=pmag.get_dictkey(sites_locs,'site_lat','f') # get all the latitudes as floats
            lons=pmag.get_dictkey(sites_locs,'site_lon','f') # get all the longitudes as floats
            LocRec={'er_citation_names':'This study','er_location_name':site['er_location_name'],'location_type':''}
            LocRec['location_begin_lat']=str(min(lats))
            LocRec['location_end_lat']=str(max(lats))
            LocRec['location_begin_lon']=str(min(lons))
            LocRec['location_end_lon']=str(max(lons))
            Locations.append(LocRec)
    if len(Locations)>0:
        pmag.magic_write(loc_file,Locations,"er_locations")
        print("Locations written to: ",loc_file)
Ejemplo n.º 16
0
def main():
    """
    NAME
        aniso_magic.py

    DESCRIPTION
        plots anisotropy data with either bootstrap or hext ellipses

    SYNTAX
        aniso_magic.py [-h] [command line options]
    OPTIONS
        -h plots help message and quits
        -usr USER: set the user name
        -f AFILE, specify rmag_anisotropy formatted file for input
        -F RFILE, specify rmag_results formatted file for output
        -x Hext [1963] and bootstrap
        -B DON'T do bootstrap, do Hext
        -par Tauxe [1998] parametric bootstrap
        -v plot bootstrap eigenvectors instead of ellipses
        -sit plot by site instead of entire file
        -crd [s,g,t] coordinate system, default is specimen (g=geographic, t=tilt corrected)
        -P don't make any plots - just make rmag_results table
        -sav don't make the rmag_results table - just save all the plots
        -fmt [svg, jpg, eps] format for output images, pdf default
        -gtc DEC INC  dec,inc of pole to great circle [down(up) in green (cyan)
        -d Vi DEC INC; Vi (1,2,3) to compare to direction DEC INC
        -n N; specifies the number of bootstraps - default is 1000
    DEFAULTS
       AFILE:  rmag_anisotropy.txt
       RFILE:  rmag_results.txt
       plot bootstrap ellipses of Constable & Tauxe [1987]
    NOTES
       minor axis: circles
       major axis: triangles
       principal axis: squares
       directions are plotted on the lower hemisphere
       for bootstrapped eigenvector components: Xs: blue, Ys: red, Zs: black
"""
#
    dir_path = "."
    version_num = pmag.get_version()
    verbose = pmagplotlib.verbose
    args = sys.argv
    ipar, ihext, ivec, iboot, imeas, isite, iplot, vec = 0, 0, 0, 1, 1, 0, 1, 0
    hpars, bpars, PDir = [], [], []
    CS, crd = '-1', 's'
    nb = 1000
    fmt = 'pdf'
    ResRecs = []
    orlist = []
    outfile, comp, Dir, gtcirc, PDir = 'rmag_results.txt', 0, [], 0, []
    infile = 'rmag_anisotropy.txt'
    if "-h" in args:
        print(main.__doc__)
        sys.exit()
    if '-WD' in args:
        ind = args.index('-WD')
        dir_path = args[ind+1]
    if '-n' in args:
        ind = args.index('-n')
        nb = int(args[ind+1])
    if '-usr' in args:
        ind = args.index('-usr')
        user = args[ind+1]
    else:
        user = ""
    if '-B' in args:
        iboot, ihext = 0, 1
    if '-par' in args:
        ipar = 1
    if '-x' in args:
        ihext = 1
    if '-v' in args:
        ivec = 1
    if '-sit' in args:
        isite = 1
    if '-P' in args:
        iplot = 0
    if '-f' in args:
        ind = args.index('-f')
        infile = args[ind+1]
    if '-F' in args:
        ind = args.index('-F')
        outfile = args[ind+1]
    if '-crd' in sys.argv:
        ind = sys.argv.index('-crd')
        crd = sys.argv[ind+1]
        if crd == 'g':
            CS = '0'
        if crd == 't':
            CS = '100'
    if '-fmt' in args:
        ind = args.index('-fmt')
        fmt = args[ind+1]
    if '-sav' in args:
        plots = 1
        verbose = 0
    else:
        plots = 0
    if '-gtc' in args:
        ind = args.index('-gtc')
        d, i = float(args[ind+1]), float(args[ind+2])
        PDir.append(d)
        PDir.append(i)
    if '-d' in args:
        comp = 1
        ind = args.index('-d')
        vec = int(args[ind+1])-1
        Dir = [float(args[ind+2]), float(args[ind+3])]
#
# set up plots
#
    if infile[0] != '/':
        infile = dir_path+'/'+infile
    if outfile[0] != '/':
        outfile = dir_path+'/'+outfile
    ANIS = {}
    initcdf, inittcdf = 0, 0
    ANIS['data'], ANIS['conf'] = 1, 2
    if iboot == 1:
        ANIS['tcdf'] = 3
        if iplot == 1:
            inittcdf = 1
            pmagplotlib.plot_init(ANIS['tcdf'], 5, 5)
        if comp == 1 and iplot == 1:
            initcdf = 1
            ANIS['vxcdf'], ANIS['vycdf'], ANIS['vzcdf'] = 4, 5, 6
            pmagplotlib.plot_init(ANIS['vxcdf'], 5, 5)
            pmagplotlib.plot_init(ANIS['vycdf'], 5, 5)
            pmagplotlib.plot_init(ANIS['vzcdf'], 5, 5)
    if iplot == 1:
        pmagplotlib.plot_init(ANIS['conf'], 5, 5)
        pmagplotlib.plot_init(ANIS['data'], 5, 5)
# read in the data
    data, ifiletype = pmag.magic_read(infile)
    for rec in data:  # find all the orientation systems
        if 'anisotropy_tilt_correction' not in rec.keys():
            rec['anisotropy_tilt_correction'] = '-1'
        if rec['anisotropy_tilt_correction'] not in orlist:
            orlist.append(rec['anisotropy_tilt_correction'])
    if CS not in orlist:
        if len(orlist) > 0:
            CS = orlist[0]
        else:
            CS = '-1'
        if CS == '-1':
            crd = 's'
        if CS == '0':
            crd = 'g'
        if CS == '100':
            crd = 't'
        if verbose:
            print("desired coordinate system not available, using available: ", crd)
    if isite == 1:
        sitelist = []
        for rec in data:
            if rec['er_site_name'] not in sitelist:
                sitelist.append(rec['er_site_name'])
        sitelist.sort()
        plt = len(sitelist)
    else:
        plt = 1
    k = 0
    while k < plt:
        site = ""
        sdata, Ss = [], []  # list of S format data
        Locs, Sites, Samples, Specimens, Cits = [], [], [], [], []
        if isite == 0:
            sdata = data
        else:
            site = sitelist[k]
            for rec in data:
                if rec['er_site_name'] == site:
                    sdata.append(rec)
        anitypes = []
        csrecs = pmag.get_dictitem(
            sdata, 'anisotropy_tilt_correction', CS, 'T')
        for rec in csrecs:
            if rec['anisotropy_type'] not in anitypes:
                anitypes.append(rec['anisotropy_type'])
            if rec['er_location_name'] not in Locs:
                Locs.append(rec['er_location_name'])
            if rec['er_site_name'] not in Sites:
                Sites.append(rec['er_site_name'])
            if rec['er_sample_name'] not in Samples:
                Samples.append(rec['er_sample_name'])
            if rec['er_specimen_name'] not in Specimens:
                Specimens.append(rec['er_specimen_name'])
            if rec['er_citation_names'] not in Cits:
                Cits.append(rec['er_citation_names'])
            s = []
            s.append(float(rec["anisotropy_s1"]))
            s.append(float(rec["anisotropy_s2"]))
            s.append(float(rec["anisotropy_s3"]))
            s.append(float(rec["anisotropy_s4"]))
            s.append(float(rec["anisotropy_s5"]))
            s.append(float(rec["anisotropy_s6"]))
            if s[0] <= 1.0:
                Ss.append(s)  # protect against crap
            # tau,Vdirs=pmag.doseigs(s)
            ResRec = {}
            ResRec['er_location_names'] = rec['er_location_name']
            ResRec['er_citation_names'] = rec['er_citation_names']
            ResRec['er_site_names'] = rec['er_site_name']
            ResRec['er_sample_names'] = rec['er_sample_name']
            ResRec['er_specimen_names'] = rec['er_specimen_name']
            ResRec['rmag_result_name'] = rec['er_specimen_name'] + \
                ":"+rec['anisotropy_type']
            ResRec["er_analyst_mail_names"] = user
            ResRec["tilt_correction"] = CS
            ResRec["anisotropy_type"] = rec['anisotropy_type']
            if "anisotropy_n" not in rec.keys():
                rec["anisotropy_n"] = "6"
            if "anisotropy_sigma" not in rec.keys():
                rec["anisotropy_sigma"] = "0"
            fpars = pmag.dohext(
                int(rec["anisotropy_n"])-6, float(rec["anisotropy_sigma"]), s)
            ResRec["anisotropy_v1_dec"] = '%7.1f' % (fpars['v1_dec'])
            ResRec["anisotropy_v2_dec"] = '%7.1f' % (fpars['v2_dec'])
            ResRec["anisotropy_v3_dec"] = '%7.1f' % (fpars['v3_dec'])
            ResRec["anisotropy_v1_inc"] = '%7.1f' % (fpars['v1_inc'])
            ResRec["anisotropy_v2_inc"] = '%7.1f' % (fpars['v2_inc'])
            ResRec["anisotropy_v3_inc"] = '%7.1f' % (fpars['v3_inc'])
            ResRec["anisotropy_t1"] = '%10.8f' % (fpars['t1'])
            ResRec["anisotropy_t2"] = '%10.8f' % (fpars['t2'])
            ResRec["anisotropy_t3"] = '%10.8f' % (fpars['t3'])
            ResRec["anisotropy_ftest"] = '%10.3f' % (fpars['F'])
            ResRec["anisotropy_ftest12"] = '%10.3f' % (fpars['F12'])
            ResRec["anisotropy_ftest23"] = '%10.3f' % (fpars['F23'])
            ResRec["result_description"] = 'F_crit: ' + \
                fpars['F_crit']+'; F12,F23_crit: '+fpars['F12_crit']
            ResRec['anisotropy_type'] = pmag.makelist(anitypes)
            ResRecs.append(ResRec)
        if len(Ss) > 1:
            if pmagplotlib.isServer:
                title = "LO:_"+ResRec['er_location_names'] + \
                    '_SI:_'+site+'_SA:__SP:__CO:_'+crd
            else:
                title = ResRec['er_location_names']
                if site:
                    title += "_{}".format(site)
                title += '_{}'.format(crd)
            ResRec['er_location_names'] = pmag.makelist(Locs)
            bpars, hpars = pmagplotlib.plot_anis(
                ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp, vec, Dir, nb)
            if len(PDir) > 0:
                pmagplotlib.plot_circ(ANIS['data'], PDir, 90., 'g')
                pmagplotlib.plot_circ(ANIS['conf'], PDir, 90., 'g')
            if verbose and plots == 0:
                pmagplotlib.draw_figs(ANIS)
            ResRec['er_location_names'] = pmag.makelist(Locs)
            if plots == 1:
                save(ANIS, fmt, title)
            ResRec = {}
            ResRec['er_citation_names'] = pmag.makelist(Cits)
            ResRec['er_location_names'] = pmag.makelist(Locs)
            ResRec['er_site_names'] = pmag.makelist(Sites)
            ResRec['er_sample_names'] = pmag.makelist(Samples)
            ResRec['er_specimen_names'] = pmag.makelist(Specimens)
            ResRec['rmag_result_name'] = pmag.makelist(
                Sites)+":"+pmag.makelist(anitypes)
            ResRec['anisotropy_type'] = pmag.makelist(anitypes)
            ResRec["er_analyst_mail_names"] = user
            ResRec["tilt_correction"] = CS
            if isite == "0":
                ResRec['result_description'] = "Study average using coordinate system: " + CS
            if isite == "1":
                ResRec['result_description'] = "Site average using coordinate system: " + CS
            if hpars != [] and ihext == 1:
                HextRec = {}
                for key in ResRec.keys():
                    HextRec[key] = ResRec[key]   # copy over stuff
                HextRec["anisotropy_v1_dec"] = '%7.1f' % (hpars["v1_dec"])
                HextRec["anisotropy_v2_dec"] = '%7.1f' % (hpars["v2_dec"])
                HextRec["anisotropy_v3_dec"] = '%7.1f' % (hpars["v3_dec"])
                HextRec["anisotropy_v1_inc"] = '%7.1f' % (hpars["v1_inc"])
                HextRec["anisotropy_v2_inc"] = '%7.1f' % (hpars["v2_inc"])
                HextRec["anisotropy_v3_inc"] = '%7.1f' % (hpars["v3_inc"])
                HextRec["anisotropy_t1"] = '%10.8f' % (hpars["t1"])
                HextRec["anisotropy_t2"] = '%10.8f' % (hpars["t2"])
                HextRec["anisotropy_t3"] = '%10.8f' % (hpars["t3"])
                HextRec["anisotropy_hext_F"] = '%7.1f ' % (hpars["F"])
                HextRec["anisotropy_hext_F12"] = '%7.1f ' % (hpars["F12"])
                HextRec["anisotropy_hext_F23"] = '%7.1f ' % (hpars["F23"])
                HextRec["anisotropy_v1_eta_semi_angle"] = '%7.1f ' % (
                    hpars["e12"])
                HextRec["anisotropy_v1_eta_dec"] = '%7.1f ' % (hpars["v2_dec"])
                HextRec["anisotropy_v1_eta_inc"] = '%7.1f ' % (hpars["v2_inc"])
                HextRec["anisotropy_v1_zeta_semi_angle"] = '%7.1f ' % (
                    hpars["e13"])
                HextRec["anisotropy_v1_zeta_dec"] = '%7.1f ' % (
                    hpars["v3_dec"])
                HextRec["anisotropy_v1_zeta_inc"] = '%7.1f ' % (
                    hpars["v3_inc"])
                HextRec["anisotropy_v2_eta_semi_angle"] = '%7.1f ' % (
                    hpars["e12"])
                HextRec["anisotropy_v2_eta_dec"] = '%7.1f ' % (hpars["v1_dec"])
                HextRec["anisotropy_v2_eta_inc"] = '%7.1f ' % (hpars["v1_inc"])
                HextRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f ' % (
                    hpars["e23"])
                HextRec["anisotropy_v2_zeta_dec"] = '%7.1f ' % (
                    hpars["v3_dec"])
                HextRec["anisotropy_v2_zeta_inc"] = '%7.1f ' % (
                    hpars["v3_inc"])
                HextRec["anisotropy_v3_eta_semi_angle"] = '%7.1f ' % (
                    hpars["e12"])
                HextRec["anisotropy_v3_eta_dec"] = '%7.1f ' % (hpars["v1_dec"])
                HextRec["anisotropy_v3_eta_inc"] = '%7.1f ' % (hpars["v1_inc"])
                HextRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f ' % (
                    hpars["e23"])
                HextRec["anisotropy_v3_zeta_dec"] = '%7.1f ' % (
                    hpars["v2_dec"])
                HextRec["anisotropy_v3_zeta_inc"] = '%7.1f ' % (
                    hpars["v2_inc"])
                HextRec["magic_method_codes"] = 'LP-AN:AE-H'
                if verbose:
                    print("Hext Statistics: ")
                    print(
                        " tau_i, V_i_D, V_i_I, V_i_zeta, V_i_zeta_D, V_i_zeta_I, V_i_eta, V_i_eta_D, V_i_eta_I")
                    print(HextRec["anisotropy_t1"], HextRec["anisotropy_v1_dec"], HextRec["anisotropy_v1_inc"], HextRec["anisotropy_v1_eta_semi_angle"], HextRec["anisotropy_v1_eta_dec"],
                          HextRec["anisotropy_v1_eta_inc"], HextRec["anisotropy_v1_zeta_semi_angle"], HextRec["anisotropy_v1_zeta_dec"], HextRec["anisotropy_v1_zeta_inc"])
                    print(HextRec["anisotropy_t2"], HextRec["anisotropy_v2_dec"], HextRec["anisotropy_v2_inc"], HextRec["anisotropy_v2_eta_semi_angle"], HextRec["anisotropy_v2_eta_dec"],
                          HextRec["anisotropy_v2_eta_inc"], HextRec["anisotropy_v2_zeta_semi_angle"], HextRec["anisotropy_v2_zeta_dec"], HextRec["anisotropy_v2_zeta_inc"])
                    print(HextRec["anisotropy_t3"], HextRec["anisotropy_v3_dec"], HextRec["anisotropy_v3_inc"], HextRec["anisotropy_v3_eta_semi_angle"], HextRec["anisotropy_v3_eta_dec"],
                          HextRec["anisotropy_v3_eta_inc"], HextRec["anisotropy_v3_zeta_semi_angle"], HextRec["anisotropy_v3_zeta_dec"], HextRec["anisotropy_v3_zeta_inc"])
                HextRec['magic_software_packages'] = version_num
                ResRecs.append(HextRec)
            if bpars != []:
                BootRec = {}
                for key in ResRec.keys():
                    BootRec[key] = ResRec[key]   # copy over stuff
                BootRec["anisotropy_v1_dec"] = '%7.1f' % (bpars["v1_dec"])
                BootRec["anisotropy_v2_dec"] = '%7.1f' % (bpars["v2_dec"])
                BootRec["anisotropy_v3_dec"] = '%7.1f' % (bpars["v3_dec"])
                BootRec["anisotropy_v1_inc"] = '%7.1f' % (bpars["v1_inc"])
                BootRec["anisotropy_v2_inc"] = '%7.1f' % (bpars["v2_inc"])
                BootRec["anisotropy_v3_inc"] = '%7.1f' % (bpars["v3_inc"])
                BootRec["anisotropy_t1"] = '%10.8f' % (bpars["t1"])
                BootRec["anisotropy_t2"] = '%10.8f' % (bpars["t2"])
                BootRec["anisotropy_t3"] = '%10.8f' % (bpars["t3"])
                BootRec["anisotropy_v1_eta_inc"] = '%7.1f ' % (
                    bpars["v1_eta_inc"])
                BootRec["anisotropy_v1_eta_dec"] = '%7.1f ' % (
                    bpars["v1_eta_dec"])
                BootRec["anisotropy_v1_eta_semi_angle"] = '%7.1f ' % (
                    bpars["v1_eta"])
                BootRec["anisotropy_v1_zeta_inc"] = '%7.1f ' % (
                    bpars["v1_zeta_inc"])
                BootRec["anisotropy_v1_zeta_dec"] = '%7.1f ' % (
                    bpars["v1_zeta_dec"])
                BootRec["anisotropy_v1_zeta_semi_angle"] = '%7.1f ' % (
                    bpars["v1_zeta"])
                BootRec["anisotropy_v2_eta_inc"] = '%7.1f ' % (
                    bpars["v2_eta_inc"])
                BootRec["anisotropy_v2_eta_dec"] = '%7.1f ' % (
                    bpars["v2_eta_dec"])
                BootRec["anisotropy_v2_eta_semi_angle"] = '%7.1f ' % (
                    bpars["v2_eta"])
                BootRec["anisotropy_v2_zeta_inc"] = '%7.1f ' % (
                    bpars["v2_zeta_inc"])
                BootRec["anisotropy_v2_zeta_dec"] = '%7.1f ' % (
                    bpars["v2_zeta_dec"])
                BootRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f ' % (
                    bpars["v2_zeta"])
                BootRec["anisotropy_v3_eta_inc"] = '%7.1f ' % (
                    bpars["v3_eta_inc"])
                BootRec["anisotropy_v3_eta_dec"] = '%7.1f ' % (
                    bpars["v3_eta_dec"])
                BootRec["anisotropy_v3_eta_semi_angle"] = '%7.1f ' % (
                    bpars["v3_eta"])
                BootRec["anisotropy_v3_zeta_inc"] = '%7.1f ' % (
                    bpars["v3_zeta_inc"])
                BootRec["anisotropy_v3_zeta_dec"] = '%7.1f ' % (
                    bpars["v3_zeta_dec"])
                BootRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f ' % (
                    bpars["v3_zeta"])
                BootRec["anisotropy_hext_F"] = ''
                BootRec["anisotropy_hext_F12"] = ''
                BootRec["anisotropy_hext_F23"] = ''
                # regular bootstrap
                BootRec["magic_method_codes"] = 'LP-AN:AE-H:AE-BS'
                if ipar == 1:
                    # parametric bootstrap
                    BootRec["magic_method_codes"] = 'LP-AN:AE-H:AE-BS-P'
                if verbose:
                    print("Boostrap Statistics: ")
                    print(
                        " tau_i, V_i_D, V_i_I, V_i_zeta, V_i_zeta_D, V_i_zeta_I, V_i_eta, V_i_eta_D, V_i_eta_I")
                    print(BootRec["anisotropy_t1"], BootRec["anisotropy_v1_dec"], BootRec["anisotropy_v1_inc"], BootRec["anisotropy_v1_eta_semi_angle"], BootRec["anisotropy_v1_eta_dec"],
                          BootRec["anisotropy_v1_eta_inc"], BootRec["anisotropy_v1_zeta_semi_angle"], BootRec["anisotropy_v1_zeta_dec"], BootRec["anisotropy_v1_zeta_inc"])
                    print(BootRec["anisotropy_t2"], BootRec["anisotropy_v2_dec"], BootRec["anisotropy_v2_inc"], BootRec["anisotropy_v2_eta_semi_angle"], BootRec["anisotropy_v2_eta_dec"],
                          BootRec["anisotropy_v2_eta_inc"], BootRec["anisotropy_v2_zeta_semi_angle"], BootRec["anisotropy_v2_zeta_dec"], BootRec["anisotropy_v2_zeta_inc"])
                    print(BootRec["anisotropy_t3"], BootRec["anisotropy_v3_dec"], BootRec["anisotropy_v3_inc"], BootRec["anisotropy_v3_eta_semi_angle"], BootRec["anisotropy_v3_eta_dec"],
                          BootRec["anisotropy_v3_eta_inc"], BootRec["anisotropy_v3_zeta_semi_angle"], BootRec["anisotropy_v3_zeta_dec"], BootRec["anisotropy_v3_zeta_inc"])
                BootRec['magic_software_packages'] = version_num
                ResRecs.append(BootRec)
            k += 1
            goon = 1
            while goon == 1 and iplot == 1 and verbose:
                if iboot == 1:
                    print("compare with [d]irection ")
                print(
                    " plot [g]reat circle,  change [c]oord. system, change [e]llipse calculation,  s[a]ve plots, [q]uit ")
                if isite == 1:
                    print("  [p]revious, [s]ite, [q]uit, <return> for next ")
                ans = input("")
                if ans == "q":
                    sys.exit()
                if ans == "e":
                    iboot, ipar, ihext, ivec = 1, 0, 0, 0
                    e = input("Do Hext Statistics  1/[0]: ")
                    if e == "1":
                        ihext = 1
                    e = input("Suppress bootstrap 1/[0]: ")
                    if e == "1":
                        iboot = 0
                    if iboot == 1:
                        e = input("Parametric bootstrap 1/[0]: ")
                        if e == "1":
                            ipar = 1
                        e = input("Plot bootstrap eigenvectors:  1/[0]: ")
                        if e == "1":
                            ivec = 1
                        if iplot == 1:
                            if inittcdf == 0:
                                ANIS['tcdf'] = 3
                                pmagplotlib.plot_init(ANIS['tcdf'], 5, 5)
                                inittcdf = 1
                    bpars, hpars = pmagplotlib.plot_anis(
                        ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp, vec, Dir, nb)
                    if verbose and plots == 0:
                        pmagplotlib.draw_figs(ANIS)
                if ans == "c":
                    print("Current Coordinate system is: ")
                    if CS == '-1':
                        print(" Specimen")
                    if CS == '0':
                        print(" Geographic")
                    if CS == '100':
                        print(" Tilt corrected")
                    key = input(
                        " Enter desired coordinate system: [s]pecimen, [g]eographic, [t]ilt corrected ")
                    if key == 's':
                        CS = '-1'
                    if key == 'g':
                        CS = '0'
                    if key == 't':
                        CS = '100'
                    if CS not in orlist:
                        if len(orlist) > 0:
                            CS = orlist[0]
                        else:
                            CS = '-1'
                        if CS == '-1':
                            crd = 's'
                        if CS == '0':
                            crd = 'g'
                        if CS == '100':
                            crd = 't'
                        print(
                            "desired coordinate system not available, using available: ", crd)
                    k -= 1
                    goon = 0
                if ans == "":
                    if isite == 1:
                        goon = 0
                    else:
                        print("Good bye ")
                        sys.exit()
                if ans == 'd':
                    if initcdf == 0:
                        initcdf = 1
                        ANIS['vxcdf'], ANIS['vycdf'], ANIS['vzcdf'] = 4, 5, 6
                        pmagplotlib.plot_init(ANIS['vxcdf'], 5, 5)
                        pmagplotlib.plot_init(ANIS['vycdf'], 5, 5)
                        pmagplotlib.plot_init(ANIS['vzcdf'], 5, 5)
                    Dir, comp = [], 1
                    print("""
                      Input: Vi D I to  compare  eigenvector Vi with direction D/I
                             where Vi=1: principal
                                   Vi=2: major
                                   Vi=3: minor
                                   D= declination of comparison direction
                                   I= inclination of comparison direction""")
                    con = 1
                    while con == 1:
                        try:
                            vdi = input("Vi D I: ").split()
                            vec = int(vdi[0])-1
                            Dir = [float(vdi[1]), float(vdi[2])]
                            con = 0
                        except IndexError:
                            print(" Incorrect entry, try again ")
                    bpars, hpars = pmagplotlib.plot_anis(
                        ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp, vec, Dir, nb)
                    Dir, comp = [], 0
                if ans == 'g':
                    con, cnt = 1, 0
                    while con == 1:
                        try:
                            print(
                                " Input:  input pole to great circle ( D I) to  plot a great circle:   ")
                            di = input(" D I: ").split()
                            PDir.append(float(di[0]))
                            PDir.append(float(di[1]))
                            con = 0
                        except:
                            cnt += 1
                            if cnt < 10:
                                print(
                                    " enter the dec and inc of the pole on one line ")
                            else:
                                print(
                                    "ummm - you are doing something wrong - i give up")
                                sys.exit()
                    pmagplotlib.plot_circ(ANIS['data'], PDir, 90., 'g')
                    pmagplotlib.plot_circ(ANIS['conf'], PDir, 90., 'g')
                    if verbose and plots == 0:
                        pmagplotlib.draw_figs(ANIS)
                if ans == "p":
                    k -= 2
                    goon = 0
                if ans == "q":
                    k = plt
                    goon = 0
                if ans == "s":
                    keepon = 1
                    site = input(" print site or part of site desired: ")
                    while keepon == 1:
                        try:
                            k = sitelist.index(site)
                            keepon = 0
                        except:
                            tmplist = []
                            for qq in range(len(sitelist)):
                                if site in sitelist[qq]:
                                    tmplist.append(sitelist[qq])
                            print(site, " not found, but this was: ")
                            print(tmplist)
                            site = input('Select one or try again\n ')
                            k = sitelist.index(site)
                    goon, ans = 0, ""
                if ans == "a":
                    locs = pmag.makelist(Locs)
                    if pmagplotlib.isServer:  # use server plot naming convention
                        title = "LO:_"+locs+'_SI:__'+'_SA:__SP:__CO:_'+crd
                    else:  # use more readable plot naming convention
                        title = "{}_{}".format(locs, crd)
                    save(ANIS, fmt, title)
                    goon = 0
        else:
            if verbose:
                print('skipping plot - not enough data points')
            k += 1
#   put rmag_results stuff here
    if len(ResRecs) > 0:
        ResOut, keylist = pmag.fillkeys(ResRecs)
        pmag.magic_write(outfile, ResOut, 'rmag_results')
    if verbose:
        print(" Good bye ")
Ejemplo n.º 17
0
def main():
    """
    NAME 
        vgpmap_magic.py 

    DESCRIPTION
        makes a map of vgps and a95/dp,dm for site means in a pmag_results table
 
    SYNTAX
        vgpmap_magic.py [command line options]

    OPTIONS
        -h prints help and quits
        -eye  ELAT ELON [specify eyeball location], default is 90., 0.
        -f FILE pmag_results format file, [default is pmag_results.txt] 
        -res [c,l,i,h] specify resolution (crude, low, intermediate, high]
        -etp plot the etopo20 topographpy data (requires high resolution data set)
        -prj PROJ,  specify one of the following:
             ortho = orthographic
             lcc = lambert conformal
             moll = molweide
             merc = mercator
        -sym SYM SIZE: choose a symbol and size, examples: 
            ro 5 : small red circles
            bs 10 : intermediate blue squares
            g^ 20 : large green triangles
        -ell  plot dp/dm or a95 ellipses
        -rev RSYM RSIZE : flip reverse poles to normal antipode 
        -S:  plot antipodes of all poles
        -age : plot the ages next to the poles
        -crd [g,t] : choose coordinate system, default is to plot all site VGPs
        -fmt [pdf, png, eps...] specify output format, default is pdf
        -sav  save and quit    
    DEFAULTS
        FILE: pmag_results.txt
        res:  c
        prj: ortho 
        ELAT,ELON = 0,0
        SYM SIZE: ro 8
        RSYM RSIZE: g^ 8
    
    """
    dir_path = '.'
    res, ages = 'c', 0
    plot = 0
    proj = 'ortho'
    results_file = 'pmag_results.txt'
    ell, flip = 0, 0
    lat_0, lon_0 = 90., 0.
    fmt = 'pdf'
    sym, size = 'ro', 8
    rsym, rsize = 'g^', 8
    anti = 0
    fancy = 0
    coord = ""
    if '-WD' in sys.argv:
        ind = sys.argv.index('-WD')
        dir_path = sys.argv[ind + 1]
    if '-h' in sys.argv:
        print main.__doc__
        sys.exit()
    if '-S' in sys.argv: anti = 1
    if '-fmt' in sys.argv:
        ind = sys.argv.index('-fmt')
        fmt = sys.argv[ind + 1]
    if '-sav' in sys.argv: plot = 1
    if '-res' in sys.argv:
        ind = sys.argv.index('-res')
        res = sys.argv[ind + 1]
    if '-etp' in sys.argv: fancy = 1
    if '-prj' in sys.argv:
        ind = sys.argv.index('-prj')
        proj = sys.argv[ind + 1]
    if '-rev' in sys.argv:
        flip = 1
        ind = sys.argv.index('-rev')
        rsym = (sys.argv[ind + 1])
        rsize = int(sys.argv[ind + 2])
    if '-sym' in sys.argv:
        ind = sys.argv.index('-sym')
        sym = (sys.argv[ind + 1])
        size = int(sys.argv[ind + 2])
    if '-eye' in sys.argv:
        ind = sys.argv.index('-eye')
        lat_0 = float(sys.argv[ind + 1])
        lon_0 = float(sys.argv[ind + 2])
    if '-ell' in sys.argv: ell = 1
    if '-age' in sys.argv: ages = 1
    if '-f' in sys.argv:
        ind = sys.argv.index('-f')
        results_file = sys.argv[ind + 1]
    if '-crd' in sys.argv:
        ind = sys.argv.index('-crd')
        crd = sys.argv[ind + 1]
        if crd == 'g': coord = '0'
        if crd == 't': coord = '100'
    results_file = dir_path + '/' + results_file
    data, file_type = pmag.magic_read(results_file)
    if file_type != 'pmag_results':
        print "bad results file"
        sys.exit()
    FIG = {'map': 1}
    pmagplotlib.plot_init(FIG['map'], 6, 6)
    # read in er_sites file
    lats, lons, dp, dm, a95 = [], [], [], [], []
    Pars = []
    dates, rlats, rlons = [], [], []
    if 'data_type' in data[0].keys():
        Results = pmag.get_dictitem(data, 'data_type', 'i',
                                    'T')  # get all site level data
    else:
        Results = data
    Results = pmag.get_dictitem(Results, 'vgp_lat', '',
                                'F')  # get all non-blank latitudes
    Results = pmag.get_dictitem(Results, 'vgp_lon', '',
                                'F')  # get all non-blank longitudes
    if coord != "":
        Results = pmag.get_dictitem(Results, 'tilt_correction', coord,
                                    'T')  # get specified coordinate system
    location = ""
    for rec in Results:
        if rec['er_location_names'] not in location:
            location = location + ':' + rec['er_location_names']
        if 'average_age' in rec.keys(
        ) and rec['average_age'] != "" and ages == 1:
            dates.append(rec['average_age'])
        lat = float(rec['vgp_lat'])
        lon = float(rec['vgp_lon'])
        if flip == 0:
            lats.append(lat)
            lons.append(lon)
        elif flip == 1:
            if lat < 0:
                rlats.append(-lat)
                lon = lon + 180.
                if lon > 360: lon = lon - 360.
                rlons.append(lon)
            else:
                lats.append(lat)
                lons.append(lon)
        elif anti == 1:
            lats.append(-lat)
            lon = lon + 180.
            if lon > 360: lon = lon - 360.
            lons.append(lon)
        ppars = []
        ppars.append(lon)
        ppars.append(lat)
        ell1, ell2 = "", ""
        if 'vgp_dm' in rec.keys() and rec['vgp_dm'] != "":
            ell1 = float(rec['vgp_dm'])
        if 'vgp_dp' in rec.keys() and rec['vgp_dp'] != "":
            ell2 = float(rec['vgp_dp'])
        if 'vgp_alpha95' in rec.keys() and rec['vgp_alpha95'] != "":
            ell1, ell2 = float(rec['vgp_alpha95']), float(rec['vgp_alpha95'])
        if ell1 != "" and ell2 != "":
            ppars = []
            ppars.append(lons[-1])
            ppars.append(lats[-1])
            ppars.append(ell1)
            ppars.append(lons[-1])
            isign = abs(lats[-1]) / lats[-1]
            ppars.append(lats[-1] - isign * 90.)
            ppars.append(ell2)
            ppars.append(lons[-1] + 90.)
            ppars.append(0.)
            Pars.append(ppars)
    location = location.strip(':')
    Opts = {
        'latmin': -90,
        'latmax': 90,
        'lonmin': 0.,
        'lonmax': 360.,
        'lat_0': lat_0,
        'lon_0': lon_0,
        'proj': proj,
        'sym': 'bs',
        'symsize': 3,
        'pltgrid': 0,
        'res': res,
        'boundinglat': 0.
    }
    Opts['details'] = {
        'coasts': 1,
        'rivers': 0,
        'states': 0,
        'countries': 0,
        'ocean': 1,
        'fancy': fancy
    }
    pmagplotlib.plotMAP(
        FIG['map'], [90.], [0.],
        Opts)  # make the base map with a blue triangle at the pole`
    Opts['pltgrid'] = -1
    Opts['sym'] = sym
    Opts['symsize'] = size
    if len(dates) > 0: Opts['names'] = dates
    if len(lats) > 0:
        pmagplotlib.plotMAP(FIG['map'], lats, lons,
                            Opts)  # add the lats and lons of the poles
    Opts['names'] = []
    if len(rlats) > 0:
        Opts['sym'] = rsym
        Opts['symsize'] = rsize
        pmagplotlib.plotMAP(FIG['map'], rlats, rlons,
                            Opts)  # add the lats and lons of the poles
    if plot == 0:
        pmagplotlib.drawFIGS(FIG)
    if ell == 1:  # add ellipses if desired.
        Opts['details'] = {
            'coasts': 0,
            'rivers': 0,
            'states': 0,
            'countries': 0,
            'ocean': 0
        }
        Opts['pltgrid'] = -1  # turn off meridian replotting
        Opts['symsize'] = 2
        Opts['sym'] = 'g-'
        for ppars in Pars:
            if ppars[2] != 0:
                PTS = pmagplotlib.plotELL(FIG['map'], ppars, 'g.', 0, 0)
                elats, elons = [], []
                for pt in PTS:
                    elons.append(pt[0])
                    elats.append(pt[1])
                pmagplotlib.plotMAP(
                    FIG['map'], elats, elons, Opts
                )  # make the base map with a blue triangle at the pole`
                if plot == 0: pmagplotlib.drawFIGS(FIG)
    files = {}
    for key in FIG.keys():
        files[key] = 'LO:_' + location + '_VGP_map.' + fmt
    if pmagplotlib.isServer:
        black = '#000000'
        purple = '#800080'
        titles = {}
        titles['eq'] = 'LO:_' + location + '_VGP_map'
        FIG = pmagplotlib.addBorders(FIG, titles, black, purple)
        pmagplotlib.saveP(FIG, files)
    elif plot == 0:
        pmagplotlib.drawFIGS(FIG)
        ans = raw_input(" S[a]ve to save plot, Return to quit:  ")
        if ans == "a":
            pmagplotlib.saveP(FIG, files)
        else:
            print "Good bye"
            sys.exit()
    else:
        pmagplotlib.saveP(FIG, files)
Ejemplo n.º 18
0
def main():
    """
    NAME
        irmaq_magic.py

    DESCRIPTION
       plots IRM acquisition curves from magic_measurements file

    SYNTAX 
        irmaq_magic [command line options]
    
    INPUT 
       takes magic formatted magic_measurements.txt files
    
    OPTIONS
        -h prints help message and quits
        -f FILE: specify input file, default is: magic_measurements.txt
        -obj OBJ: specify  object  [loc, sit, sam, spc] for plot, default is by location
        -N ; do not normalize by last point - use original units
        -fmt [png,jpg,eps,pdf] set plot file format [default is svg]
        -sav save plot[s] and quit
    NOTE
        loc: location (study); sit: site; sam: sample; spc: specimen
    """
    FIG={} # plot dictionary
    FIG['exp']=1 # exp is figure 1
    dir_path='./'
    plot,fmt=0,'svg'
    units,dmag_key='T','treatment_dc_field'
    XLP=[]
    norm=1
    in_file,plot_key,LP='magic_measurements.txt','er_location_name',"LP-IRM"
    if len(sys.argv)>1:
        if '-h' in sys.argv:
            print main.__doc__
            sys.exit()
        if '-N' in sys.argv:norm=0
        if '-sav' in sys.argv:plot=1
        if '-fmt' in sys.argv:
            ind=sys.argv.index("-fmt")
            fmt=sys.argv[ind+1]
        if '-f' in sys.argv:
            ind=sys.argv.index("-f")
            in_file=sys.argv[ind+1]
        if '-WD' in sys.argv:
            ind=sys.argv.index('-WD')
            dir_path=sys.argv[ind+1]
            in_file=dir_path+'/'+in_file
        if '-obj' in sys.argv:
            ind=sys.argv.index('-obj')
            plot_by=sys.argv[ind+1]
            if plot_by=='sit':plot_key='er_site_name'
            if plot_by=='sam':plot_key='er_sample_name'
            if plot_by=='spc':plot_key='er_specimen_name'
    data,file_type=pmag.magic_read(in_file)
    sids=pmag.get_specs(data)
    pmagplotlib.plot_init(FIG['exp'],6,6)
    #
    #
    # find desired intensity data
    #
    # get plotlist
    #
    plotlist,intlist=[],['measurement_magnitude','measurement_magn_moment','measurement_magn_volume','measurement_magn_mass']
    IntMeths=[]
    data=pmag.get_dictitem(data,'magic_method_codes',LP,'has') # get all the records with this lab protocol
    Ints={}
    NoInts,int_key=1,""
    for key in intlist:
       Ints[key]=pmag.get_dictitem(data,key,'','F') # get all non-blank data for intensity type
       if len(Ints[key])>0:
           NoInts=0 
           if int_key=="":int_key=key
    if NoInts==1:
        print 'No intensity information found'
        sys.exit()
    for  rec in Ints[int_key]:
        if rec[plot_key] not in plotlist: plotlist.append(rec[plot_key])
    plotlist.sort()
    for plt in plotlist:
        print plt
        INTblock=[]
        data=pmag.get_dictitem(Ints[int_key],plot_key,plt,'T') # get data with right intensity info whose plot_key matches plot
        sids=pmag.get_specs(data) # get a list of specimens with appropriate data
        if len(sids)>0: 
            title=data[0][plot_key]
        for s in sids:
            INTblock=[]
            sdata=pmag.get_dictitem(data,'er_specimen_name',s,'T') # get data for each specimen
            for rec in sdata:
                INTblock.append([float(rec[dmag_key]),0,0,float(rec[int_key]),1,'g'])
            pmagplotlib.plotMT(FIG['exp'],INTblock,title,0,units,norm)
        files={}
        for key in FIG.keys():
            files[key]=title+'_'+LP+'.'+fmt 
        if plot==0:
            pmagplotlib.drawFIGS(FIG)
            ans=raw_input(" S[a]ve to save plot, [q]uit,  Return to continue:  ")
            if ans=='q':sys.exit()
            if ans=="a": 
                pmagplotlib.saveP(FIG,files) 
        else:
            pmagplotlib.saveP(FIG,files) 
        pmagplotlib.clearFIG(FIG['exp'])
Ejemplo n.º 19
0
def convert(**kwargs):

    # initialize some stuff
    methcode="LP-NO"
    phi,theta,peakfield,labfield=0,0,0,0
    pTRM,MD=0,0
    dec=[315,225,180,135,45,90,270,270,270,90,180,180,0,0,0]
    inc=[0,0,0,0,0,-45,-45,0,45,45,45,-45,-90,-45,45]
    tdec=[0,90,0,180,270,0,0,90,0]
    tinc=[0,0,90,0,0,-90,0,0,90]
    missing=1
    demag="N"
    citations='This study'
    fmt='old'
    Samps=[]
    trm=0
    irm=0

    #get args
    user = kwargs.get('user', '')
    dir_path = kwargs.get('dir_path', '.')
    output_dir_path = dir_path
    meas_file = kwargs.get('meas_file', 'measurements.txt')
    spec_file = kwargs.get('spec_file', 'specimens.txt') # specimen outfile
    samp_file = kwargs.get('samp_file', 'samples.txt') # sample outfile
    site_file = kwargs.get('site_file', 'sites.txt') # site outfile
    loc_file = kwargs.get('loc_file', 'locations.txt') # location outfile
    mag_file = kwargs.get('mag_file', '')
    labfield = kwargs.get('labfield', '')
    if labfield:
        labfield = float(labfield) *1e-6
    else:
        labfield = 0
    phi = kwargs.get('phi', 0)
    if phi:
        phi = float(phi)
    else:
        phi = 0
    theta = kwargs.get('theta', 0)
    if theta:
        theta=float(theta)
    else:
        theta = 0
    peakfield = kwargs.get('peakfield', 0)
    if peakfield:
        peakfield=float(peakfield) *1e-3
    else:
        peakfield = 0
    specnum = kwargs.get('specnum', 0)
    samp_con = kwargs.get('samp_con', '1')
    location = kwargs.get('location', 'unknown')
    samp_infile = kwargs.get('samp_infile', '')
    syn = kwargs.get('syn', 0)
    institution = kwargs.get('institution', '')
    syntype = kwargs.get('syntype', '')
    inst = kwargs.get('inst', '')
    noave = kwargs.get('noave', 0)
    codelist = kwargs.get('codelist', '')
    coil = kwargs.get('coil', '')
    cooling_rates = kwargs.get('cooling_rates', '')
    lat = kwargs.get('lat', '')
    lon = kwargs.get('lon', '')
    timezone = kwargs.get('timezone', 'UTC')

    # make sure all initial values are correctly set up (whether they come from the command line or a GUI)
    if samp_infile:
        Samps, file_type = pmag.magic_read(samp_infile)
    if coil:
        coil = str(coil)
        methcode="LP-IRM"
        irmunits = "V"
        if coil not in ["1","2","3"]:
            print(__doc__)
            print('not a valid coil specification')
            return False, '{} is not a valid coil specification'.format(coil)
    if mag_file:
        lines = pmag.open_file(mag_file)
        if not lines:
            print("you must provide a valid mag_file")
            return False, "you must provide a valid mag_file"
    if not mag_file:
        print(__doc__)
        print("mag_file field is required option")
        return False, "mag_file field is required option"
    if specnum!=0:
        specnum=-specnum
    if "4" == samp_con[0]:
        if "-" not in samp_con:
            print("naming convention option [4] must be in form 4-Z where Z is an integer")
            print('---------------')
            return False, "naming convention option [4] must be in form 4-Z where Z is an integer"
        else:
            Z=samp_con.split("-")[1]
            samp_con="4"
    if "7" == samp_con[0]:
        if "-" not in samp_con:
            print("option [7] must be in form 7-Z where Z is an integer")
            return False, "option [7] must be in form 7-Z where Z is an integer"
        else:
            Z=samp_con.split("-")[1]
            samp_con="7"
    else: Z = 0

    if codelist:
        codes=codelist.split(':')
        if "AF" in codes:
            demag='AF'
            if'-dc' not in sys.argv: methcode="LT-AF-Z"
            if'-dc' in sys.argv: methcode="LT-AF-I"
        if "T" in codes:
            demag="T"
            if '-dc' not in sys.argv: methcode="LT-T-Z"
            if '-dc' in sys.argv: methcode="LT-T-I"
        if "I" in codes:
            methcode="LP-IRM"
            irmunits="mT"
        if "I3d" in codes:
            methcode="LT-T-Z:LP-IRM-3D"
        if "S" in codes:
            demag="S"
            methcode="LP-PI-TRM:LP-PI-ALT-AFARM"
            trm_labfield=labfield
            ans=input("DC lab field for ARM step: [50uT] ")
            if ans=="":
                arm_labfield=50e-6
            else:
                arm_labfield=float(ans)*1e-6
            ans=input("temperature for total trm step: [600 C] ")
            if ans=="":
                trm_peakT=600+273 # convert to kelvin
            else:
                trm_peakT=float(ans)+273 # convert to kelvin
        if "G" in codes: methcode="LT-AF-G"
        if "D" in codes: methcode="LT-AF-D"
        if "TRM" in codes:
            demag="T"
            trm=1
        if "CR" in codes:
            demag="T"
            cooling_rate_experiment=1
            if command_line:
                ind=sys.argv.index("CR")
                cooling_rates=sys.argv[ind+1]
                cooling_rates_list=cooling_rates.split(',')
            else:
                cooling_rates_list=str(cooling_rates).split(',')
    if demag=="T" and "ANI" in codes:
        methcode="LP-AN-TRM"
    if demag=="T" and "CR" in codes:
        methcode="LP-CR-TRM"
    if demag=="AF" and "ANI" in codes:
        methcode="LP-AN-ARM"
        if labfield==0: labfield=50e-6
        if peakfield==0: peakfield=.180

    MeasRecs,SpecRecs,SampRecs,SiteRecs,LocRecs=[],[],[],[],[]
    version_num=pmag.get_version()

    ##################################

    for line in lines:
        instcode=""
        if len(line)>2:
            MeasRec,SpecRec,SampRec,SiteRec,LocRec={},{},{},{},{}
            MeasRec['software_packages']=version_num
            MeasRec["description"]=""
            MeasRec["treat_temp"]='%8.3e' % (273) # room temp in kelvin
            MeasRec["meas_temp"]='%8.3e' % (273) # room temp in kelvin
            MeasRec["treat_ac_field"]='0'
            MeasRec["treat_dc_field"]='0'
            MeasRec["treat_dc_field_phi"]='0'
            MeasRec["treat_dc_field_theta"]='0'
            meas_type="LT-NO"
            rec=line.split()
            try: float(rec[0]); print("No specimen name for line #%d in the measurement file"%lines.index(line)); continue
            except ValueError: pass
            if rec[1]==".00":rec[1]="0.00"
            treat=rec[1].split('.')
            if methcode=="LP-IRM":
                if irmunits=='mT':
                    labfield=float(treat[0])*1e-3
                else:
                    labfield=pmag.getfield(irmunits,coil,treat[0])
                if rec[1][0]!="-":
                    phi,theta=0.,90.
                else:
                    phi,theta=0.,-90.
                meas_type="LT-IRM"
                MeasRec["treat_dc_field"]='%8.3e'%(labfield)
                MeasRec["treat_dc_field_phi"]='%7.1f'%(phi)
                MeasRec["treat_dc_field_theta"]='%7.1f'%(theta)
            if len(rec)>6:
              code1=rec[6].split(';') # break e.g., 10/15/02;7:45 indo date and time
              if len(code1)==2: # old format with AM/PM
                missing=0
                code2=code1[0].split('/') # break date into mon/day/year
                code3=rec[7].split(';') # break e.g., AM;C34;200  into time;instr/axes/measuring pos;number of measurements
                yy=int(code2[2])
                if yy <90:
                    yyyy=str(2000+yy)
                else: yyyy=str(1900+yy)
                mm=int(code2[0])
                if mm<10:
                    mm="0"+str(mm)
                else: mm=str(mm)
                dd=int(code2[1])
                if dd<10:
                    dd="0"+str(dd)
                else: dd=str(dd)
                time=code1[1].split(':')
                hh=int(time[0])
                if code3[0]=="PM":hh=hh+12
                if hh<10:
                    hh="0"+str(hh)
                else: hh=str(hh)
                min=int(time[1])
                if min<10:
                   min= "0"+str(min)
                else: min=str(min)
                dt=yyyy+":"+mm+":"+dd+":"+hh+":"+min+":00"
                local = pytz.timezone(timezone)
                naive = datetime.datetime.strptime(dt, "%Y:%m:%d:%H:%M:%S")
                local_dt = local.localize(naive, is_dst=None)
                utc_dt = local_dt.astimezone(pytz.utc)
                MeasRec["timestamp"]=utc_dt.strftime("%Y-%m-%dT%H:%M:%S")+"Z"
                if inst=="":
                    if code3[1][0]=='C':instcode='SIO-bubba'
                    if code3[1][0]=='G':instcode='SIO-flo'
                else:
                    instcode=''
                MeasRec["meas_n_orient"]=code3[1][2]
              elif len(code1)>2: # newest format (cryo7 or later)
                if "LP-AN-ARM" not in methcode:labfield=0
                fmt='new'
                date=code1[0].split('/') # break date into mon/day/year
                yy=int(date[2])
                if yy <90:
                    yyyy=str(2000+yy)
                else: yyyy=str(1900+yy)
                mm=int(date[0])
                if mm<10:
                    mm="0"+str(mm)
                else: mm=str(mm)
                dd=int(date[1])
                if dd<10:
                    dd="0"+str(dd)
                else: dd=str(dd)
                time=code1[1].split(':')
                hh=int(time[0])
                if hh<10:
                    hh="0"+str(hh)
                else: hh=str(hh)
                min=int(time[1])
                if min<10:
                   min= "0"+str(min)
                else:
                    min=str(min)
                dt=yyyy+":"+mm+":"+dd+":"+hh+":"+min+":00"
                local = pytz.timezone(timezone)
                naive = datetime.datetime.strptime(dt, "%Y:%m:%d:%H:%M:%S")
                local_dt = local.localize(naive, is_dst=None)
                utc_dt = local_dt.astimezone(pytz.utc)
                MeasRec["timestamp"]=utc_dt.strftime("%Y-%m-%dT%H:%M:%S")+"Z"
                if inst=="":
                    if code1[6][0]=='C':
                        instcode='SIO-bubba'
                    if code1[6][0]=='G':
                        instcode='SIO-flo'
                else:
                    instcode=''
                if len(code1)>1:
                    MeasRec["meas_n_orient"]=code1[6][2]
                else:
                    MeasRec["meas_n_orient"]=code1[7]   # takes care of awkward format with bubba and flo being different
                if user=="":user=code1[5]
                if code1[2][-1]=='C':
                    demag="T"
                    if code1[4]=='microT' and float(code1[3])!=0. and "LP-AN-ARM" not in methcode: labfield=float(code1[3])*1e-6
                if code1[2]=='mT' and methcode!="LP-IRM":
                    demag="AF"
                    if code1[4]=='microT' and float(code1[3])!=0.: labfield=float(code1[3])*1e-6
                if code1[4]=='microT' and labfield!=0. and meas_type!="LT-IRM":
                    phi,theta=0.,-90.
                    if demag=="T": meas_type="LT-T-I"
                    if demag=="AF": meas_type="LT-AF-I"
                    MeasRec["treat_dc_field"]='%8.3e'%(labfield)
                    MeasRec["treat_dc_field_phi"]='%7.1f'%(phi)
                    MeasRec["treat_dc_field_theta"]='%7.1f'%(theta)
                if code1[4]=='' or labfield==0. and meas_type!="LT-IRM":
                    if demag=='T':meas_type="LT-T-Z"
                    if demag=="AF":meas_type="LT-AF-Z"
                    MeasRec["treat_dc_field"]='0'
            if syn==0:
                specimen=rec[0]
                MeasRec["specimen"]=specimen
                if specnum!=0:
                    sample=rec[0][:specnum]
                else:
                    sample=rec[0]
                if samp_infile and Samps: # if samp_infile was provided AND yielded sample data
                    samp=pmag.get_dictitem(Samps,'sample',sample,'T')
                    if len(samp)>0:
                        location=samp[0]["location"]
                        site=samp[0]["site"]
                    else:
                        location=''
                        site=''
                else:
                    site=pmag.parse_site(sample,samp_con,Z)
                if location!='' and location not in [x['location'] if 'location' in list(x.keys()) else '' for x in LocRecs]:
                    LocRec['location'] = location
                    LocRec['lat_n'] = lat
                    LocRec['lat_s'] = lat
                    LocRec['lon_e'] = lon
                    LocRec['lon_w'] = lon
                    LocRecs.append(LocRec)
                if site!='' and site not in [x['site'] if 'site' in list(x.keys()) else '' for x in SiteRecs]:
                    SiteRec['location'] = location
                    SiteRec['site'] = site
                    SiteRec['lat'] = lat
                    SiteRec['lon'] = lon
                    SiteRecs.append(SiteRec)
                if sample!='' and sample not in [x['sample'] if 'sample' in list(x.keys()) else '' for x in SampRecs]:
                    SampRec['site'] = site
                    SampRec['sample'] = sample
                    SampRecs.append(SampRec)
                if specimen!='' and specimen not in [x['specimen'] if 'specimen' in list(x.keys()) else '' for x in SpecRecs]:
                    SpecRec["specimen"]=specimen
                    SpecRec['sample'] = sample
                    SpecRecs.append(SpecRec)
            else:
                specimen=rec[0]
                MeasRec["specimen"]=specimen
                if specnum!=0:
                    sample=rec[0][:specnum]
                else:
                    sample=rec[0]
                site=pmag.parse_site(sample,samp_con,Z)
                if location!='' and location not in [x['location'] if 'location' in list(x.keys()) else '' for x in LocRecs]:
                    LocRec['location'] = location
                    LocRec['lat_n'] = lat
                    LocRec['lat_s'] = lat
                    LocRec['lon_e'] = lon
                    LocRec['lon_w'] = lon
                    LocRecs.append(LocRec)
                if site!='' and site not in [x['site'] if 'site' in list(x.keys()) else '' for x in SiteRecs]:
                    SiteRec['location'] = location
                    SiteRec['site'] = site
                    SiteRec['lat'] = lat
                    SiteRec['lon'] = lon
                    SiteRecs.append(SiteRec)
                if sample!='' and sample not in [x['sample'] if 'sample' in list(x.keys()) else '' for x in SampRecs]:
                    SampRec['site'] = site
                    SampRec['sample'] = sample
                    SampRecs.append(SampRec)
                if specimen!='' and specimen not in [x['specimen'] if 'specimen' in list(x.keys()) else '' for x in SpecRecs]:
                    SpecRec["specimen"]=specimen
                    SpecRec['sample'] = sample
                    SpecRecs.append(SpecRec)
                SampRec["institution"]=institution
                SampRec["material_type"]=syntype
            if float(rec[1])==0:
                pass
            elif demag=="AF":
                if methcode != "LP-AN-ARM":
                    MeasRec["treat_ac_field"]='%8.3e' %(float(rec[1])*1e-3) # peak field in tesla
                    if meas_type=="LT-AF-Z": MeasRec["treat_dc_field"]='0'
                else: # AARM experiment
                    if treat[1][0]=='0':
                        meas_type="LT-AF-Z:LP-AN-ARM:"
                        MeasRec["treat_ac_field"]='%8.3e' %(peakfield) # peak field in tesla
                        MeasRec["treat_dc_field"]='%8.3e'%(0)
                        if labfield!=0 and methcode!="LP-AN-ARM": print("Warning - inconsistency in mag file with lab field - overriding file with 0")
                    else:
                        meas_type="LT-AF-I:LP-AN-ARM"
                        ipos=int(treat[0])-1
                        MeasRec["treat_dc_field_phi"]='%7.1f' %(dec[ipos])
                        MeasRec["treat_dc_field_theta"]='%7.1f'% (inc[ipos])
                        MeasRec["treat_dc_field"]='%8.3e'%(labfield)
                        MeasRec["treat_ac_field"]='%8.3e' %(peakfield) # peak field in tesla
            elif demag=="T" and methcode == "LP-AN-TRM":
                MeasRec["treat_temp"]='%8.3e' % (float(treat[0])+273.) # temp in kelvin
                if treat[1][0]=='0':
                    meas_type="LT-T-Z:LP-AN-TRM"
                    MeasRec["treat_dc_field"]='%8.3e'%(0)
                    MeasRec["treat_dc_field_phi"]='0'
                    MeasRec["treat_dc_field_theta"]='0'
                else:
                    MeasRec["treat_dc_field"]='%8.3e'%(labfield)
                    if treat[1][0]=='7': # alteration check as final measurement
                            meas_type="LT-PTRM-I:LP-AN-TRM"
                    else:
                            meas_type="LT-T-I:LP-AN-TRM"

                    # find the direction of the lab field in two ways:
                    # (1) using the treatment coding (XX.1=+x, XX.2=+y, XX.3=+z, XX.4=-x, XX.5=-y, XX.6=-z)
                    ipos_code=int(treat[1][0])-1
                    # (2) using the magnetization
                    DEC=float(rec[4])
                    INC=float(rec[5])
                    if INC < 45 and INC > -45:
                        if DEC>315  or DEC<45: ipos_guess=0
                        if DEC>45 and DEC<135: ipos_guess=1
                        if DEC>135 and DEC<225: ipos_guess=3
                        if DEC>225 and DEC<315: ipos_guess=4
                    else:
                        if INC >45: ipos_guess=2
                        if INC <-45: ipos_guess=5
                    # prefer the guess over the code
                    ipos=ipos_guess
                    MeasRec["treat_dc_field_phi"]='%7.1f' %(tdec[ipos])
                    MeasRec["treat_dc_field_theta"]='%7.1f'% (tinc[ipos])
                    # check it
                    if ipos_guess!=ipos_code and treat[1][0]!='7':
                        print("-E- ERROR: check specimen %s step %s, ATRM measurements, coding does not match the direction of the lab field!"%(rec[0],".".join(list(treat))))


            elif demag=="S": # Shaw experiment
                if treat[1][1]=='0':
                    if  int(treat[0])!=0:
                        MeasRec["treat_ac_field"]='%8.3e' % (float(treat[0])*1e-3) # AF field in tesla
                        MeasRec["treat_dc_field"]='0'
                        meas_type="LT-AF-Z" # first AF
                    else:
                        meas_type="LT-NO"
                        MeasRec["treat_ac_field"]='0'
                        MeasRec["treat_dc_field"]='0'
                elif treat[1][1]=='1':
                    if int(treat[0])==0:
                        MeasRec["treat_ac_field"]='%8.3e' %(peakfield) # peak field in tesla
                        MeasRec["treat_dc_field"]='%8.3e'%(arm_labfield)
                        MeasRec["treat_dc_field_phi"]='%7.1f'%(phi)
                        MeasRec["treat_dc_field_theta"]='%7.1f'%(theta)
                        meas_type="LT-AF-I"
                    else:
                        MeasRec["treat_ac_field"]='%8.3e' % ( float(treat[0])*1e-3) # AF field in tesla
                        MeasRec["treat_dc_field"]='0'
                        meas_type="LT-AF-Z"
                elif treat[1][1]=='2':
                    if int(treat[0])==0:
                        MeasRec["treat_ac_field"]='0'
                        MeasRec["treat_dc_field"]='%8.3e'%(trm_labfield)
                        MeasRec["treat_dc_field_phi"]='%7.1f'%(phi)
                        MeasRec["treat_dc_field_theta"]='%7.1f'%(theta)
                        MeasRec["treat_temp"]='%8.3e' % (trm_peakT)
                        meas_type="LT-T-I"
                    else:
                        MeasRec["treat_ac_field"]='%8.3e' % ( float(treat[0])*1e-3) # AF field in tesla
                        MeasRec["treat_dc_field"]='0'
                        meas_type="LT-AF-Z"
                elif treat[1][1]=='3':
                    if int(treat[0])==0:
                        MeasRec["treat_ac_field"]='%8.3e' %(peakfield) # peak field in tesla
                        MeasRec["treat_dc_field"]='%8.3e'%(arm_labfield)
                        MeasRec["treat_dc_field_phi"]='%7.1f'%(phi)
                        MeasRec["treat_dc_field_theta"]='%7.1f'%(theta)
                        meas_type="LT-AF-I"
                    else:
                        MeasRec["treat_ac_field"]='%8.3e' % ( float(treat[0])*1e-3) # AF field in tesla
                        MeasRec["treat_dc_field"]='0'
                        meas_type="LT-AF-Z"


            # Cooling rate experient # added by rshaar
            elif demag=="T" and methcode == "LP-CR-TRM":

                MeasRec["treat_temp"]='%8.3e' % (float(treat[0])+273.) # temp in kelvin
                if treat[1][0]=='0':
                    meas_type="LT-T-Z:LP-CR-TRM"
                    MeasRec["treat_dc_field"]='%8.3e'%(0)
                    MeasRec["treat_dc_field_phi"]='0'
                    MeasRec["treat_dc_field_theta"]='0'
                else:
                    MeasRec["treat_dc_field"]='%8.3e'%(labfield)
                    if treat[1][0]=='7': # alteration check as final measurement
                            meas_type="LT-PTRM-I:LP-CR-TRM"
                    else:
                            meas_type="LT-T-I:LP-CR-TRM"
                    MeasRec["treat_dc_field_phi"]='%7.1f' % (phi) # labfield phi
                    MeasRec["treat_dc_field_theta"]='%7.1f' % (theta) # labfield theta

                    indx=int(treat[1][0])-1
                    # alteration check matjed as 0.7 in the measurement file
                    if indx==6:
                       cooling_time= cooling_rates_list[-1]
                    else:
                       cooling_time=cooling_rates_list[indx]
                    MeasRec["description"]="cooling_rate"+":"+cooling_time+":"+"K/min"


            elif demag!='N':
              if len(treat)==1:treat.append('0')
              MeasRec["treat_temp"]='%8.3e' % (float(treat[0])+273.) # temp in kelvin
              if trm==0:  # demag=T and not trmaq
                if treat[1][0]=='0':
                    meas_type="LT-T-Z"
                else:
                    MeasRec["treat_dc_field"]='%8.3e' % (labfield) # labfield in tesla (convert from microT)
                    MeasRec["treat_dc_field_phi"]='%7.1f' % (phi) # labfield phi
                    MeasRec["treat_dc_field_theta"]='%7.1f' % (theta) # labfield theta
                    if treat[1][0]=='1':meas_type="LT-T-I" # in-field thermal step
                    if treat[1][0]=='2':
                        meas_type="LT-PTRM-I" # pTRM check
                        pTRM=1
                    if treat[1][0]=='3':
                        MeasRec["treat_dc_field"]='0'  # this is a zero field step
                        meas_type="LT-PTRM-MD" # pTRM tail check
              else:
                labfield=float(treat[1])*1e-6
                MeasRec["treat_dc_field"]='%8.3e' % (labfield) # labfield in tesla (convert from microT)
                MeasRec["treat_dc_field_phi"]='%7.1f' % (phi) # labfield phi
                MeasRec["treat_dc_field_theta"]='%7.1f' % (theta) # labfield theta
                meas_type="LT-T-I:LP-TRM" # trm acquisition experiment

            MeasRec["dir_csd"]=rec[2]
            MeasRec["magn_moment"]='%10.3e'% (float(rec[3])*1e-3) # moment in Am^2 (from emu)
            MeasRec["dir_dec"]=rec[4]
            MeasRec["dir_inc"]=rec[5]
            MeasRec["instrument_codes"]=instcode
            MeasRec["analysts"]=user
            MeasRec["citations"]=citations
            if "LP-IRM-3D" in methcode : meas_type=methcode
            #MeasRec["method_codes"]=methcode.strip(':')
            MeasRec["method_codes"]=meas_type
            MeasRec["quality"]='g'
            if 'std' in rec[0]:
                MeasRec["standard"]='s'
            else:
                MeasRec["standard"]='u'
            MeasRec["treat_step_num"]='1'
            #print MeasRec['treat_temp']
            MeasRecs.append(MeasRec)

    con = nb.Contribution(output_dir_path,read_tables=[])

    # create MagIC tables
    con.add_magic_table_from_data(dtype='specimens', data=SpecRecs)
    con.add_magic_table_from_data(dtype='samples', data=SampRecs)
    con.add_magic_table_from_data(dtype='sites', data=SiteRecs)
    con.add_magic_table_from_data(dtype='locations', data=LocRecs)
    MeasOuts=pmag.measurements_methods3(MeasRecs,noave)
    con.add_magic_table_from_data(dtype='measurements', data=MeasOuts)
    # write MagIC tables to file
    con.tables['specimens'].write_magic_file(custom_name=spec_file)
    con.tables['samples'].write_magic_file(custom_name=samp_file)
    con.tables['sites'].write_magic_file(custom_name=site_file)
    con.tables['locations'].write_magic_file(custom_name=loc_file)
    con.tables['measurements'].write_magic_file(custom_name=meas_file)

    return True, meas_file
Ejemplo n.º 20
0
def main():
    """
    NAME
        irmaq_magic.py

    DESCRIPTION
       plots IRM acquisition curves from measurements file

    SYNTAX
        irmaq_magic [command line options]

    INPUT
       takes magic formatted magic_measurements.txt files

    OPTIONS
        -h prints help message and quits
        -f FILE: specify input file, default is: magic_measurements.txt/measurements.txt
        -obj OBJ: specify  object  [loc, sit, sam, spc] for plot, default is by location
        -N ; do not normalize by last point - use original units
        -fmt [png,jpg,eps,pdf] set plot file format [default is svg]
        -sav save plot[s] and quit
        -DM MagIC data model number, default is 3
    NOTE
        loc: location (study); sit: site; sam: sample; spc: specimen
    """
    FIG = {}  # plot dictionary
    FIG['exp'] = 1  # exp is figure 1
    dir_path = './'
    plot, fmt = 0, 'svg'
    units = 'T',
    XLP = []
    norm = 1
    LP = "LP-IRM"
    if len(sys.argv) > 1:
        if '-h' in sys.argv:
            print(main.__doc__)
            sys.exit()
        data_model = int(pmag.get_named_arg("-DM", 3))
        if '-N' in sys.argv:
            norm = 0
        if '-sav' in sys.argv:
            plot = 1
        if '-fmt' in sys.argv:
            ind = sys.argv.index("-fmt")
            fmt = sys.argv[ind + 1]
        if data_model == 3:
            in_file = pmag.get_named_arg("-f", 'measurements.txt')
        else:
            in_file = pmag.get_named_arg("-f", 'magic_measurements.txt')
        if '-WD' in sys.argv:
            ind = sys.argv.index('-WD')
            dir_path = sys.argv[ind + 1]
        dir_path = os.path.realpath(dir_path)
        in_file = pmag.resolve_file_name(in_file, dir_path)
        if '-WD' not in sys.argv:
            dir_path = os.path.split(in_file)[0]
        plot_by = pmag.get_named_arg("-obj", "loc")
        if data_model == 3:
            plot_key = 'location'
            if plot_by == 'sit':
                plot_key = 'site'
            if plot_by == 'sam':
                plot_key = 'sample'
            if plot_by == 'spc':
                plot_key = 'specimen'
        else:
            plot_key = 'er_location_name'
            if plot_by == 'sit':
                plot_key = 'er_site_name'
            if plot_by == 'sam':
                plot_key = 'er_sample_name'
            if plot_by == 'spc':
                plot_key = 'er_specimen_name'

    # set defaults and get more information if needed
    if data_model == 3:
        dmag_key = 'treat_dc_field'
    else:
        dmag_key = 'treatment_dc_field'
    #
    if data_model == 3 and plot_key != 'specimen':
        # gonna need to read in more files
        print('-W- You are trying to plot measurements by {}'.format(plot_key))
        print(
            '    By default, this information is not available in your measurement file.'
        )
        print(
            '    Trying to acquire this information from {}'.format(dir_path))
        con = cb.Contribution(dir_path)
        meas_df = con.propagate_location_to_measurements()
        if meas_df is None:
            print('-W- No data found in {}'.format(dir_path))
            return
        if plot_key not in meas_df.columns:
            print('-W- Could not find required data.')
            print('    Try a different plot key.')
            return
        else:
            print('-I- Found {} information, continuing with plotting'.format(
                plot_key))
        # need to take the data directly from the contribution here, to keep
        # location/site/sample columns in the measurements table
        data = con.tables['measurements'].convert_to_pmag_data_list()
        file_type = "measurements"
    else:
        data, file_type = pmag.magic_read(in_file)
    # read in data
    sids = pmag.get_specs(data)
    pmagplotlib.plot_init(FIG['exp'], 6, 6)
    #
    #
    # find desired intensity data
    #
    # get plotlist
    #
    plotlist = []
    if data_model == 3:
        intlist = ['magn_moment', 'magn_volume', 'magn_mass', 'magnitude']
    else:
        intlist = [
            'measurement_magnitude', 'measurement_magn_moment',
            'measurement_magn_volume', 'measurement_magn_mass'
        ]
    IntMeths = []
    # get all the records with this lab protocol
    #print('data', len(data))
    #print('data[0]', data[0])
    if data_model == 3:
        data = pmag.get_dictitem(data, 'method_codes', LP, 'has')
    else:
        data = pmag.get_dictitem(data, 'magic_method_codes', LP, 'has')
    Ints = {}
    NoInts, int_key = 1, ""
    for key in intlist:
        # get all non-blank data for intensity type
        Ints[key] = pmag.get_dictitem(data, key, '', 'F')
        if len(Ints[key]) > 0:
            NoInts = 0
            if int_key == "":
                int_key = key
    if NoInts == 1:
        print('No intensity information found')
        sys.exit()
    for rec in Ints[int_key]:
        if rec[plot_key] not in plotlist:
            plotlist.append(rec[plot_key])
    plotlist.sort()
    for plt in plotlist:
        print(plt)
        INTblock = []
        # get data with right intensity info whose plot_key matches plot
        data = pmag.get_dictitem(Ints[int_key], plot_key, plt, 'T')
        # get a list of specimens with appropriate data
        sids = pmag.get_specs(data)
        if len(sids) > 0:
            title = data[0][plot_key]
        for s in sids:
            INTblock = []
            # get data for each specimen
            if data_model == 3:
                sdata = pmag.get_dictitem(data, 'specimen', s, 'T')
            else:
                sdata = pmag.get_dictitem(data, 'er_specimen_name', s, 'T')
            for rec in sdata:
                INTblock.append(
                    [float(rec[dmag_key]), 0, 0,
                     float(rec[int_key]), 1, 'g'])
            pmagplotlib.plot_mag(FIG['exp'], INTblock, title, 0, units, norm)
        files = {}
        for key in list(FIG.keys()):
            files[key] = title + '_' + LP + '.' + fmt
        if plot == 0:
            pmagplotlib.draw_figs(FIG)
            ans = input(" S[a]ve to save plot, [q]uit,  Return to continue:  ")
            if ans == 'q':
                sys.exit()
            if ans == "a":
                pmagplotlib.save_plots(FIG, files)
            if plt != plotlist[
                    -1]:  # if it isn't the last plot, init the next one
                pmagplotlib.plot_init(FIG['exp'], 6, 6)
        else:
            pmagplotlib.save_plots(FIG, files)
        pmagplotlib.clearFIG(FIG['exp'])
Ejemplo n.º 21
0
def main():
    """
    NAME
        lowrie.py

    DESCRIPTION
       plots intensity decay curves for Lowrie experiments

    SYNTAX
        lowrie -h [command line options]

    INPUT
       takes SIO formatted input files

    OPTIONS
        -h prints help message and quits
        -f FILE: specify input file
        -N do not normalize by maximum magnetization
        -fmt [svg, pdf, eps, png] specify fmt, default is svg
        -sav save plots and quit
    """
    fmt, plot = 'svg', 0
    FIG = {}  # plot dictionary
    FIG['lowrie'] = 1  # demag is figure 1
    pmagplotlib.plot_init(FIG['lowrie'], 6, 6)
    norm = 1  # default is to normalize by maximum axis
    if len(sys.argv) > 1:
        if '-h' in sys.argv:
            print(main.__doc__)
            sys.exit()
        if '-N' in sys.argv:
            norm = 0  # don't normalize
        if '-sav' in sys.argv:
            plot = 1  # don't normalize
        if '-fmt' in sys.argv:  # sets input filename
            ind = sys.argv.index("-fmt")
            fmt = sys.argv[ind + 1]
        if '-f' in sys.argv:  # sets input filename
            ind = sys.argv.index("-f")
            in_file = sys.argv[ind + 1]
        else:
            print(main.__doc__)
            print('you must supply a file name')
            sys.exit()
    else:
        print(main.__doc__)
        print('you must supply a file name')
        sys.exit()
    data = pmag.open_file(in_file)
    PmagRecs = []  # set up a list for the results
    keys = ['specimen', 'treatment', 'csd', 'M', 'dec', 'inc']
    for line in data:
        PmagRec = {}
        rec = line.replace('\n', '').split()
        for k in range(len(keys)):
            PmagRec[keys[k]] = rec[k]
        PmagRecs.append(PmagRec)
    specs = pmag.get_dictkey(PmagRecs, 'specimen', '')
    sids = []
    for spec in specs:
        if spec not in sids:
            sids.append(spec)  # get list of unique specimen names
    for spc in sids:  # step through the specimen names
        print(spc)
        specdata = pmag.get_dictitem(PmagRecs, 'specimen', spc,
                                     'T')  # get all this one's data
        DIMs, Temps = [], []
        for dat in specdata:  # step through the data
            DIMs.append(
                [float(dat['dec']),
                 float(dat['inc']),
                 float(dat['M']) * 1e-3])
            Temps.append(float(dat['treatment']))
        carts = pmag.dir2cart(DIMs).transpose()
        # if norm==1: # want to normalize
        #    nrm=max(max(abs(carts[0])),max(abs(carts[1])),max(abs(carts[2]))) # by maximum of x,y,z values
        #    ylab="M/M_max"
        if norm == 1:  # want to normalize
            nrm = (DIMs[0][2])  # normalize by NRM
            ylab = "M/M_o"
        else:
            nrm = 1.  # don't normalize
            ylab = "Magnetic moment (Am^2)"
        xlab = "Temperature (C)"
        pmagplotlib.plotXY(FIG['lowrie'],
                           Temps,
                           old_div(abs(carts[0]), nrm),
                           sym='r-')
        pmagplotlib.plotXY(FIG['lowrie'],
                           Temps,
                           old_div(abs(carts[0]), nrm),
                           sym='ro')  # X direction
        pmagplotlib.plotXY(FIG['lowrie'],
                           Temps,
                           old_div(abs(carts[1]), nrm),
                           sym='c-')
        pmagplotlib.plotXY(FIG['lowrie'],
                           Temps,
                           old_div(abs(carts[1]), nrm),
                           sym='cs')  # Y direction
        pmagplotlib.plotXY(FIG['lowrie'],
                           Temps,
                           old_div(abs(carts[2]), nrm),
                           sym='k-')
        pmagplotlib.plotXY(FIG['lowrie'],
                           Temps,
                           old_div(abs(carts[2]), nrm),
                           sym='k^',
                           title=spc,
                           xlab=xlab,
                           ylab=ylab)  # Z direction
        files = {'lowrie': 'lowrie:_' + spc + '_.' + fmt}
        if plot == 0:
            pmagplotlib.drawFIGS(FIG)
            ans = input('S[a]ve figure? [q]uit, <return> to continue   ')
            if ans == 'a':
                pmagplotlib.saveP(FIG, files)
            elif ans == 'q':
                sys.exit()
        else:
            pmagplotlib.saveP(FIG, files)
        pmagplotlib.clearFIG(FIG['lowrie'])
Ejemplo n.º 22
0
def main():
    """
    NAME
        irmaq_magic.py

    DESCRIPTION
       plots IRM acquisition curves from measurements file

    SYNTAX
        irmaq_magic [command line options]

    INPUT
       takes magic formatted magic_measurements.txt files

    OPTIONS
        -h prints help message and quits
        -f FILE: specify input file, default is: magic_measurements.txt/measurements.txt
        -obj OBJ: specify  object  [loc, sit, sam, spc] for plot, default is by location
        -N ; do not normalize by last point - use original units
        -fmt [png,jpg,eps,pdf] set plot file format [default is svg]
        -sav save plot[s] and quit
        -DM MagIC data model number, default is 3
    NOTE
        loc: location (study); sit: site; sam: sample; spc: specimen
    """
    FIG = {}  # plot dictionary
    FIG['exp'] = 1  # exp is figure 1
    dir_path = './'
    plot, fmt = 0, 'svg'
    units = 'T',
    XLP = []
    norm = 1
    LP = "LP-IRM"
    if len(sys.argv) > 1:
        if '-h' in sys.argv:
            print(main.__doc__)
            sys.exit()
        data_model = int(pmag.get_named_arg("-DM", 3))
        if '-N' in sys.argv:
            norm = 0
        if '-sav' in sys.argv:
            plot = 1
        if '-fmt' in sys.argv:
            ind = sys.argv.index("-fmt")
            fmt = sys.argv[ind + 1]
        if data_model == 3:
            in_file = pmag.get_named_arg("-f", 'measurements.txt')
        else:
            in_file = pmag.get_named_arg("-f", 'magic_measurements.txt')
        if '-WD' in sys.argv:
            ind = sys.argv.index('-WD')
            dir_path = sys.argv[ind + 1]
        dir_path = os.path.realpath(dir_path)
        in_file = pmag.resolve_file_name(in_file, dir_path)
        if '-WD' not in sys.argv:
            dir_path = os.path.split(in_file)[0]
        plot_by = pmag.get_named_arg("-obj", "loc")
        if data_model == 3:
            plot_key = 'location'
            if plot_by == 'sit':
                plot_key = 'site'
            if plot_by == 'sam':
                plot_key = 'sample'
            if plot_by == 'spc':
                plot_key = 'specimen'
        else:
            plot_key = 'er_location_name'
            if plot_by == 'sit':
                plot_key = 'er_site_name'
            if plot_by == 'sam':
                plot_key = 'er_sample_name'
            if plot_by == 'spc':
                plot_key = 'er_specimen_name'

    # set defaults and get more information if needed
    if data_model == 3:
        dmag_key = 'treat_dc_field'
    else:
        dmag_key = 'treatment_dc_field'
    #
    if data_model == 3 and plot_key != 'specimen':
        # gonna need to read in more files
        print('-W- You are trying to plot measurements by {}'.format(plot_key))
        print('    By default, this information is not available in your measurement file.')
        print('    Trying to acquire this information from {}'.format(dir_path))
        con = cb.Contribution(dir_path)
        meas_df = con.propagate_location_to_measurements()
        if meas_df is None:
            print('-W- No data found in {}'.format(dir_path))
            return
        if plot_key not in meas_df.columns:
            print('-W- Could not find required data.')
            print('    Try a different plot key.')
            return
        else:
            print('-I- Found {} information, continuing with plotting'.format(plot_key))
        # need to take the data directly from the contribution here, to keep
        # location/site/sample columns in the measurements table
        data = con.tables['measurements'].convert_to_pmag_data_list()
        file_type = "measurements"
    else:
        data, file_type = pmag.magic_read(in_file)
    # read in data
    sids = pmag.get_specs(data)
    pmagplotlib.plot_init(FIG['exp'], 6, 6)
    #
    #
    # find desired intensity data
    #
    # get plotlist
    #
    plotlist = []
    if data_model == 3:
        intlist = ['magn_moment', 'magn_volume', 'magn_mass', 'magnitude']
    else:
        intlist = ['measurement_magnitude', 'measurement_magn_moment',
                    'measurement_magn_volume', 'measurement_magn_mass']
    IntMeths = []
    # get all the records with this lab protocol
    #print('data', len(data))
    #print('data[0]', data[0])
    if data_model == 3:
        data = pmag.get_dictitem(data, 'method_codes', LP, 'has')
    else:
        data = pmag.get_dictitem(data, 'magic_method_codes', LP, 'has')
    Ints = {}
    NoInts, int_key = 1, ""
    for key in intlist:
        # get all non-blank data for intensity type
        Ints[key] = pmag.get_dictitem(data, key, '', 'F')
        if len(Ints[key]) > 0:
            NoInts = 0
            if int_key == "":
                int_key = key
    if NoInts == 1:
        print('No intensity information found')
        sys.exit()
    for rec in Ints[int_key]:
        if rec[plot_key] not in plotlist:
            plotlist.append(rec[plot_key])
    plotlist.sort()
    for plt in plotlist:
        print(plt)
        INTblock = []
        # get data with right intensity info whose plot_key matches plot
        data = pmag.get_dictitem(Ints[int_key], plot_key, plt, 'T')
        # get a list of specimens with appropriate data
        sids = pmag.get_specs(data)
        if len(sids) > 0:
            title = data[0][plot_key]
        for s in sids:
            INTblock = []
            # get data for each specimen
            if data_model == 3:
                sdata = pmag.get_dictitem(data, 'specimen', s, 'T')
            else:
                sdata = pmag.get_dictitem(data, 'er_specimen_name', s, 'T')
            for rec in sdata:
                INTblock.append([float(rec[dmag_key]), 0, 0,
                                 float(rec[int_key]), 1, 'g'])
            pmagplotlib.plot_mag(FIG['exp'], INTblock, title, 0, units, norm)
        files = {}
        for key in list(FIG.keys()):
            files[key] = title + '_' + LP + '.' + fmt
        if plot == 0:
            pmagplotlib.draw_figs(FIG)
            ans = input(" S[a]ve to save plot, [q]uit,  Return to continue:  ")
            if ans == 'q':
                sys.exit()
            if ans == "a":
                pmagplotlib.save_plots(FIG, files)
            if plt != plotlist[-1]: # if it isn't the last plot, init the next one
                pmagplotlib.plot_init(FIG['exp'], 6, 6)
        else:
            pmagplotlib.save_plots(FIG, files)
        pmagplotlib.clearFIG(FIG['exp'])
Ejemplo n.º 23
0
def main():
    """
    NAME
        thellier_magic_redo.py

    DESCRIPTION
        Calculates paleointensity parameters for thellier-thellier type data using bounds
        stored in the "redo" file

    SYNTAX
        thellier_magic_redo [command line options]

    OPTIONS
        -h prints help message
        -usr USER:   identify user, default is ""
        -fcr CRIT, set criteria for grading
        -f IN: specify input file, default is magic_measurements.txt
        -fre REDO: specify redo file, default is "thellier_redo"
        -F OUT: specify output file, default is thellier_specimens.txt
        -leg:  attaches "Recalculated from original measurements; supercedes published results. " to comment field
        -CR PERC TYPE: apply a blanket cooling rate correction if none supplied in the er_samples.txt file 
            PERC should be a percentage of original (say reduce to 90%)
            TYPE should be one of the following:
               EG (for educated guess); PS (based on pilots); TRM (based on comparison of two TRMs) 
        -ANI:  perform anisotropy correction
        -fsa SAMPFILE: er_samples.txt file with cooling rate correction information, default is NO CORRECTION
        -Fcr  CRout: specify pmag_specimen format file for cooling rate corrected data
        -fan ANIFILE: specify rmag_anisotropy format file, default is rmag_anisotropy.txt 
        -Fac  ACout: specify pmag_specimen format file for anisotropy corrected data
                 default is AC_specimens.txt
        -fnl NLTFILE: specify magic_measurments format file, default is magic_measurements.txt
        -Fnl NLTout: specify pmag_specimen format file for non-linear trm corrected data
                 default is NLT_specimens.txt
        -z use z component differenences for pTRM calculation

    INPUT
        a thellier_redo file is Specimen_name Tmin Tmax (where Tmin and Tmax are in Centigrade)
    """
    dir_path = '.'
    critout = ""
    version_num = pmag.get_version()
    field, first_save = -1, 1
    spec, recnum, start, end = 0, 0, 0, 0
    crfrac = 0
    NltRecs, PmagSpecs, AniSpecRecs, NltSpecRecs, CRSpecs = [], [], [], [], []
    meas_file, pmag_file, mk_file = "magic_measurements.txt", "thellier_specimens.txt", "thellier_redo"
    anis_file = "rmag_anisotropy.txt"
    anisout, nltout = "AC_specimens.txt", "NLT_specimens.txt"
    crout = "CR_specimens.txt"
    nlt_file = ""
    samp_file = ""
    comment, user = "", "unknown"
    anis, nltrm = 0, 0
    jackknife = 0  # maybe in future can do jackknife
    args = sys.argv
    Zdiff = 0
    if '-WD' in args:
        ind = args.index('-WD')
        dir_path = args[ind + 1]
    if "-h" in args:
        print main.__doc__
        sys.exit()
    if "-usr" in args:
        ind = args.index("-usr")
        user = sys.argv[ind + 1]
    if "-leg" in args:
        comment = "Recalculated from original measurements; supercedes published results. "
    cool = 0
    if "-CR" in args:
        cool = 1
        ind = args.index("-CR")
        crfrac = .01 * float(sys.argv[ind + 1])
        crtype = 'DA-CR-' + sys.argv[ind + 2]
    if "-Fcr" in args:
        ind = args.index("-Fcr")
        crout = sys.argv[ind + 1]
    if "-f" in args:
        ind = args.index("-f")
        meas_file = sys.argv[ind + 1]
    if "-F" in args:
        ind = args.index("-F")
        pmag_file = sys.argv[ind + 1]
    if "-fre" in args:
        ind = args.index("-fre")
        mk_file = args[ind + 1]
    if "-fsa" in args:
        ind = args.index("-fsa")
        samp_file = dir_path + '/' + args[ind + 1]
        Samps, file_type = pmag.magic_read(samp_file)
        SampCRs = pmag.get_dictitem(
            Samps, 'cooling_rate_corr', '',
            'F')  # get samples cooling rate corrections
        cool = 1
        if file_type != 'er_samples':
            print 'not a valid er_samples.txt file'
            sys.exit()
    #
    #
    if "-ANI" in args:
        anis = 1
        ind = args.index("-ANI")
        if "-Fac" in args:
            ind = args.index("-Fac")
            anisout = args[ind + 1]
        if "-fan" in args:
            ind = args.index("-fan")
            anis_file = args[ind + 1]
    #
    if "-NLT" in args:
        if "-Fnl" in args:
            ind = args.index("-Fnl")
            nltout = args[ind + 1]
        if "-fnl" in args:
            ind = args.index("-fnl")
            nlt_file = args[ind + 1]
    if "-z" in args: Zdiff = 1
    if '-fcr' in sys.argv:
        ind = args.index("-fcr")
        critout = sys.argv[ind + 1]
#
#  start reading in data:
#
    meas_file = dir_path + "/" + meas_file
    mk_file = dir_path + "/" + mk_file
    accept = pmag.default_criteria(1)[0]  # set criteria to none
    if critout != "":
        critout = dir_path + "/" + critout
        crit_data, file_type = pmag.magic_read(critout)
        if file_type != 'pmag_criteria':
            print 'bad pmag_criteria file, using no acceptance criteria'
        print "Acceptance criteria read in from ", critout
        for critrec in crit_data:
            if 'sample_int_sigma_uT' in critrec.keys(
            ):  # accommodate Shaar's new criterion
                critrec['sample_int_sigma'] = '%10.3e' % (
                    eval(critrec['sample_int_sigma_uT']) * 1e-6)
            for key in critrec.keys():
                if key not in accept.keys() and critrec[key] != '':
                    accept[key] = critrec[key]
    meas_data, file_type = pmag.magic_read(meas_file)
    if file_type != 'magic_measurements':
        print file_type
        print file_type, "This is not a valid magic_measurements file "
        sys.exit()
    try:
        mk_f = open(mk_file, 'rU')
    except:
        print "Bad redo file"
        sys.exit()
    mkspec = []
    speclist = []
    for line in mk_f.readlines():
        tmp = line.split()
        mkspec.append(tmp)
        speclist.append(tmp[0])
    if anis == 1:
        anis_file = dir_path + "/" + anis_file
        anis_data, file_type = pmag.magic_read(anis_file)
        if file_type != 'rmag_anisotropy':
            print file_type
            print file_type, "This is not a valid rmag_anisotropy file "
            sys.exit()
    if nlt_file == "":
        nlt_data = pmag.get_dictitem(
            meas_data, 'magic_method_codes', 'LP-TRM',
            'has')  # look for trm acquisition data in the meas_data file
    else:
        nlt_file = dir_path + "/" + nlt_file
        nlt_data, file_type = pmag.magic_read(nlt_file)
    if len(nlt_data) > 0:
        nltrm = 1


#
# sort the specimen names and step through one by one
#
    sids = pmag.get_specs(meas_data)
    #
    print 'Processing ', len(speclist), ' specimens - please wait '
    while spec < len(speclist):
        s = speclist[spec]
        recnum = 0
        datablock = []
        PmagSpecRec = {}
        PmagSpecRec["er_analyst_mail_names"] = user
        PmagSpecRec["er_citation_names"] = "This study"
        PmagSpecRec["magic_software_packages"] = version_num
        methcodes, inst_code = [], ""
        #
        # find the data from the meas_data file for this specimen
        #
        datablock = pmag.get_dictitem(meas_data, 'er_specimen_name', s, 'T')
        datablock = pmag.get_dictitem(
            datablock, 'magic_method_codes', 'LP-PI-TRM',
            'has')  #pick out the thellier experiment data
        if len(datablock) > 0:
            for rec in datablock:
                if "magic_instrument_codes" not in rec.keys():
                    rec["magic_instrument_codes"] = "unknown"
    #
    #  collect info for the PmagSpecRec dictionary
    #
            rec = datablock[0]
            PmagSpecRec["er_specimen_name"] = s
            PmagSpecRec["er_sample_name"] = rec["er_sample_name"]
            PmagSpecRec["er_site_name"] = rec["er_site_name"]
            PmagSpecRec["er_location_name"] = rec["er_location_name"]
            PmagSpecRec["measurement_step_unit"] = "K"
            PmagSpecRec["specimen_correction"] = 'u'
            if "er_expedition_name" in rec.keys():
                PmagSpecRec["er_expedition_name"] = rec["er_expedition_name"]
            if "magic_instrument_codes" not in rec.keys():
                PmagSpecRec["magic_instrument_codes"] = "unknown"
            else:
                PmagSpecRec["magic_instrument_codes"] = rec[
                    "magic_instrument_codes"]
            if "magic_experiment_name" not in rec.keys():
                rec["magic_experiment_name"] = ""
            else:
                PmagSpecRec["magic_experiment_names"] = rec[
                    "magic_experiment_name"]
            meths = rec["magic_experiment_name"].split(":")
            for meth in meths:
                if meth.strip() not in methcodes and "LP-" in meth:
                    methcodes.append(meth.strip())
    #
    # sort out the data into first_Z, first_I, ptrm_check, ptrm_tail
    #
            araiblock, field = pmag.sortarai(datablock, s, Zdiff)
            first_Z = araiblock[0]
            first_I = araiblock[1]
            ptrm_check = araiblock[2]
            ptrm_tail = araiblock[3]
            if len(first_I) < 3 or len(first_Z) < 4:
                spec += 1
                print 'skipping specimen ', s
            else:
                #
                # get start, end
                #
                for redospec in mkspec:
                    if redospec[0] == s:
                        b, e = float(redospec[1]), float(redospec[2])
                        break
                if e > float(first_Z[-1][0]): e = float(first_Z[-1][0])
                for recnum in range(len(first_Z)):
                    if first_Z[recnum][0] == b: start = recnum
                    if first_Z[recnum][0] == e: end = recnum
                nsteps = end - start
                if nsteps > 2:
                    zijdblock, units = pmag.find_dmag_rec(s, meas_data)
                    pars, errcode = pmag.PintPars(datablock, araiblock,
                                                  zijdblock, start, end,
                                                  accept)
                    if 'specimen_scat' in pars.keys():
                        PmagSpecRec['specimen_scat'] = pars['specimen_scat']
                    if 'specimen_frac' in pars.keys():
                        PmagSpecRec['specimen_frac'] = '%5.3f' % (
                            pars['specimen_frac'])
                    if 'specimen_gmax' in pars.keys():
                        PmagSpecRec['specimen_gmax'] = '%5.3f' % (
                            pars['specimen_gmax'])
                    pars['measurement_step_unit'] = units
                    pars["specimen_lab_field_dc"] = field
                    pars["specimen_int"] = -1 * field * pars["specimen_b"]
                    PmagSpecRec["measurement_step_min"] = '%8.3e' % (
                        pars["measurement_step_min"])
                    PmagSpecRec["measurement_step_max"] = '%8.3e' % (
                        pars["measurement_step_max"])
                    PmagSpecRec["specimen_int_n"] = '%i' % (
                        pars["specimen_int_n"])
                    PmagSpecRec["specimen_lab_field_dc"] = '%8.3e' % (
                        pars["specimen_lab_field_dc"])
                    PmagSpecRec["specimen_int"] = '%9.4e ' % (
                        pars["specimen_int"])
                    PmagSpecRec["specimen_b"] = '%5.3f ' % (pars["specimen_b"])
                    PmagSpecRec["specimen_q"] = '%5.1f ' % (pars["specimen_q"])
                    PmagSpecRec["specimen_f"] = '%5.3f ' % (pars["specimen_f"])
                    PmagSpecRec["specimen_fvds"] = '%5.3f' % (
                        pars["specimen_fvds"])
                    PmagSpecRec["specimen_b_beta"] = '%5.3f' % (
                        pars["specimen_b_beta"])
                    PmagSpecRec["specimen_int_mad"] = '%7.1f' % (
                        pars["specimen_int_mad"])
                    PmagSpecRec["specimen_Z"] = '%7.1f' % (pars["specimen_Z"])
                    PmagSpecRec["specimen_gamma"] = '%7.1f' % (
                        pars["specimen_gamma"])
                    if pars["method_codes"] != "" and pars[
                            "method_codes"] not in methcodes:
                        methcodes.append(pars["method_codes"])
                    PmagSpecRec["specimen_dec"] = '%7.1f' % (
                        pars["specimen_dec"])
                    PmagSpecRec["specimen_inc"] = '%7.1f' % (
                        pars["specimen_inc"])
                    PmagSpecRec["specimen_tilt_correction"] = '-1'
                    PmagSpecRec["specimen_direction_type"] = 'l'
                    PmagSpecRec[
                        "direction_type"] = 'l'  # this is redudant, but helpful - won't be imported
                    PmagSpecRec["specimen_dang"] = '%7.1f ' % (
                        pars["specimen_dang"])
                    PmagSpecRec["specimen_drats"] = '%7.1f ' % (
                        pars["specimen_drats"])
                    PmagSpecRec["specimen_drat"] = '%7.1f ' % (
                        pars["specimen_drat"])
                    PmagSpecRec["specimen_int_ptrm_n"] = '%i ' % (
                        pars["specimen_int_ptrm_n"])
                    PmagSpecRec["specimen_rsc"] = '%6.4f ' % (
                        pars["specimen_rsc"])
                    PmagSpecRec["specimen_md"] = '%i ' % (int(
                        pars["specimen_md"]))
                    if PmagSpecRec["specimen_md"] == '-1':
                        PmagSpecRec["specimen_md"] = ""
                    PmagSpecRec["specimen_b_sigma"] = '%5.3f ' % (
                        pars["specimen_b_sigma"])
                    if "IE-TT" not in methcodes: methcodes.append("IE-TT")
                    methods = ""
                    for meth in methcodes:
                        methods = methods + meth + ":"
                    PmagSpecRec["magic_method_codes"] = methods.strip(':')
                    PmagSpecRec["magic_software_packages"] = version_num
                    PmagSpecRec["specimen_description"] = comment
                    if critout != "":
                        kill = pmag.grade(PmagSpecRec, accept, 'specimen_int')
                        if len(kill) > 0:
                            Grade = 'F'  # fails
                        else:
                            Grade = 'A'  # passes
                        PmagSpecRec["specimen_grade"] = Grade
                    else:
                        PmagSpecRec["specimen_grade"] = ""  # not graded
                    if nltrm == 0 and anis == 0 and cool != 0:  # apply cooling rate correction
                        SCR = pmag.get_dictitem(
                            SampCRs, 'er_sample_name',
                            PmagSpecRec['er_sample_name'],
                            'T')  # get this samples, cooling rate correction
                        CrSpecRec = pmag.cooling_rate(PmagSpecRec, SCR, crfrac,
                                                      crtype)
                        if CrSpecRec['er_specimen_name'] != 'none':
                            CrSpecs.append(CrSpecRec)
                    PmagSpecs.append(PmagSpecRec)
                    NltSpecRec = ""
                    #
                    # check on non-linear TRM correction
                    #
                    if nltrm == 1:
                        #
                        # find the data from the nlt_data list for this specimen
                        #
                        TRMs, Bs = [], []
                        NltSpecRec = ""
                        NltRecs = pmag.get_dictitem(
                            nlt_data, 'er_specimen_name',
                            PmagSpecRec['er_specimen_name'], 'has'
                        )  # fish out all the NLT data for this specimen
                        if len(NltRecs) > 2:
                            for NltRec in NltRecs:
                                Bs.append(float(NltRec['treatment_dc_field']))
                                TRMs.append(
                                    float(NltRec['measurement_magn_moment']))
                            NLTpars = nlt.NLtrm(
                                Bs, TRMs, float(PmagSpecRec['specimen_int']),
                                float(PmagSpecRec['specimen_lab_field_dc']), 0)
                            if NLTpars['banc'] > 0:
                                NltSpecRec = {}
                                for key in PmagSpecRec.keys():
                                    NltSpecRec[key] = PmagSpecRec[key]
                                NltSpecRec['specimen_int'] = '%9.4e' % (
                                    NLTpars['banc'])
                                NltSpecRec['magic_method_codes'] = PmagSpecRec[
                                    "magic_method_codes"] + ":DA-NL"
                                NltSpecRec["specimen_correction"] = 'c'
                                NltSpecRec['specimen_grade'] = PmagSpecRec[
                                    'specimen_grade']
                                NltSpecRec[
                                    "magic_software_packages"] = version_num
                                print NltSpecRec[
                                    'er_specimen_name'], ' Banc= ', float(
                                        NLTpars['banc']) * 1e6
                                if anis == 0 and cool != 0:
                                    SCR = pmag.get_dictitem(
                                        SampCRs, 'er_sample_name',
                                        NltSpecRec['er_sample_name'], 'T'
                                    )  # get this samples, cooling rate correction
                                    CrSpecRec = pmag.cooling_rate(
                                        NltSpecRec, SCR, crfrac, crtype)
                                    if CrSpecRec['er_specimen_name'] != 'none':
                                        CrSpecs.append(CrSpecRec)
                                NltSpecRecs.append(NltSpecRec)
    #
    # check on anisotropy correction
                        if anis == 1:
                            if NltSpecRec != "":
                                Spc = NltSpecRec
                            else:  # find uncorrected data
                                Spc = PmagSpecRec
                            AniSpecs = pmag.get_dictitem(
                                anis_data, 'er_specimen_name',
                                PmagSpecRec['er_specimen_name'], 'T')
                            if len(AniSpecs) > 0:
                                AniSpec = AniSpecs[0]
                                AniSpecRec = pmag.doaniscorr(Spc, AniSpec)
                                AniSpecRec['specimen_grade'] = PmagSpecRec[
                                    'specimen_grade']
                                AniSpecRec[
                                    "magic_instrument_codes"] = PmagSpecRec[
                                        'magic_instrument_codes']
                                AniSpecRec["specimen_correction"] = 'c'
                                AniSpecRec[
                                    "magic_software_packages"] = version_num
                                if cool != 0:
                                    SCR = pmag.get_dictitem(
                                        SampCRs, 'er_sample_name',
                                        AniSpecRec['er_sample_name'], 'T'
                                    )  # get this samples, cooling rate correction
                                    CrSpecRec = pmag.cooling_rate(
                                        AniSpecRec, SCR, crfrac, crtype)
                                    if CrSpecRec['er_specimen_name'] != 'none':
                                        CrSpecs.append(CrSpecRec)
                                AniSpecRecs.append(AniSpecRec)
                    elif anis == 1:
                        AniSpecs = pmag.get_dictitem(
                            anis_data, 'er_specimen_name',
                            PmagSpecRec['er_specimen_name'], 'T')
                        if len(AniSpecs) > 0:
                            AniSpec = AniSpecs[0]
                            AniSpecRec = pmag.doaniscorr(PmagSpecRec, AniSpec)
                            AniSpecRec['specimen_grade'] = PmagSpecRec[
                                'specimen_grade']
                            AniSpecRec["magic_instrument_codes"] = PmagSpecRec[
                                "magic_instrument_codes"]
                            AniSpecRec["specimen_correction"] = 'c'
                            AniSpecRec["magic_software_packages"] = version_num
                            if crfrac != 0:
                                CrSpecRec = {}
                                for key in AniSpecRec.keys():
                                    CrSpecRec[key] = AniSpecRec[key]
                                inten = frac * float(CrSpecRec['specimen_int'])
                                CrSpecRec["specimen_int"] = '%9.4e ' % (
                                    inten
                                )  # adjust specimen intensity by cooling rate correction
                                CrSpecRec['magic_method_codes'] = CrSpecRec[
                                    'magic_method_codes'] + ':DA-CR-' + crtype
                                CRSpecs.append(CrSpecRec)
                            AniSpecRecs.append(AniSpecRec)
                spec += 1
        else:
            print "skipping ", s
            spec += 1
    pmag_file = dir_path + '/' + pmag_file
    pmag.magic_write(pmag_file, PmagSpecs, 'pmag_specimens')
    print 'uncorrected thellier data saved in: ', pmag_file
    if anis == 1 and len(AniSpecRecs) > 0:
        anisout = dir_path + '/' + anisout
        pmag.magic_write(anisout, AniSpecRecs, 'pmag_specimens')
        print 'anisotropy corrected data saved in: ', anisout
    if nltrm == 1 and len(NltSpecRecs) > 0:
        nltout = dir_path + '/' + nltout
        pmag.magic_write(nltout, NltSpecRecs, 'pmag_specimens')
        print 'non-linear TRM corrected data saved in: ', nltout
    if crfrac != 0:
        crout = dir_path + '/' + crout
        pmag.magic_write(crout, CRSpecs, 'pmag_specimens')
        print 'cooling rate corrected data saved in: ', crout
Ejemplo n.º 24
0
def main(command_line=True, **kwargs):
    """
    NAME
        iodp_dscr_magic.py

    DESCRIPTION
        converts ODP LIMS discrete sample format files to magic_measurements format files


    SYNTAX
        iodp_descr_magic.py [command line options]

    OPTIONS
        -h: prints the help message and quits.
        -f FILE: specify input .csv file, default is all in directory
        -F FILE: specify output  measurements file, default is magic_measurements.txt
        -A : don't average replicate measurements
    INPUTS
     IODP discrete sample .csv file format exported from LIMS database
    """
    #
    # initialize defaults
    version_num=pmag.get_version()
    meas_file='magic_measurements.txt'
    csv_file=''
    MagRecs,Specs=[],[]
    citation="This study"
    dir_path,demag='.','NRM'
    args=sys.argv
    noave=0
    # get command line args
    if command_line:
        if '-WD' in args:
            ind=args.index("-WD")
            dir_path=args[ind+1]
        if '-ID' in args:
            ind = args.index('-ID')
            input_dir_path = args[ind+1]
        else:
            input_dir_path = dir_path
        output_dir_path = dir_path
        if "-h" in args:
            print(main.__doc__)
            return False
        if "-A" in args: noave=1
        if '-f' in args:
            ind=args.index("-f")
            csv_file=args[ind+1]
        if '-F' in args:
            ind=args.index("-F")
            meas_file=args[ind+1]

    if not command_line:
        dir_path = kwargs.get('dir_path', '.')
        input_dir_path = kwargs.get('input_dir_path', dir_path)
        output_dir_path = dir_path # rename dir_path after input_dir_path is set
        noave = kwargs.get('noave', 0) # default (0) is DO average
        csv_file = kwargs.get('csv_file', '')
        meas_file = kwargs.get('meas_file', 'magic_measurements.txt')

    # format variables

    meas_file= os.path.join(output_dir_path, meas_file)
    if csv_file=="":
        filelist=os.listdir(input_dir_path) # read in list of files to import
    else:
        csv_file = os.path.join(input_dir_path, csv_file)
        filelist=[csv_file]
    # parsing the data
    file_found = False
    for fname in filelist: # parse each file
        if fname[-3:].lower()=='csv':
            file_found = True
            print('processing: ',fname)
            with open(fname, 'r') as finput:
                data = list(finput.readlines())
            keys = data[0].replace('\n','').split(',') # splits on underscores
            interval_key="Offset (cm)"
            demag_key="Demag level (mT)"
            offline_demag_key="Treatment Value (mT or &deg;C)"
            offline_treatment_type="Treatment type"
            run_key="Test No."
            if "Inclination background + tray corrected  (deg)" in keys: inc_key="Inclination background + tray corrected  (deg)"
            if "Inclination background &amp; tray corrected (deg)" in keys: inc_key="Inclination background &amp; tray corrected (deg)"
            if "Declination background + tray corrected (deg)" in keys: dec_key="Declination background + tray corrected (deg)"
            if "Declination background &amp; tray corrected (deg)" in keys: dec_key="Declination background &amp; tray corrected (deg)"
            if "Intensity background + tray corrected  (A/m)" in keys: int_key="Intensity background + tray corrected  (A/m)"
            if "Intensity background &amp; tray corrected (A/m)" in keys: int_key="Intensity background &amp; tray corrected (A/m)"
            type="Type"
            sect_key="Sect"
            half_key="A/W"
# need to add volume_key to LORE format!
            if "Sample volume (cm^3)" in keys:volume_key="Sample volume (cm^3)"
            if "Sample volume (cc)" in keys:volume_key="Sample volume (cc)"
            if "Sample volume (cm&sup3;)" in keys:volume_key="Sample volume (cm&sup3;)"
            for line in data[1:]:
                InRec={}
                for k in range(len(keys)):InRec[keys[k]]=line.split(',')[k]
                inst="IODP-SRM"
                MagRec={}
                expedition=InRec['Exp']
                location=InRec['Site']+InRec['Hole']
                offsets=InRec[interval_key].split('.') # maintain consistency with er_samples convention of using top interval
                if len(offsets)==1:
                    offset=int(offsets[0])
                else:
                    offset=int(offsets[0])-1
                #interval=str(offset+1)# maintain consistency with er_samples convention of using top interval
                interval=str(offset)# maintain consistency with er_samples convention of using top interval
                specimen=expedition+'-'+location+'-'+InRec['Core']+InRec[type]+"-"+InRec[sect_key]+'_'+InRec[half_key]+'_'+interval
                if specimen not in Specs:Specs.append(specimen)
                MagRec['er_expedition_name']=expedition
                MagRec['er_location_name']=location
                MagRec['er_site_name']=specimen
                MagRec['er_citation_names']=citation
                MagRec['er_specimen_name']=specimen
                MagRec['er_sample_name']=specimen
                MagRec['er_site_name']=specimen
# set up measurement record - default is NRM
                MagRec['magic_software_packages']=version_num
                MagRec["treatment_temp"]='%8.3e' % (273) # room temp in kelvin
                MagRec["measurement_temp"]='%8.3e' % (273) # room temp in kelvin
                MagRec["treatment_ac_field"]='0'
                MagRec["treatment_dc_field"]='0'
                MagRec["treatment_dc_field_phi"]='0'
                MagRec["treatment_dc_field_theta"]='0'
                MagRec["measurement_flag"]='g' # assume all data are "good"
                MagRec["measurement_standard"]='u' # assume all data are "good"
                MagRec["measurement_csd"]='0' # assume all data are "good"
                volume=InRec[volume_key]
                MagRec["magic_method_codes"]='LT-NO'
                sort_by='treatment_ac_field' # set default to AF demag
                if InRec[demag_key]!="0":
                    MagRec['magic_method_codes'] = 'LT-AF-Z'
                    inst=inst+':IODP-SRM-AF' # measured on shipboard in-line 2G AF
                    treatment_value=float(InRec[demag_key].strip('"'))*1e-3 # convert mT => T
                    if sort_by =="treatment_ac_field":
                        MagRec["treatment_ac_field"]=treatment_value # AF demag in treat mT => T
                    else:
                        MagRec["treatment_ac_field"]=str(treatment_value)# AF demag in treat mT => T
                elif offline_treatment_type in list(InRec.keys()) and InRec[offline_treatment_type]!="":
                    if "Lowrie" in InRec['Comments']:
                        MagRec['magic_method_codes'] = 'LP-IRM-3D'
                        treatment_value=float(InRec[offline_demag_key].strip('"'))+273. # convert C => K
                        MagRec["treatment_temp"]=treatment_value
                        MagRec["treatment_ac_field"]="0"
                        sort_by='treatment_temp'
                    elif 'Isothermal' in InRec[offline_treatment_type]:
                        MagRec['magic_method_codes'] = 'LT-IRM'
                        treatment_value=float(InRec[offline_demag_key].strip('"'))*1e-3 # convert mT => T
                        MagRec["treatment_dc_field"]=treatment_value
                        MagRec["treatment_ac_field"]="0"
                        sort_by='treatment_dc_field'
                MagRec["measurement_standard"]='u' # assume all data are "good"
                vol=float(volume)*1e-6 # convert from cc to m^3
                if run_key in list(InRec.keys()):
                    run_number=InRec[run_key]
                    MagRec['external_database_ids']=run_number
                    MagRec['external_database_names']='LIMS'
                else:
                    MagRec['external_database_ids']=""
                    MagRec['external_database_names']=''
                MagRec['measurement_description']='sample orientation: '+InRec['Sample orientation']
                MagRec['measurement_inc']=InRec[inc_key].strip('"')
                MagRec['measurement_dec']=InRec[dec_key].strip('"')
                intens= InRec[int_key].strip('"')
                MagRec['measurement_magn_moment']='%8.3e'%(float(intens)*vol) # convert intensity from A/m to Am^2 using vol
                MagRec['magic_instrument_codes']=inst
                MagRec['measurement_number']='1'
                MagRec['measurement_positions']=''
                MagRecs.append(MagRec)
    if not file_found:
        print("No .csv files were found")
        return False, "No .csv files were found"
    MagOuts=[]
    for spec in Specs:
        Speclist=pmag.get_dictitem(MagRecs,'er_specimen_name',spec,'T')
        Meassorted=sorted(Speclist, key=lambda x,y=None: int(round(float(x[sort_by])-float(y[sort_by]))) if y!=None else 0)
        for rec in Meassorted:
            for key in list(rec.keys()): rec[key]=str(rec[key])
            MagOuts.append(rec)
    Fixed=pmag.measurements_methods(MagOuts,noave)
    Out,keys=pmag.fillkeys(Fixed)
    if pmag.magic_write(meas_file,Out,'magic_measurements'):
        print('data stored in ',meas_file)
        return True, meas_file
    else:
        print('no data found.  bad magfile?')
        return False, 'no data found.  bad magfile?'
Ejemplo n.º 25
0
def main():
    """
    NAME
        make_magic_plots.py

    DESCRIPTION
 	inspects magic directory for available plots.

    SYNTAX
        make_magic_plots.py [command line options]

    INPUT
        magic files

    OPTIONS
        -h prints help message and quits
        -f FILE specifies input file name
        -fmt [png,eps,svg,jpg,pdf] specify format, default is png
    """
    dirlist=['./']
    dir_path=os.getcwd()
    names=os.listdir(dir_path)
    for n in names:
        if 'Location' in n:
            dirlist.append(n)
    if '-fmt' in sys.argv:
        ind=sys.argv.index("-fmt")
        fmt=sys.argv[ind+1]
    else: fmt='png'
    if '-f' in sys.argv:
        ind=sys.argv.index("-f")
        filelist=[sys.argv[ind+1]]
    else:
        filelist=os.listdir(dir_path)
    if '-h' in sys.argv:
        print main.__doc__
        sys.exit()
    for loc in dirlist:
        print 'working on: ',loc
        os.chdir(loc) # change working directories to each location
        crd='s'
        if 'er_samples.txt' in filelist: # find coordinate systems
            samps,file_type=pmag.magic_read('er_samples.txt') # read in data
            Srecs=pmag.get_dictitem(samps,'sample_azimuth','','F')# get all none blank sample orientations
            if len(Srecs)>0: 
                crd='g'
        if 'magic_measurements.txt' in filelist: # start with measurement data
            print 'working on measurements data'
            data,file_type=pmag.magic_read('magic_measurements.txt') # read in data
            if loc == './': data=pmag.get_dictitem(data,'er_location_name','','T') # get all the blank location names from data file
            # looking for  zeq_magic possibilities
            AFZrecs=pmag.get_dictitem(data,'magic_method_codes','LT-AF-Z','has')# get all none blank method codes
            TZrecs=pmag.get_dictitem(data,'magic_method_codes','LT-T-Z','has')# get all none blank method codes
            MZrecs=pmag.get_dictitem(data,'magic_method_codes','LT-M-Z','has')# get all none blank method codes
            Drecs=pmag.get_dictitem(data,'measurement_dec','','F') # get all dec measurements
            Irecs=pmag.get_dictitem(data,'measurement_inc','','F') # get all dec measurements
            Mkeys=['measurement_magnitude','measurement_magn_moment','measurement_magn_volume','measurement_magn_mass']
            for key in Mkeys:
                Mrecs=pmag.get_dictitem(data,key,'','F') # get intensity data
                if len(Mrecs)>0:break
            if len(AFZrecs)>0 or len(TZrecs)>0 or len(MZrecs)>0 and len(Drecs)>0 and len(Irecs)>0 and len(Mrecs)>0: # potential for stepwise demag curves 
                print 'zeq_magic.py -fsp pmag_specimens.txt -sav -fmt '+fmt+' -crd '+crd
                os.system('zeq_magic.py -sav -fmt '+fmt+' -crd '+crd )
            # looking for  thellier_magic possibilities
            if len(pmag.get_dictitem(data,'magic_method_codes','LP-PI-TRM','has'))>0:
                print 'thellier_magic.py -fsp pmag_specimens.txt -sav -fmt '+fmt
                os.system('thellier_magic.py -sav -fmt '+fmt)
            # looking for hysteresis possibilities
            if len(pmag.get_dictitem(data,'magic_method_codes','LP-HYS','has'))>0: # find hyst experiments
                print 'quick_hyst.py -sav -fmt '+fmt
                os.system('quick_hyst.py -sav -fmt '+fmt)
        if 'pmag_results.txt' in filelist: # start with measurement data
            data,file_type=pmag.magic_read('pmag_results.txt') # read in data
            print 'number of datapoints: ',len(data) 
            if loc == './': data=pmag.get_dictitem(data,'er_location_names',':','has') # get all the concatenated location names from data file
            print 'number of datapoints: ',len(data) ,loc
            print 'working on pmag_results directions'
            SiteDIs=pmag.get_dictitem(data,'average_dec',"",'F') # find decs
            print 'number of directions: ',len(SiteDIs) 
            SiteDIs=pmag.get_dictitem(SiteDIs,'average_inc',"",'F') # find decs and incs
            print 'number of directions: ',len(SiteDIs) 
            SiteDIs=pmag.get_dictitem(SiteDIs,'data_type','i','has') # only individual results - not poles
            print 'number of directions: ',len(SiteDIs) 
            SiteDIs_t=pmag.get_dictitem(SiteDIs,'tilt_correction','100','T')# tilt corrected coordinates
            print 'number of directions: ',len(SiteDIs) 
            if len(SiteDIs_t)>0:
                print 'eqarea_magic.py -sav -crd t -fmt '+fmt
                os.system('eqarea_magic.py -sav -crd t -fmt '+fmt)
            elif len(SiteDIs)>0 and 'tilt_correction' not in SiteDIs[0].keys():
                print 'eqarea_magic.py -sav -fmt '+fmt
                os.system('eqarea_magic.py -sav -fmt '+fmt)
            else:
                SiteDIs_g=pmag.get_dictitem(SiteDIs,'tilt_correction','0','T')# geographic coordinates
                if len(SiteDIs_g)>0:
                    print 'eqarea_magic.py -sav -crd g -fmt '+fmt
                    os.system('eqarea_magic.py -sav -crd g -fmt '+fmt)
                else:
                    SiteDIs_s=pmag.get_dictitem(SiteDIs,'tilt_correction','-1','T')# sample coordinates
                    if len(SiteDIs_s)>0:
                        print 'eqarea_magic.py -sav -crd s -fmt '+fmt
                        os.system('eqarea_magic.py -sav -crd s -fmt '+fmt)
                    else:
                        SiteDIs_x=pmag.get_dictitem(SiteDIs,'tilt_correction','','T')# no coordinates
                        if len(SiteDIs_x)>0:
                            print 'eqarea_magic.py -sav -fmt '+fmt
                            os.system('eqarea_magic.py -sav -fmt '+fmt)
            print 'working on pmag_results VGP map'
            VGPs=pmag.get_dictitem(SiteDIs,'vgp_lat',"",'F') # are there any VGPs?   
            if len(VGPs)>0:  # YES!  
                os.system('vgpmap_magic.py -prj moll -res c -sym ro 5 -sav -fmt png')
            print 'working on pmag_results intensities'
            os.system('magic_select.py -f pmag_results.txt -key data_type i T -F tmp.txt')
            os.system('magic_select.py -f tmp.txt -key average_int 0. has -F tmp1.txt')
            os.system("grab_magic_key.py -f tmp1.txt -key average_int | awk '{print $1*1e6}' >tmp2.txt")
            data,file_type=pmag.magic_read('tmp1.txt') # read in data
            locations=pmag.get_dictkey(data,'er_location_names',"")
            histfile='LO:_'+locations[0]+'_intensities_histogram:_.'+fmt
            os.system("histplot.py -b 1 -xlab 'Intensity (uT)' -sav -f tmp2.txt -F " +histfile)
            print "histplot.py -b 1 -xlab 'Intensity (uT)' -sav -f tmp2.txt -F " +histfile
            os.system('rm tmp*.txt')
        if 'rmag_hysteresis.txt' in filelist: # start with measurement data
            print 'working on rmag_hysteresis'
            data,file_type=pmag.magic_read('rmag_hysteresis.txt') # read in data
            if loc == './': data=pmag.get_dictitem(data,'er_location_name','','T') # get all the blank location names from data file
            hdata=pmag.get_dictitem(data,'hysteresis_bcr','','F')
            hdata=pmag.get_dictitem(hdata,'hysteresis_mr_moment','','F')
            hdata=pmag.get_dictitem(hdata,'hysteresis_ms_moment','','F')
            hdata=pmag.get_dictitem(hdata,'hysteresis_bc','','F') # there are data for a dayplot
            if len(hdata)>0:
                print 'dayplot_magic.py -sav -fmt '+fmt
                os.system('dayplot_magic.py -sav -fmt '+fmt) 
    #if 'er_sites.txt' in filelist: # start with measurement data
        #    print 'working on er_sites'
            #os.system('basemap_magic.py -sav -fmt '+fmt)
        if 'rmag_anisotropy.txt' in filelist: # do anisotropy plots if possible
            print 'working on rmag_anisotropy'
            data,file_type=pmag.magic_read('rmag_anisotropy.txt') # read in data
            if loc == './': data=pmag.get_dictitem(data,'er_location_name','','T') # get all the blank location names from data file
            sdata=pmag.get_dictitem(data,'anisotropy_tilt_correction','-1','T') # get specimen coordinates
            gdata=pmag.get_dictitem(data,'anisotropy_tilt_correction','0','T') # get specimen coordinates
            tdata=pmag.get_dictitem(data,'anisotropy_tilt_correction','100','T') # get specimen coordinates
            if len(sdata)>3:
                print 'aniso_magic.py -x -B -crd s -sav -fmt '+fmt
                os.system('aniso_magic.py -x -B -crd s -sav -fmt '+fmt)
            if len(gdata)>3:
                os.system('aniso_magic.py -x -B -crd g -sav -fmt '+fmt)
            if len(tdata)>3:
                os.system('aniso_magic.py -x -B -crd t -sav -fmt '+fmt)
        if loc!='./':os.chdir('..') # change working directories to each location
Ejemplo n.º 26
0
def main():
    """
    NAME
        eqarea_magic.py

    DESCRIPTION
       makes equal area projections from declination/inclination data

    SYNTAX 
        eqarea_magic.py [command line options]
    
    INPUT 
       takes magic formatted pmag_results, pmag_sites, pmag_samples or pmag_specimens
    
    OPTIONS
        -h prints help message and quits
        -f FILE: specify input magic format file from magic,default='pmag_results.txt'
         supported types=[magic_measurements,pmag_specimens, pmag_samples, pmag_sites, pmag_results, magic_web]
        -obj OBJ: specify  level of plot  [all, sit, sam, spc], default is all
        -crd [s,g,t]: specify coordinate system, [s]pecimen, [g]eographic, [t]ilt adjusted
                default is geographic, unspecified assumed geographic
        -fmt [svg,png,jpg] format for output plots
        -ell [F,K,B,Be,Bv] plot Fisher, Kent, Bingham, Bootstrap ellipses or Boostrap eigenvectors
        -c plot as colour contour 
        -sav save plot and quit quietly
    NOTE
        all: entire file; sit: site; sam: sample; spc: specimen
    """
    FIG={} # plot dictionary
    FIG['eqarea']=1 # eqarea is figure 1
    in_file,plot_key,coord,crd='pmag_results.txt','all',"0",'g'
    plotE,contour=0,0
    dir_path='.'
    fmt='svg'
    verbose=pmagplotlib.verbose
    if '-h' in sys.argv:
        print main.__doc__
        sys.exit()
    if '-WD' in sys.argv:
        ind=sys.argv.index('-WD')
        dir_path=sys.argv[ind+1]
    pmagplotlib.plot_init(FIG['eqarea'],5,5)
    if '-f' in sys.argv:
        ind=sys.argv.index("-f")
        in_file=dir_path+"/"+sys.argv[ind+1]
    if '-obj' in sys.argv:
        ind=sys.argv.index('-obj')
        plot_by=sys.argv[ind+1]
        if plot_by=='all':plot_key='all'
        if plot_by=='sit':plot_key='er_site_name'
        if plot_by=='sam':plot_key='er_sample_name'
        if plot_by=='spc':plot_key='er_specimen_name'
    if '-c' in sys.argv: contour=1
    plt=0
    if '-sav' in sys.argv: 
        plt=1
        verbose=0
    if '-ell' in sys.argv:
        plotE=1
        ind=sys.argv.index('-ell')
        ell_type=sys.argv[ind+1]
        if ell_type=='F':dist='F' 
        if ell_type=='K':dist='K' 
        if ell_type=='B':dist='B' 
        if ell_type=='Be':dist='BE' 
        if ell_type=='Bv':
            dist='BV' 
            FIG['bdirs']=2
            pmagplotlib.plot_init(FIG['bdirs'],5,5)
    if '-crd' in sys.argv:
        ind=sys.argv.index("-crd")
        crd=sys.argv[ind+1]
        if crd=='s':coord="-1"
        if crd=='g':coord="0"
        if crd=='t':coord="100"
    if '-fmt' in sys.argv:
        ind=sys.argv.index("-fmt")
        fmt=sys.argv[ind+1]
    Dec_keys=['site_dec','sample_dec','specimen_dec','measurement_dec','average_dec','none']
    Inc_keys=['site_inc','sample_inc','specimen_inc','measurement_inc','average_inc','none']
    Tilt_keys=['tilt_correction','site_tilt_correction','sample_tilt_correction','specimen_tilt_correction','none']
    Dir_type_keys=['','site_direction_type','sample_direction_type','specimen_direction_type']
    Name_keys=['er_specimen_name','er_sample_name','er_site_name','pmag_result_name']
    data,file_type=pmag.magic_read(in_file)
    if file_type=='pmag_results' and plot_key!="all":plot_key=plot_key+'s' # need plural for results table
    if verbose:    
        print len(data),' records read from ',in_file
    #
    #
    # find desired dec,inc data:
    #
    dir_type_key=''
    #
    # get plotlist if not plotting all records
    #
    plotlist=[]
    if plot_key!="all":
        plots=pmag.get_dictitem(data,plot_key,'','F')
        for  rec in plots:
            if rec[plot_key] not in plotlist:
                plotlist.append(rec[plot_key])
        plotlist.sort()
    else:
        plotlist.append('All')
    for plot in plotlist:
        #if verbose: print plot
        DIblock=[]
        GCblock=[]
        SLblock,SPblock=[],[]
        title=plot
        mode=1
        dec_key,inc_key,tilt_key,name_key,k="","","","",0
        if plot!="All": 
            odata=pmag.get_dictitem(data,plot_key,plot,'T')
        else: odata=data # data for this obj
        for dec_key in Dec_keys:
            Decs=pmag.get_dictitem(odata,dec_key,'','F') # get all records with this dec_key not blank 
            if len(Decs)>0: break
        for inc_key in Inc_keys:
            Incs=pmag.get_dictitem(Decs,inc_key,'','F') # get all records with this inc_key not blank 
            if len(Incs)>0: break
        for tilt_key in Tilt_keys:
            if tilt_key in Incs[0].keys(): break # find the tilt_key for these records
        if tilt_key=='none': # no tilt key in data, need to fix this with fake data which will be unknown tilt
            tilt_key='tilt_correction'
            for rec in Incs:rec[tilt_key]=''
        cdata=pmag.get_dictitem(Incs,tilt_key,coord,'T') # get all records matching specified coordinate system
        if coord=='0': # geographic
            udata=pmag.get_dictitem(Incs,tilt_key,'','T') # get all the blank records - assume geographic
            if len(cdata)==0: crd='' 
            if len(udata)>0:
                for d in udata:cdata.append(d)  
                crd=crd+'u'
        for name_key in Name_keys:
            Names=pmag.get_dictitem(cdata,name_key,'','F') # get all records with this name_key not blank 
            if len(Names)>0: break
        for dir_type_key in Dir_type_keys:
            Dirs=pmag.get_dictitem(cdata,dir_type_key,'','F') # get all records with this direction type
            if len(Dirs)>0: break
        if dir_type_key=="":dir_type_key='direction_type'
        locations,site,sample,specimen="","","",""
        for rec in cdata: # pick out the data
            if 'er_location_name' in rec.keys() and rec['er_location_name']!="" and rec['er_location_name'] not in locations:locations=locations+rec['er_location_name'].replace("/","")+"_"
            if 'er_location_names' in rec.keys() and rec['er_location_names']!="":
               locs=rec['er_location_names'].split(':')
               for loc in locs:
                   if loc not in locations:locations=locations+loc.replace("/","")+'_'
            if plot_key=='er_site_name' or plot_key=='er_sample_name' or plot_key=='er_specimen_name':
                site=rec['er_site_name']
            if plot_key=='er_sample_name' or plot_key=='er_specimen_name':
                sample=rec['er_sample_name']
            if plot_key=='er_specimen_name':
                specimen=rec['er_specimen_name']
            if plot_key=='er_site_names' or plot_key=='er_sample_names' or plot_key=='er_specimen_names':
                site=rec['er_site_names']
            if plot_key=='er_sample_names' or plot_key=='er_specimen_names':
                sample=rec['er_sample_names']
            if plot_key=='er_specimen_names':
                specimen=rec['er_specimen_names']
            if dir_type_key not in rec.keys() or rec[dir_type_key]=="":rec[dir_type_key]='l'
            if 'magic_method_codes' not in rec.keys():rec['magic_method_codes']=""
            DIblock.append([float(rec[dec_key]),float(rec[inc_key])])
            SLblock.append([rec[name_key],rec['magic_method_codes']])
            if rec[tilt_key]==coord and rec[dir_type_key]!='l' and rec[dec_key]!="" and rec[inc_key]!="":
                GCblock.append([float(rec[dec_key]),float(rec[inc_key])])
                SPblock.append([rec[name_key],rec['magic_method_codes']])
        if len(DIblock)==0 and len(GCblock)==0:
            if verbose: print "no records for plotting"
            sys.exit()
        if verbose:
          for k in range(len(SLblock)):
            print '%s %s %7.1f %7.1f'%(SLblock[k][0],SLblock[k][1],DIblock[k][0],DIblock[k][1])
          for k in range(len(SPblock)):
            print '%s %s %7.1f %7.1f'%(SPblock[k][0],SPblock[k][1],GCblock[k][0],GCblock[k][1])
        if len(DIblock)>0: 
            if contour==0:
                pmagplotlib.plotEQ(FIG['eqarea'],DIblock,title)
            else:
                pmagplotlib.plotEQcont(FIG['eqarea'],DIblock)
        else:   pmagplotlib.plotNET(FIG['eqarea'])
        if len(GCblock)>0:
            for rec in GCblock: pmagplotlib.plotC(FIG['eqarea'],rec,90.,'g')
        if plotE==1:
            ppars=pmag.doprinc(DIblock) # get principal directions
            nDIs,rDIs,npars,rpars=[],[],[],[]
            for rec in DIblock:
                angle=pmag.angle([rec[0],rec[1]],[ppars['dec'],ppars['inc']])
                if angle>90.:
                    rDIs.append(rec)
                else:
                    nDIs.append(rec)
            if dist=='B': # do on whole dataset
                etitle="Bingham confidence ellipse"
                bpars=pmag.dobingham(DIblock)
                for key in bpars.keys():
                    if key!='n' and verbose:print "    ",key, '%7.1f'%(bpars[key])
                    if key=='n' and verbose:print "    ",key, '       %i'%(bpars[key])
                npars.append(bpars['dec']) 
                npars.append(bpars['inc'])
                npars.append(bpars['Zeta']) 
                npars.append(bpars['Zdec']) 
                npars.append(bpars['Zinc'])
                npars.append(bpars['Eta']) 
                npars.append(bpars['Edec']) 
                npars.append(bpars['Einc'])
            if dist=='F':
                etitle="Fisher confidence cone"
                if len(nDIs)>2:
                    fpars=pmag.fisher_mean(nDIs)
                    for key in fpars.keys():
                        if key!='n' and verbose:print "    ",key, '%7.1f'%(fpars[key])
                        if key=='n' and verbose:print "    ",key, '       %i'%(fpars[key])
                    mode+=1
                    npars.append(fpars['dec']) 
                    npars.append(fpars['inc'])
                    npars.append(fpars['alpha95']) # Beta
                    npars.append(fpars['dec']) 
                    isign=abs(fpars['inc'])/fpars['inc'] 
                    npars.append(fpars['inc']-isign*90.) #Beta inc
                    npars.append(fpars['alpha95']) # gamma 
                    npars.append(fpars['dec']+90.) # Beta dec
                    npars.append(0.) #Beta inc
                if len(rDIs)>2:
                    fpars=pmag.fisher_mean(rDIs)
                    if verbose:print "mode ",mode
                    for key in fpars.keys():
                        if key!='n' and verbose:print "    ",key, '%7.1f'%(fpars[key])
                        if key=='n' and verbose:print "    ",key, '       %i'%(fpars[key])
                    mode+=1
                    rpars.append(fpars['dec']) 
                    rpars.append(fpars['inc'])
                    rpars.append(fpars['alpha95']) # Beta
                    rpars.append(fpars['dec']) 
                    isign=abs(fpars['inc'])/fpars['inc'] 
                    rpars.append(fpars['inc']-isign*90.) #Beta inc
                    rpars.append(fpars['alpha95']) # gamma 
                    rpars.append(fpars['dec']+90.) # Beta dec
                    rpars.append(0.) #Beta inc
            if dist=='K':
                etitle="Kent confidence ellipse"
                if len(nDIs)>3:
                    kpars=pmag.dokent(nDIs,len(nDIs))
                    if verbose:print "mode ",mode
                    for key in kpars.keys():
                        if key!='n' and verbose:print "    ",key, '%7.1f'%(kpars[key])
                        if key=='n' and verbose:print "    ",key, '       %i'%(kpars[key])
                    mode+=1
                    npars.append(kpars['dec']) 
                    npars.append(kpars['inc'])
                    npars.append(kpars['Zeta']) 
                    npars.append(kpars['Zdec']) 
                    npars.append(kpars['Zinc'])
                    npars.append(kpars['Eta']) 
                    npars.append(kpars['Edec']) 
                    npars.append(kpars['Einc'])
                if len(rDIs)>3:
                    kpars=pmag.dokent(rDIs,len(rDIs))
                    if verbose:print "mode ",mode
                    for key in kpars.keys():
                        if key!='n' and verbose:print "    ",key, '%7.1f'%(kpars[key])
                        if key=='n' and verbose:print "    ",key, '       %i'%(kpars[key])
                    mode+=1
                    rpars.append(kpars['dec']) 
                    rpars.append(kpars['inc'])
                    rpars.append(kpars['Zeta']) 
                    rpars.append(kpars['Zdec']) 
                    rpars.append(kpars['Zinc'])
                    rpars.append(kpars['Eta']) 
                    rpars.append(kpars['Edec']) 
                    rpars.append(kpars['Einc'])
            else: # assume bootstrap
                if dist=='BE':
                    if len(nDIs)>5:
                        BnDIs=pmag.di_boot(nDIs)
                        Bkpars=pmag.dokent(BnDIs,1.)
                        if verbose:print "mode ",mode
                        for key in Bkpars.keys():
                            if key!='n' and verbose:print "    ",key, '%7.1f'%(Bkpars[key])
                            if key=='n' and verbose:print "    ",key, '       %i'%(Bkpars[key])
                        mode+=1
                        npars.append(Bkpars['dec']) 
                        npars.append(Bkpars['inc'])
                        npars.append(Bkpars['Zeta']) 
                        npars.append(Bkpars['Zdec']) 
                        npars.append(Bkpars['Zinc'])
                        npars.append(Bkpars['Eta']) 
                        npars.append(Bkpars['Edec']) 
                        npars.append(Bkpars['Einc'])
                    if len(rDIs)>5:
                        BrDIs=pmag.di_boot(rDIs)
                        Bkpars=pmag.dokent(BrDIs,1.)
                        if verbose:print "mode ",mode
                        for key in Bkpars.keys():
                            if key!='n' and verbose:print "    ",key, '%7.1f'%(Bkpars[key])
                            if key=='n' and verbose:print "    ",key, '       %i'%(Bkpars[key])
                        mode+=1
                        rpars.append(Bkpars['dec']) 
                        rpars.append(Bkpars['inc'])
                        rpars.append(Bkpars['Zeta']) 
                        rpars.append(Bkpars['Zdec']) 
                        rpars.append(Bkpars['Zinc'])
                        rpars.append(Bkpars['Eta']) 
                        rpars.append(Bkpars['Edec']) 
                        rpars.append(Bkpars['Einc'])
                    etitle="Bootstrapped confidence ellipse"
                elif dist=='BV':
                    sym={'lower':['o','c'],'upper':['o','g'],'size':3,'edgecolor':'face'}
                    if len(nDIs)>5:
                        BnDIs=pmag.di_boot(nDIs)
                        pmagplotlib.plotEQsym(FIG['bdirs'],BnDIs,'Bootstrapped Eigenvectors', sym)
                    if len(rDIs)>5:
                        BrDIs=pmag.di_boot(rDIs)
                        if len(nDIs)>5:  # plot on existing plots
                            pmagplotlib.plotDIsym(FIG['bdirs'],BrDIs,sym)
                        else:
                            pmagplotlib.plotEQ(FIG['bdirs'],BrDIs,'Bootstrapped Eigenvectors')
            if dist=='B':
                if len(nDIs)> 3 or len(rDIs)>3: pmagplotlib.plotCONF(FIG['eqarea'],etitle,[],npars,0)
            elif len(nDIs)>3 and dist!='BV':
                pmagplotlib.plotCONF(FIG['eqarea'],etitle,[],npars,0)
                if len(rDIs)>3:
                    pmagplotlib.plotCONF(FIG['eqarea'],etitle,[],rpars,0)
            elif len(rDIs)>3 and dist!='BV':
                pmagplotlib.plotCONF(FIG['eqarea'],etitle,[],rpars,0)
        if verbose:pmagplotlib.drawFIGS(FIG)
            #
        files={}
        locations=locations[:-1]
        for key in FIG.keys():
            filename='LO:_'+locations+'_SI:_'+site+'_SA:_'+sample+'_SP:_'+specimen+'_CO:_'+crd+'_TY:_'+key+'_.'+fmt
            files[key]=filename 
        if pmagplotlib.isServer:
            black     = '#000000'
            purple    = '#800080'
            titles={}
            titles['eq']='Equal Area Plot'
            FIG = pmagplotlib.addBorders(FIG,titles,black,purple)
            pmagplotlib.saveP(FIG,files)
        elif verbose:
            ans=raw_input(" S[a]ve to save plot, [q]uit, Return to continue:  ")
            if ans=="q": sys.exit()
            if ans=="a": pmagplotlib.saveP(FIG,files) 
        if plt:
           pmagplotlib.saveP(FIG,files) 
Ejemplo n.º 27
0
def main():
    """
    NAME
        make_magic_plots.py

    DESCRIPTION
    inspects magic directory for available plots.

    SYNTAX
        make_magic_plots.py [command line options]

    INPUT
        magic files

    OPTIONS
        -h prints help message and quits
        -f FILE specifies input file name
        -fmt [png,eps,svg,jpg,pdf] specify format, default is png
        -DM [2,3] define data model
    """
    dirlist=['./']
    dir_path=os.getcwd()
    names=os.listdir(dir_path)
    for n in names:
        if 'Location' in n:
            dirlist.append(n)
    if '-fmt' in sys.argv:
        ind=sys.argv.index("-fmt")
        fmt=sys.argv[ind+1]
    else: fmt='png'
    if '-f' in sys.argv:
        ind=sys.argv.index("-f")
        filelist=[sys.argv[ind+1]]
    else:
        filelist=os.listdir(dir_path)
    new_model=0
    if '-DM' in sys.argv:
        ind=sys.argv.index("-DM")
        data_model=sys.argv[ind+1]
        if data_model=='3': new_model=1
    if new_model:
            samp_file='samples.txt'
            azimuth_key='azimuth'
            meas_file='measurements.txt'
            loc_key='location'
            method_key='method_codes'
            dec_key='dir_dec'
            inc_key='dir_inc'
            Mkeys=['magnitude','magn_moment','magn_volume','magn_mass']
            results_file='sites.txt'
            tilt_key='direction_tilt_correction'
            hyst_file='specimens.txt'
            aniso_file='specimens.txt'
    else:
            new_model=0
            samp_file='er_samples.txt'
            azimuth_key='sample_azimuth'
            meas_file='magic_measurements.txt'
            loc_key='er_location_name'
            method_key='magic_method_codes'
            dec_key='measurement_dec'
            inc_key='measurement_inc'
            Mkeys=['measurement_magnitude','measurement_magn_moment','measurement_magn_volume','measurement_magn_mass']
            results_file='pmag_results.txt'
            tilt_key='tilt_correction'
            hyst_file='rmag_hysteresis'
            aniso_file='rmag_anisotropy'
    if '-h' in sys.argv:
        print(main.__doc__)
        sys.exit()
    for loc in dirlist:
        print('working on: ',loc)
        os.chdir(loc) # change working directories to each location
        crd='s'
        print(samp_file)
        if samp_file in filelist: # find coordinate systems
            print('found sample file')
            samps,file_type=pmag.magic_read(samp_file) # read in data
            Srecs=pmag.get_dictitem(samps,azimuth_key,'','F')# get all none blank sample orientations
            if len(Srecs)>0:
                crd='g'
        if meas_file in filelist: # start with measurement data
            print('working on measurements data')
            data,file_type=pmag.magic_read(meas_file) # read in data
            if loc == './': data=pmag.get_dictitem(data,loc_key,'','T') # get all the blank location names from data file
            # looking for  zeq_magic possibilities
            AFZrecs=pmag.get_dictitem(data,method_key,'LT-AF-Z','has')# get all none blank method codes
            TZrecs=pmag.get_dictitem(data,method_key,'LT-T-Z','has')# get all none blank method codes
            MZrecs=pmag.get_dictitem(data,method_key,'LT-M-Z','has')# get all none blank method codes
            Drecs=pmag.get_dictitem(data,dec_key,'','F') # get all dec measurements
            Irecs=pmag.get_dictitem(data,inc_key,'','F') # get all inc measurements
            for key in Mkeys:
                Mrecs=pmag.get_dictitem(data,key,'','F') # get intensity data
                if len(Mrecs)>0:break
            if len(AFZrecs)>0 or len(TZrecs)>0 or len(MZrecs)>0 and len(Drecs)>0 and len(Irecs)>0 and len(Mrecs)>0: # potential for stepwise demag curves
                if new_model:
                    CMD = 'zeq_magic3.py -fsp specimens.txt -sav -fmt '+fmt+' -crd '+crd
                else:
                    CMD='zeq_magic.py -fsp pmag_specimens.txt -sav -fmt '+fmt+' -crd '+crd
                print(CMD)
                os.system(CMD)
            # looking for  thellier_magic possibilities
            if len(pmag.get_dictitem(data,method_key,'LP-PI-TRM','has'))>0:
                if new_model:
                    CMD= 'thellier_magic3.py -fsp specimens.txt -sav -fmt '+fmt
                else:
                    CMD= 'thellier_magic.py -fsp pmag_specimens.txt -sav -fmt '+fmt
                print(CMD)
                os.system(CMD)
            # looking for hysteresis possibilities
            if len(pmag.get_dictitem(data,method_key,'LP-HYS','has'))>0: # find hyst experiments
                if new_model:
                    CMD= 'quick_hyst3.py -sav -fmt '+fmt
                else:
                    CMD= 'quick_hyst.py -sav -fmt '+fmt
                print(CMD)
                os.system(CMD)
        if results_file in filelist: # start with measurement data
            data,file_type=pmag.magic_read(results_file) # read in data
            print('number of datapoints: ',len(data))
            if loc == './': data=pmag.get_dictitem(data,loc_key,':','has') # get all the concatenated location names from data file
            print('number of datapoints: ',len(data) ,loc)
            if new_model:
                print('working on site directions')
                dec_key='dir_dec'
                inc_key='dir_inc'
                int_key='int_abs'
            else:
                print('working on results directions')
                dec_key='average_dec'
                inc_key='average_inc'
                int_key='average_int'
            SiteDIs=pmag.get_dictitem(data,dec_key,"",'F') # find decs
            SiteDIs=pmag.get_dictitem(SiteDIs,inc_key,"",'F') # find decs and incs
            SiteDIs=pmag.get_dictitem(SiteDIs,'data_type','i','has') # only individual results - not poles
            print('number of directions: ',len(SiteDIs))
            SiteDIs_t=pmag.get_dictitem(SiteDIs,tilt_key,'100','T')# tilt corrected coordinates
            print('number of tilt corrected directions: ',len(SiteDIs))
            SiteDIs_g=pmag.get_dictitem(SiteDIs,tilt_key,'0','T')# geographic coordinates
            SiteDIs_s=pmag.get_dictitem(SiteDIs,'tilt_correction','-1','T')# sample coordinates
            SiteDIs_x=pmag.get_dictitem(SiteDIs,'tilt_correction','','T')# no coordinates
            if len(SiteDIs_t)>0 or len(SiteDIs_g) >0 or len(SiteDIs_s)>0 or len(SiteDIs_x)>0:
                CRD=""
                if len(SiteDIs_t)>0:
                    CRD=' -crd t'
                elif len(SiteDIs_g )>0:
                    CRD=' -crd g'
                elif len(SiteDIs_s )>0:
                    CRD=' -crd s'
                if new_model:
                    CMD= 'eqarea_magic3.py -sav -crd t -fmt '+fmt +CRD
                else:
                    CMD= 'eqarea_magic.py -sav -crd t -fmt '+fmt +CRD
                print(CMD)
                os.system(CMD)
            print('working on VGP map')
            VGPs=pmag.get_dictitem(SiteDIs,'vgp_lat',"",'F') # are there any VGPs?
            if len(VGPs)>0:  # YES!
                os.system('vgpmap_magic.py -prj moll -res c -sym ro 5 -sav -fmt png')
            print('working on intensities')
            if not new_model:
                CMD='magic_select.py -f '+results_file+' -key data_type i T -F tmp.txt'
                os.system(CMD)
                infile=' tmp.txt'
            else: infile=results_file
            print(int_key)
            CMD='magic_select.py  -key '+int_key +' 0. has -F tmp1.txt -f '+infile
            os.system(CMD)
            CMD="grab_magic_key.py -f tmp1.txt -key "+int_key+ " | awk '{print $1*1e6}' >tmp2.txt"
            os.system(CMD)
            data,file_type=pmag.magic_read('tmp1.txt') # read in data
            if new_model:
                locations=pmag.get_dictkey(data,loc_key,"")
            else:
                locations=pmag.get_dictkey(data,loc_key+'s',"")
            histfile='LO:_'+locations[0]+'_intensities_histogram:_.'+fmt
            os.system("histplot.py -b 1 -xlab 'Intensity (uT)' -sav -f tmp2.txt -F " +histfile)
            print("histplot.py -b 1 -xlab 'Intensity (uT)' -sav -f tmp2.txt -F " +histfile)
            os.system('rm tmp*.txt')
        if hyst_file in filelist: # start with measurement data
            print('working on hysteresis')
            data,file_type=pmag.magic_read(hyst_file) # read in data
            if loc == './': data=pmag.get_dictitem(data,loc_key,'','T') # get all the blank location names from data file
            hdata=pmag.get_dictitem(data,'hysteresis_bcr','','F')
            hdata=pmag.get_dictitem(hdata,'hysteresis_mr_moment','','F')
            hdata=pmag.get_dictitem(hdata,'hysteresis_ms_moment','','F')
            hdata=pmag.get_dictitem(hdata,'hysteresis_bc','','F') # there are data for a dayplot
            if len(hdata)>0:
                print('dayplot_magic.py -sav -fmt '+fmt)
                os.system('dayplot_magic.py -sav -fmt '+fmt)
        if aniso_file in filelist: # do anisotropy plots if possible
            print('working on anisotropy')
            data,file_type=pmag.magic_read(aniso_file) # read in data
            if loc == './': data=pmag.get_dictitem(data,loc_key,'','T') # get all the blank location names from data file
            sdata=pmag.get_dictitem(data,'anisotropy_tilt_correction','-1','T') # get specimen coordinates
            gdata=pmag.get_dictitem(data,'anisotropy_tilt_correction','0','T') # get specimen coordinates
            tdata=pmag.get_dictitem(data,'anisotropy_tilt_correction','100','T') # get specimen coordinates
            CRD=""
            if new_model:
                CMD= 'aniso_magic3.py -x -B -sav -fmt '+fmt
            else:
                CMD= 'aniso_magic.py -x -B -sav -fmt '+fmt
            if len(sdata)>3:
                CMD=CMD+' -crd s'
                print(CMD)
                os.system(CMD)
            if len(gdata)>3:
                CMD=CMD+' -crd g'
                print(CMD)
                os.system(CMD)
            if len(tdata)>3:
                CMD=CMD+' -crd t'
                print(CMD)
                os.system(CMD)
        if loc!='./':os.chdir('..') # change working directories to each location
Ejemplo n.º 28
0
def main():
    """
    NAME
       foldtest_magic.py

    DESCRIPTION
       does a fold test (Tauxe, 2010) on data

    INPUT FORMAT
       pmag_specimens format file, er_samples.txt format file (for bedding)

    SYNTAX
       foldtest_magic.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f pmag_sites  formatted file [default is pmag_sites.txt]
        -fsa er_samples  formatted file [default is er_samples.txt]
        -fsi er_sites  formatted file 
        -exc use pmag_criteria.txt to set acceptance criteria
        -n NB, set number of bootstraps, default is 1000
        -b MIN, MAX, set bounds for untilting, default is -10, 150
        -fmt FMT, specify format - default is svg
        -sav saves plots and quits
    
    OUTPUT
        Geographic: is an equal area projection of the input data in 
                    original coordinates
        Stratigraphic: is an equal area projection of the input data in 
                    tilt adjusted coordinates
        % Untilting: The dashed (red) curves are representative plots of 
                    maximum eigenvalue (tau_1) as a function of untilting
                    The solid line is the cumulative distribution of the
                    % Untilting required to maximize tau for all the 
                    bootstrapped data sets.  The dashed vertical lines
                    are 95% confidence bounds on the % untilting that yields 
                   the most clustered result (maximum tau_1).  
        Command line: prints out the bootstrapped iterations and
                   finally the confidence bounds on optimum untilting.
        If the 95% conf bounds include 0, then a pre-tilt magnetization is indicated
        If the 95% conf bounds include 100, then a post-tilt magnetization is indicated
        If the 95% conf bounds exclude both 0 and 100, syn-tilt magnetization is
                possible as is vertical axis rotation or other pathologies

    """
    kappa = 0
    nb = 1000  # number of bootstraps
    min, max = -10, 150
    dir_path = '.'
    infile, orfile = 'pmag_sites.txt', 'er_samples.txt'
    critfile = 'pmag_criteria.txt'
    dipkey, azkey = 'sample_bed_dip', 'sample_bed_dip_direction'
    fmt = 'svg'
    plot = 0
    if '-WD' in sys.argv:
        ind = sys.argv.index('-WD')
        dir_path = sys.argv[ind + 1]
    if '-h' in sys.argv:  # check if help is needed
        print(main.__doc__)
        sys.exit()  # graceful quit
    if '-n' in sys.argv:
        ind = sys.argv.index('-n')
        nb = int(sys.argv[ind + 1])
    if '-fmt' in sys.argv:
        ind = sys.argv.index('-fmt')
        fmt = sys.argv[ind + 1]
    if '-sav' in sys.argv: plot = 1
    if '-b' in sys.argv:
        ind = sys.argv.index('-b')
        min = int(sys.argv[ind + 1])
        max = int(sys.argv[ind + 2])
    if '-f' in sys.argv:
        ind = sys.argv.index('-f')
        infile = sys.argv[ind + 1]
    if '-fsa' in sys.argv:
        ind = sys.argv.index('-fsa')
        orfile = sys.argv[ind + 1]
    elif '-fsi' in sys.argv:
        ind = sys.argv.index('-fsi')
        orfile = sys.argv[ind + 1]
        dipkey, azkey = 'site_bed_dip', 'site_bed_dip_direction'
    orfile = dir_path + '/' + orfile
    infile = dir_path + '/' + infile
    critfile = dir_path + '/' + critfile
    data, file_type = pmag.magic_read(infile)
    ordata, file_type = pmag.magic_read(orfile)
    if '-exc' in sys.argv:
        crits, file_type = pmag.magic_read(critfile)
        for crit in crits:
            if crit['pmag_criteria_code'] == "DE-SITE":
                SiteCrit = crit
                break


# get to work
#
    PLTS = {'geo': 1, 'strat': 2, 'taus': 3}  # make plot dictionary
    pmagplotlib.plot_init(PLTS['geo'], 5, 5)
    pmagplotlib.plot_init(PLTS['strat'], 5, 5)
    pmagplotlib.plot_init(PLTS['taus'], 5, 5)
    GEOrecs = pmag.get_dictitem(data, 'site_tilt_correction', '0', 'T')
    if len(GEOrecs) > 0:  # have some geographic data
        DIDDs = []  # set up list for dec inc  dip_direction, dip
        for rec in GEOrecs:  # parse data
            dip, dip_dir = 0, -1
            Dec = float(rec['site_dec'])
            Inc = float(rec['site_inc'])
            orecs = pmag.get_dictitem(ordata, 'er_site_name',
                                      rec['er_site_name'], 'T')
            if len(orecs) > 0:
                if orecs[0][azkey] != "": dip_dir = float(orecs[0][azkey])
                if orecs[0][dipkey] != "": dip = float(orecs[0][dipkey])
            if dip != 0 and dip_dir != -1:
                if '-exc' in sys.argv:
                    keep = 1
                    for key in list(SiteCrit.keys()):
                        if 'site' in key and SiteCrit[key] != "" and rec[
                                key] != "" and key != 'site_alpha95':
                            if float(rec[key]) < float(SiteCrit[key]):
                                keep = 0
                                print(rec['er_site_name'], key, rec[key])
                        if key == 'site_alpha95' and SiteCrit[
                                key] != "" and rec[key] != "":
                            if float(rec[key]) > float(SiteCrit[key]):
                                keep = 0
                    if keep == 1: DIDDs.append([Dec, Inc, dip_dir, dip])
                else:
                    DIDDs.append([Dec, Inc, dip_dir, dip])
    else:
        print('no geographic directional data found')
        sys.exit()
    pmagplotlib.plotEQ(PLTS['geo'], DIDDs, 'Geographic')
    data = numpy.array(DIDDs)
    D, I = pmag.dotilt_V(data)
    TCs = numpy.array([D, I]).transpose()
    pmagplotlib.plotEQ(PLTS['strat'], TCs, 'Stratigraphic')
    if plot == 0: pmagplotlib.drawFIGS(PLTS)
    Percs = list(range(min, max))
    Cdf, Untilt = [], []
    pylab.figure(num=PLTS['taus'])
    print('doing ', nb, ' iterations...please be patient.....')
    for n in range(
            nb):  # do bootstrap data sets - plot first 25 as dashed red line
        if n % 50 == 0: print(n)
        Taus = []  # set up lists for taus
        PDs = pmag.pseudo(DIDDs)
        if kappa != 0:
            for k in range(len(PDs)):
                d, i = pmag.fshdev(kappa)
                dipdir, dip = pmag.dodirot(d, i, PDs[k][2], PDs[k][3])
                PDs[k][2] = dipdir
                PDs[k][3] = dip
        for perc in Percs:
            tilt = numpy.array([1., 1., 1., 0.01 * perc])
            D, I = pmag.dotilt_V(PDs * tilt)
            TCs = numpy.array([D, I]).transpose()
            ppars = pmag.doprinc(TCs)  # get principal directions
            Taus.append(ppars['tau1'])
        if n < 25: pylab.plot(Percs, Taus, 'r--')
        Untilt.append(Percs[Taus.index(
            numpy.max(Taus))])  # tilt that gives maximum tau
        Cdf.append(old_div(float(n), float(nb)))
    pylab.plot(Percs, Taus, 'k')
    pylab.xlabel('% Untilting')
    pylab.ylabel('tau_1 (red), CDF (green)')
    Untilt.sort()  # now for CDF of tilt of maximum tau
    pylab.plot(Untilt, Cdf, 'g')
    lower = int(.025 * nb)
    upper = int(.975 * nb)
    pylab.axvline(x=Untilt[lower], ymin=0, ymax=1, linewidth=1, linestyle='--')
    pylab.axvline(x=Untilt[upper], ymin=0, ymax=1, linewidth=1, linestyle='--')
    tit = '%i - %i %s' % (Untilt[lower], Untilt[upper], 'Percent Unfolding')
    print(tit)
    pylab.title(tit)
    if plot == 0:
        pmagplotlib.drawFIGS(PLTS)
        ans = input('S[a]ve all figures, <Return> to quit  \n ')
        if ans != 'a':
            print("Good bye")
            sys.exit()
    files = {}
    for key in list(PLTS.keys()):
        files[key] = ('foldtest_' + '%s' % (key.strip()[:2]) + '.' + fmt)
    pmagplotlib.saveP(PLTS, files)
Ejemplo n.º 29
0
def main():
    """
    NAME
        thellier_magic_redo.py

    DESCRIPTION
        Calculates paleointensity parameters for thellier-thellier type data using bounds
        stored in the "redo" file

    SYNTAX
        thellier_magic_redo [command line options]

    OPTIONS
        -h prints help message
        -usr USER:   identify user, default is ""
        -fcr CRIT, set criteria for grading
        -f IN: specify input file, default is magic_measurements.txt
        -fre REDO: specify redo file, default is "thellier_redo"
        -F OUT: specify output file, default is thellier_specimens.txt
        -leg:  attaches "Recalculated from original measurements; supercedes published results. " to comment field
        -CR PERC TYPE: apply a blanket cooling rate correction if none supplied in the er_samples.txt file
            PERC should be a percentage of original (say reduce to 90%)
            TYPE should be one of the following:
               EG (for educated guess); PS (based on pilots); TRM (based on comparison of two TRMs)
        -ANI:  perform anisotropy correction
        -fsa SAMPFILE: er_samples.txt file with cooling rate correction information, default is NO CORRECTION
        -Fcr  CRout: specify pmag_specimen format file for cooling rate corrected data
        -fan ANIFILE: specify rmag_anisotropy format file, default is rmag_anisotropy.txt
        -Fac  ACout: specify pmag_specimen format file for anisotropy corrected data
                 default is AC_specimens.txt
        -fnl NLTFILE: specify magic_measurments format file, default is magic_measurements.txt
        -Fnl NLTout: specify pmag_specimen format file for non-linear trm corrected data
                 default is NLT_specimens.txt
        -z use z component differenences for pTRM calculation

    INPUT
        a thellier_redo file is Specimen_name Tmin Tmax (where Tmin and Tmax are in Centigrade)
    """
    dir_path='.'
    critout=""
    version_num=pmag.get_version()
    field,first_save=-1,1
    spec,recnum,start,end=0,0,0,0
    crfrac=0
    NltRecs,PmagSpecs,AniSpecRecs,NltSpecRecs,CRSpecs=[],[],[],[],[]
    meas_file,pmag_file,mk_file="magic_measurements.txt","thellier_specimens.txt","thellier_redo"
    anis_file="rmag_anisotropy.txt"
    anisout,nltout="AC_specimens.txt","NLT_specimens.txt"
    crout="CR_specimens.txt"
    nlt_file=""
    samp_file=""
    comment,user="","unknown"
    anis,nltrm=0,0
    jackknife=0 # maybe in future can do jackknife
    args=sys.argv
    Zdiff=0
    if '-WD' in args:
        ind=args.index('-WD')
        dir_path=args[ind+1]
    if "-h" in args:
        print(main.__doc__)
        sys.exit()
    if "-usr" in args:
        ind=args.index("-usr")
        user=sys.argv[ind+1]
    if "-leg" in args: comment="Recalculated from original measurements; supercedes published results. "
    cool=0
    if "-CR" in args:
        cool=1
        ind=args.index("-CR")
        crfrac=.01*float(sys.argv[ind+1])
        crtype='DA-CR-'+sys.argv[ind+2]
    if "-Fcr" in args:
        ind=args.index("-Fcr")
        crout=sys.argv[ind+1]
    if "-f" in args:
        ind=args.index("-f")
        meas_file=sys.argv[ind+1]
    if "-F" in args:
        ind=args.index("-F")
        pmag_file=sys.argv[ind+1]
    if "-fre" in args:
        ind=args.index("-fre")
        mk_file=args[ind+1]
    if "-fsa" in args:
        ind=args.index("-fsa")
        samp_file=dir_path+'/'+args[ind+1]
        Samps,file_type=pmag.magic_read(samp_file)
        SampCRs=pmag.get_dictitem(Samps,'cooling_rate_corr','','F') # get samples cooling rate corrections
        cool=1
        if file_type!='er_samples':
            print('not a valid er_samples.txt file')
            sys.exit()
    #
    #
    if "-ANI" in args:
        anis=1
        ind=args.index("-ANI")
        if "-Fac" in args:
            ind=args.index("-Fac")
            anisout=args[ind+1]
        if "-fan" in args:
            ind=args.index("-fan")
            anis_file=args[ind+1]
    #
    if "-NLT" in args:
        if "-Fnl" in args:
            ind=args.index("-Fnl")
            nltout=args[ind+1]
        if "-fnl" in args:
            ind=args.index("-fnl")
            nlt_file=args[ind+1]
    if "-z" in args: Zdiff=1
    if '-fcr' in sys.argv:
        ind=args.index("-fcr")
        critout=sys.argv[ind+1]
#
#  start reading in data:
#
    meas_file=dir_path+"/"+meas_file
    mk_file=dir_path+"/"+mk_file
    accept=pmag.default_criteria(1)[0] # set criteria to none
    if critout!="":
        critout=dir_path+"/"+critout
        crit_data,file_type=pmag.magic_read(critout)
        if file_type!='pmag_criteria':
            print('bad pmag_criteria file, using no acceptance criteria')
        print("Acceptance criteria read in from ", critout)
        for critrec in crit_data:
            if 'sample_int_sigma_uT' in list(critrec.keys()): # accommodate Shaar's new criterion
                    critrec['sample_int_sigma']='%10.3e'%(eval(critrec['sample_int_sigma_uT'])*1e-6)
            for key in list(critrec.keys()):
                if key not in list(accept.keys()) and critrec[key]!='':
                    accept[key]=critrec[key]
    meas_data,file_type=pmag.magic_read(meas_file)
    if file_type != 'magic_measurements':
        print(file_type)
        print(file_type,"This is not a valid magic_measurements file ")
        sys.exit()
    try:
        mk_f=open(mk_file,'r')
    except:
        print("Bad redo file")
        sys.exit()
    mkspec=[]
    speclist=[]
    for line in mk_f.readlines():
        tmp=line.split()
        mkspec.append(tmp)
        speclist.append(tmp[0])
    if anis==1:
        anis_file=dir_path+"/"+anis_file
        anis_data,file_type=pmag.magic_read(anis_file)
        if file_type != 'rmag_anisotropy':
            print(file_type)
            print(file_type,"This is not a valid rmag_anisotropy file ")
            sys.exit()
    if nlt_file=="":
        nlt_data=pmag.get_dictitem(meas_data,'magic_method_codes','LP-TRM','has')  # look for trm acquisition data in the meas_data file
    else:
        nlt_file=dir_path+"/"+nlt_file
        nlt_data,file_type=pmag.magic_read(nlt_file)
    if len(nlt_data)>0:
        nltrm=1
#
# sort the specimen names and step through one by one
#
    sids=pmag.get_specs(meas_data)
#
    print('Processing ',len(speclist),' specimens - please wait ')
    while spec < len(speclist):
        s=speclist[spec]
        recnum=0
        datablock=[]
        PmagSpecRec={}
        PmagSpecRec["er_analyst_mail_names"]=user
        PmagSpecRec["er_citation_names"]="This study"
        PmagSpecRec["magic_software_packages"]=version_num
        methcodes,inst_code=[],""
    #
    # find the data from the meas_data file for this specimen
    #
        datablock=pmag.get_dictitem(meas_data,'er_specimen_name',s,'T')
        datablock=pmag.get_dictitem(datablock,'magic_method_codes','LP-PI-TRM','has') #pick out the thellier experiment data
        if len(datablock)>0:
            for rec in datablock:
                if "magic_instrument_codes" not in list(rec.keys()): rec["magic_instrument_codes"]="unknown"
    #
    #  collect info for the PmagSpecRec dictionary
    #
            rec=datablock[0]
            PmagSpecRec["er_specimen_name"]=s
            PmagSpecRec["er_sample_name"]=rec["er_sample_name"]
            PmagSpecRec["er_site_name"]=rec["er_site_name"]
            PmagSpecRec["er_location_name"]=rec["er_location_name"]
            PmagSpecRec["measurement_step_unit"]="K"
            PmagSpecRec["specimen_correction"]='u'
            if "er_expedition_name" in list(rec.keys()):PmagSpecRec["er_expedition_name"]=rec["er_expedition_name"]
            if "magic_instrument_codes" not in list(rec.keys()):
                PmagSpecRec["magic_instrument_codes"]="unknown"
            else:
                PmagSpecRec["magic_instrument_codes"]=rec["magic_instrument_codes"]
            if "magic_experiment_name" not in list(rec.keys()):
                rec["magic_experiment_name"]=""
            else:
                PmagSpecRec["magic_experiment_names"]=rec["magic_experiment_name"]
            meths=rec["magic_experiment_name"].split(":")
            for meth in meths:
                if meth.strip() not in methcodes and "LP-" in meth:methcodes.append(meth.strip())
    #
    # sort out the data into first_Z, first_I, ptrm_check, ptrm_tail
    #
            araiblock,field=pmag.sortarai(datablock,s,Zdiff)
            first_Z=araiblock[0]
            first_I=araiblock[1]
            ptrm_check=araiblock[2]
            ptrm_tail=araiblock[3]
            if len(first_I)<3 or len(first_Z)<4:
                spec+=1
                print('skipping specimen ', s)
            else:
    #
    # get start, end
    #
                for redospec in mkspec:
                    if redospec[0]==s:
                        b,e=float(redospec[1]),float(redospec[2])
                        break
                if e > float(first_Z[-1][0]):e=float(first_Z[-1][0])
                for recnum in range(len(first_Z)):
                    if first_Z[recnum][0]==b:start=recnum
                    if first_Z[recnum][0]==e:end=recnum
                nsteps=end-start
                if nsteps>2:
                    zijdblock,units=pmag.find_dmag_rec(s,meas_data)
                    pars,errcode=pmag.PintPars(datablock,araiblock,zijdblock,start,end,accept)
                    if 'specimen_scat' in list(pars.keys()): PmagSpecRec['specimen_scat']=pars['specimen_scat']
                    if 'specimen_frac' in list(pars.keys()): PmagSpecRec['specimen_frac']='%5.3f'%(pars['specimen_frac'])
                    if 'specimen_gmax' in list(pars.keys()): PmagSpecRec['specimen_gmax']='%5.3f'%(pars['specimen_gmax'])
                    pars['measurement_step_unit']=units
                    pars["specimen_lab_field_dc"]=field
                    pars["specimen_int"]=-1*field*pars["specimen_b"]
                    PmagSpecRec["measurement_step_min"]='%8.3e' % (pars["measurement_step_min"])
                    PmagSpecRec["measurement_step_max"]='%8.3e' % (pars["measurement_step_max"])
                    PmagSpecRec["specimen_int_n"]='%i'%(pars["specimen_int_n"])
                    PmagSpecRec["specimen_lab_field_dc"]='%8.3e'%(pars["specimen_lab_field_dc"])
                    PmagSpecRec["specimen_int"]='%9.4e '%(pars["specimen_int"])
                    PmagSpecRec["specimen_b"]='%5.3f '%(pars["specimen_b"])
                    PmagSpecRec["specimen_q"]='%5.1f '%(pars["specimen_q"])
                    PmagSpecRec["specimen_f"]='%5.3f '%(pars["specimen_f"])
                    PmagSpecRec["specimen_fvds"]='%5.3f'%(pars["specimen_fvds"])
                    PmagSpecRec["specimen_b_beta"]='%5.3f'%(pars["specimen_b_beta"])
                    PmagSpecRec["specimen_int_mad"]='%7.1f'%(pars["specimen_int_mad"])
                    PmagSpecRec["specimen_gamma"]='%7.1f'%(pars["specimen_gamma"])
                    if pars["magic_method_codes"]!="" and pars["magic_method_codes"] not in methcodes: methcodes.append(pars["magic_method_codes"])
                    PmagSpecRec["specimen_dec"]='%7.1f'%(pars["specimen_dec"])
                    PmagSpecRec["specimen_inc"]='%7.1f'%(pars["specimen_inc"])
                    PmagSpecRec["specimen_tilt_correction"]='-1'
                    PmagSpecRec["specimen_direction_type"]='l'
                    PmagSpecRec["direction_type"]='l' # this is redudant, but helpful - won't be imported
                    PmagSpecRec["specimen_dang"]='%7.1f '%(pars["specimen_dang"])
                    PmagSpecRec["specimen_drats"]='%7.1f '%(pars["specimen_drats"])
                    PmagSpecRec["specimen_drat"]='%7.1f '%(pars["specimen_drat"])
                    PmagSpecRec["specimen_int_ptrm_n"]='%i '%(pars["specimen_int_ptrm_n"])
                    PmagSpecRec["specimen_rsc"]='%6.4f '%(pars["specimen_rsc"])
                    PmagSpecRec["specimen_md"]='%i '%(int(pars["specimen_md"]))
                    if PmagSpecRec["specimen_md"]=='-1':PmagSpecRec["specimen_md"]=""
                    PmagSpecRec["specimen_b_sigma"]='%5.3f '%(pars["specimen_b_sigma"])
                    if "IE-TT" not in  methcodes:methcodes.append("IE-TT")
                    methods=""
                    for meth in methcodes:
                        methods=methods+meth+":"
                    PmagSpecRec["magic_method_codes"]=methods.strip(':')
                    PmagSpecRec["magic_software_packages"]=version_num
                    PmagSpecRec["specimen_description"]=comment
                    if critout!="":
                        kill=pmag.grade(PmagSpecRec,accept,'specimen_int')
                        if len(kill)>0:
                            Grade='F' # fails
                        else:
                            Grade='A' # passes
                        PmagSpecRec["specimen_grade"]=Grade
                    else:
                        PmagSpecRec["specimen_grade"]="" # not graded
                    if nltrm==0 and anis==0 and cool!=0: # apply cooling rate correction
                        SCR=pmag.get_dictitem(SampCRs,'er_sample_name',PmagSpecRec['er_sample_name'],'T') # get this samples, cooling rate correction
                        CrSpecRec=pmag.cooling_rate(PmagSpecRec,SCR,crfrac,crtype)
                        if CrSpecRec['er_specimen_name']!='none':CrSpecs.append(CrSpecRec)
                    PmagSpecs.append(PmagSpecRec)
                    NltSpecRec=""
    #
    # check on non-linear TRM correction
    #
                    if nltrm==1:
    #
    # find the data from the nlt_data list for this specimen
    #
                        TRMs,Bs=[],[]
                        NltSpecRec=""
                        NltRecs=pmag.get_dictitem(nlt_data,'er_specimen_name',PmagSpecRec['er_specimen_name'],'has') # fish out all the NLT data for this specimen
                        if len(NltRecs) > 2:
                            for NltRec in NltRecs:
                                Bs.append(float(NltRec['treatment_dc_field']))
                                TRMs.append(float(NltRec['measurement_magn_moment']))
                            NLTpars=nlt.NLtrm(Bs,TRMs,float(PmagSpecRec['specimen_int']),float(PmagSpecRec['specimen_lab_field_dc']),0)
                            if NLTpars['banc']>0:
                                NltSpecRec={}
                                for key in list(PmagSpecRec.keys()):
                                    NltSpecRec[key]=PmagSpecRec[key]
                                NltSpecRec['specimen_int']='%9.4e'%(NLTpars['banc'])
                                NltSpecRec['magic_method_codes']=PmagSpecRec["magic_method_codes"]+":DA-NL"
                                NltSpecRec["specimen_correction"]='c'
                                NltSpecRec['specimen_grade']=PmagSpecRec['specimen_grade']
                                NltSpecRec["magic_software_packages"]=version_num
                                print(NltSpecRec['er_specimen_name'],  ' Banc= ',float(NLTpars['banc'])*1e6)
                                if anis==0 and cool!=0:
                                    SCR=pmag.get_dictitem(SampCRs,'er_sample_name',NltSpecRec['er_sample_name'],'T') # get this samples, cooling rate correction
                                    CrSpecRec=pmag.cooling_rate(NltSpecRec,SCR,crfrac,crtype)
                                    if CrSpecRec['er_specimen_name']!='none':CrSpecs.append(CrSpecRec)
                                NltSpecRecs.append(NltSpecRec)
    #
    # check on anisotropy correction
                        if anis==1:
                            if NltSpecRec!="":
                                Spc=NltSpecRec
                            else: # find uncorrected data
                                Spc=PmagSpecRec
                            AniSpecs=pmag.get_dictitem(anis_data,'er_specimen_name',PmagSpecRec['er_specimen_name'],'T')
                            if len(AniSpecs)>0:
                                    AniSpec=AniSpecs[0]
                                    AniSpecRec=pmag.doaniscorr(Spc,AniSpec)
                                    AniSpecRec['specimen_grade']=PmagSpecRec['specimen_grade']
                                    AniSpecRec["magic_instrument_codes"]=PmagSpecRec['magic_instrument_codes']
                                    AniSpecRec["specimen_correction"]='c'
                                    AniSpecRec["magic_software_packages"]=version_num
                                    if cool!=0:
                                        SCR=pmag.get_dictitem(SampCRs,'er_sample_name',AniSpecRec['er_sample_name'],'T') # get this samples, cooling rate correction
                                        CrSpecRec=pmag.cooling_rate(AniSpecRec,SCR,crfrac,crtype)
                                        if CrSpecRec['er_specimen_name']!='none':CrSpecs.append(CrSpecRec)
                                    AniSpecRecs.append(AniSpecRec)
                    elif anis==1:
                        AniSpecs=pmag.get_dictitem(anis_data,'er_specimen_name',PmagSpecRec['er_specimen_name'],'T')
                        if len(AniSpecs)>0:
                                AniSpec=AniSpecs[0]
                                AniSpecRec=pmag.doaniscorr(PmagSpecRec,AniSpec)
                                AniSpecRec['specimen_grade']=PmagSpecRec['specimen_grade']
                                AniSpecRec["magic_instrument_codes"]=PmagSpecRec["magic_instrument_codes"]
                                AniSpecRec["specimen_correction"]='c'
                                AniSpecRec["magic_software_packages"]=version_num
                                if crfrac!=0:
                                    CrSpecRec={}
                                    for key in list(AniSpecRec.keys()):CrSpecRec[key]=AniSpecRec[key]
                                    inten=frac*float(CrSpecRec['specimen_int'])
                                    CrSpecRec["specimen_int"]='%9.4e '%(inten) # adjust specimen intensity by cooling rate correction
                                    CrSpecRec['magic_method_codes'] = CrSpecRec['magic_method_codes']+':DA-CR-'+crtype
                                    CRSpecs.append(CrSpecRec)
                                AniSpecRecs.append(AniSpecRec)
                spec +=1
        else:
            print("skipping ",s)
            spec+=1
    pmag_file=dir_path+'/'+pmag_file
    pmag.magic_write(pmag_file,PmagSpecs,'pmag_specimens')
    print('uncorrected thellier data saved in: ',pmag_file)
    if anis==1 and len(AniSpecRecs)>0:
        anisout=dir_path+'/'+anisout
        pmag.magic_write(anisout,AniSpecRecs,'pmag_specimens')
        print('anisotropy corrected data saved in: ',anisout)
    if nltrm==1 and len(NltSpecRecs)>0:
        nltout=dir_path+'/'+nltout
        pmag.magic_write(nltout,NltSpecRecs,'pmag_specimens')
        print('non-linear TRM corrected data saved in: ',nltout)
    if crfrac!=0:
        crout=dir_path+'/'+crout
        pmag.magic_write(crout,CRSpecs,'pmag_specimens')
        print('cooling rate corrected data saved in: ',crout)
Ejemplo n.º 30
0
def main():
    """
    NAME
        lowrie_magic.py

    DESCRIPTION
       plots intensity decay curves for Lowrie experiments

    SYNTAX 
        lowrie_magic.py -h [command line options]
    
    INPUT 
       takes magic_measurements formatted input files
    
    OPTIONS
        -h prints help message and quits
        -f FILE: specify input file, default is magic_measurements.txt
        -N do not normalize by maximum magnetization
        -fmt [svg, pdf, eps, png] specify fmt, default is svg
        -sav saves plots and quits
    """
    fmt,plot='svg',0
    FIG={} # plot dictionary
    FIG['lowrie']=1 # demag is figure 1
    pmagplotlib.plot_init(FIG['lowrie'],6,6)
    norm=1 # default is to normalize by maximum axis
    in_file,dir_path='magic_measurements.txt','.'
    if len(sys.argv)>1:
        if '-WD' in sys.argv:
            ind=sys.argv.index('-WD')
            dir_path=sys.argv[ind+1]
        if '-h' in sys.argv:
            print main.__doc__
            sys.exit()
        if '-N' in sys.argv: norm=0 # don't normalize
        if '-sav' in sys.argv: plot=1 # don't normalize
        if '-fmt' in sys.argv: # sets input filename
            ind=sys.argv.index("-fmt")
            fmt=sys.argv[ind+1]
        if '-f' in sys.argv: # sets input filename
            ind=sys.argv.index("-f")
            in_file=sys.argv[ind+1]
    else:
        print main.__doc__
        print 'you must supply a file name'
        sys.exit() 
    in_file=dir_path+'/'+in_file
    print in_file
    PmagRecs,file_type=pmag.magic_read(in_file)
    if file_type!="magic_measurements":
         print 'bad input file'
         sys.exit()
    PmagRecs=pmag.get_dictitem(PmagRecs,'magic_method_codes','LP-IRM-3D','has') # get all 3D IRM records
    if len(PmagRecs)==0:
        print 'no records found'
        sys.exit()
    specs=pmag.get_dictkey(PmagRecs,'er_specimen_name','')
    sids=[]
    for spec in specs:
        if spec not in sids:sids.append(spec) # get list of unique specimen names
    for spc in sids:  # step through the specimen names
        print spc
        specdata=pmag.get_dictitem(PmagRecs,'er_specimen_name',spc,'T') # get all this one's data
        DIMs,Temps=[],[]
        for dat in specdata: # step through the data
            DIMs.append([float(dat['measurement_dec']),float(dat['measurement_inc']),float(dat['measurement_magn_moment'])])
            Temps.append(float(dat['treatment_temp'])-273.)
        carts=pmag.dir2cart(DIMs).transpose()
        if norm==1: # want to normalize
            nrm=(DIMs[0][2]) # normalize by NRM
            ylab="M/M_o"
        else: 
            nrm=1. # don't normalize
            ylab="Magnetic moment (Am^2)"
        xlab="Temperature (C)"
        pmagplotlib.plotXY(FIG['lowrie'],Temps,abs(carts[0])/nrm,sym='r-')
        pmagplotlib.plotXY(FIG['lowrie'],Temps,abs(carts[0])/nrm,sym='ro') # X direction
        pmagplotlib.plotXY(FIG['lowrie'],Temps,abs(carts[1])/nrm,sym='c-')
        pmagplotlib.plotXY(FIG['lowrie'],Temps,abs(carts[1])/nrm,sym='cs') # Y direction
        pmagplotlib.plotXY(FIG['lowrie'],Temps,abs(carts[2])/nrm,sym='k-')
        pmagplotlib.plotXY(FIG['lowrie'],Temps,abs(carts[2])/nrm,sym='k^',title=spc,xlab=xlab,ylab=ylab) # Z direction
        files={'lowrie':'lowrie:_'+spc+'_.'+fmt}
        if plot==0:
            pmagplotlib.drawFIGS(FIG)
            ans=raw_input('S[a]ve figure? [q]uit, <return> to continue   ')
            if ans=='a':
                pmagplotlib.saveP(FIG,files)
            elif ans=='q':
                sys.exit()
        else:
            pmagplotlib.saveP(FIG,files)
        pmagplotlib.clearFIG(FIG['lowrie'])
Ejemplo n.º 31
0
def main():
    """
    NAME
        atrm_magic.py

    DESCRIPTION
        Converts ATRM  data to best-fit tensor (6 elements plus sigma)
         Original program ARMcrunch written to accomodate ARM anisotropy data
          collected from 6 axial directions (+X,+Y,+Z,-X,-Y,-Z) using the
          off-axis remanence terms to construct the tensor. A better way to
          do the anisotropy of ARMs is to use 9,12 or 15 measurements in
          the Hext rotational scheme.
    
    SYNTAX 
        atrm_magic.py [-h][command line options]

    OPTIONS
        -h prints help message and quits
        -usr USER:   identify user, default is ""
        -f FILE: specify input file, default is atrm_measurements.txt
        -Fa FILE: specify anisotropy output file, default is trm_anisotropy.txt
        -Fr FILE: specify results output file, default is atrm_results.txt

    INPUT  
        Input for the present program is a TRM acquisition data with an optional baseline.
      The order of the measurements is:
    Decs=[0,90,0,180,270,0,0,90,0]
    Incs=[0,0,90,0,0,-90,0,0,90]
     The last two measurements are optional
    
    """
    # initialize some parameters
    args = sys.argv
    user = ""
    meas_file = "atrm_measurements.txt"
    rmag_anis = "trm_anisotropy.txt"
    rmag_res = "atrm_results.txt"
    dir_path = '.'
    #
    # get name of file from command line
    #
    if '-WD' in args:
        ind = args.index('-WD')
        dir_path = args[ind + 1]
    if "-h" in args:
        print(main.__doc__)
        sys.exit()
    if "-usr" in args:
        ind = args.index("-usr")
        user = sys.argv[ind + 1]
    if "-f" in args:
        ind = args.index("-f")
        meas_file = sys.argv[ind + 1]
    if "-Fa" in args:
        ind = args.index("-Fa")
        rmag_anis = args[ind + 1]
    if "-Fr" in args:
        ind = args.index("-Fr")
        rmag_res = args[ind + 1]
    meas_file = dir_path + '/' + meas_file
    rmag_anis = dir_path + '/' + rmag_anis
    rmag_res = dir_path + '/' + rmag_res
    # read in data
    meas_data, file_type = pmag.magic_read(meas_file)
    meas_data = pmag.get_dictitem(meas_data, 'magic_method_codes', 'LP-AN-TRM',
                                  'has')
    if file_type != 'magic_measurements':
        print(file_type)
        print(file_type, "This is not a valid magic_measurements file ")
        sys.exit()
    #
    #
    # get sorted list of unique specimen names
    ssort = []
    for rec in meas_data:
        spec = rec["er_specimen_name"]
        if spec not in ssort: ssort.append(spec)
    sids = sorted(ssort)
    #
    #
    # work on each specimen
    #
    specimen, npos = 0, 6
    RmagSpecRecs, RmagResRecs = [], []
    while specimen < len(sids):
        nmeas = 0
        s = sids[specimen]
        RmagSpecRec = {}
        RmagResRec = {}
        BX, X = [], []
        method_codes = []
        Spec0 = ""
        #
        # find the data from the meas_data file for this sample
        # and get dec, inc, int and convert to x,y,z
        #
        data = pmag.get_dictitem(meas_data, 'er_specimen_name', s,
                                 'T')  # fish out data for this specimen name
        if len(data) > 5:
            RmagSpecRec["rmag_anisotropy_name"] = data[0]["er_specimen_name"]
            RmagSpecRec["er_location_name"] = data[0]["er_location_name"]
            RmagSpecRec["er_specimen_name"] = data[0]["er_specimen_name"]
            RmagSpecRec["er_sample_name"] = data[0]["er_sample_name"]
            RmagSpecRec["er_site_name"] = data[0]["er_site_name"]
            RmagSpecRec["magic_experiment_names"] = RmagSpecRec[
                "rmag_anisotropy_name"] + ":ATRM"
            RmagSpecRec["er_citation_names"] = "This study"
            RmagResRec[
                "rmag_result_name"] = data[0]["er_specimen_name"] + ":ATRM"
            RmagResRec["er_location_names"] = data[0]["er_location_name"]
            RmagResRec["er_specimen_names"] = data[0]["er_specimen_name"]
            RmagResRec["er_sample_names"] = data[0]["er_sample_name"]
            RmagResRec["er_site_names"] = data[0]["er_site_name"]
            RmagResRec["magic_experiment_names"] = RmagSpecRec[
                "rmag_anisotropy_name"] + ":ATRM"
            RmagResRec["er_citation_names"] = "This study"
            RmagSpecRec["anisotropy_type"] = "ATRM"
            if "magic_instrument_codes" in list(data[0].keys()):
                RmagSpecRec["magic_instrument_codes"] = data[0][
                    "magic_instrument_codes"]
            else:
                RmagSpecRec["magic_instrument_codes"] = ""
                RmagSpecRec[
                    "anisotropy_description"] = "Hext statistics adapted to ATRM"
            for rec in data:
                meths = rec['magic_method_codes'].strip().split(':')
                Dir = []
                Dir.append(float(rec["measurement_dec"]))
                Dir.append(float(rec["measurement_inc"]))
                Dir.append(float(rec["measurement_magn_moment"]))
                if "LT-T-Z" in meths:
                    BX.append(pmag.dir2cart(Dir))  # append baseline steps
                elif "LT-T-I" in meths:
                    X.append(pmag.dir2cart(Dir))
                    nmeas += 1
    #
        if len(BX) == 1:
            for i in range(len(X) - 1):
                BX.append(BX[0])  # assume first 0 field step as baseline
        elif len(BX) == 0:  # assume baseline is zero
            for i in range(len(X)):
                BX.append([0., 0., 0.])  # assume baseline of 0
        elif len(BX) != len(
                X
        ):  # if BX isn't just one measurement or one in between every infield step, just assume it is zero
            print('something odd about the baselines - just assuming zero')
            for i in range(len(X)):
                BX.append([0., 0., 0.])  # assume baseline of 0
        if nmeas < 6:  # must have at least 6 measurements right now -
            print('skipping specimen ', s, ' too few measurements')
            specimen += 1
        else:
            B, H, tmpH = pmag.designATRM(
                npos)  # B matrix made from design matrix for positions
            #
            # subtract optional baseline and put in a work array
            #
            work = numpy.zeros((nmeas, 3), 'f')
            for i in range(nmeas):
                for j in range(3):
                    work[i][j] = X[i][j] - BX[i][
                        j]  # subtract baseline, if available
        #
        # calculate tensor elements
        # first put ARM components in w vector
        #
            w = numpy.zeros((npos * 3), 'f')
            index = 0
            for i in range(npos):
                for j in range(3):
                    w[index] = work[i][j]
                    index += 1
            s = numpy.zeros((6), 'f')  # initialize the s matrix
            for i in range(6):
                for j in range(len(w)):
                    s[i] += B[i][j] * w[j]
            trace = s[0] + s[1] + s[2]  # normalize by the trace
            for i in range(6):
                s[i] = old_div(s[i], trace)
            a = pmag.s2a(s)

            #------------------------------------------------------------
            #  Calculating dels is different than in the Kappabridge
            #  routine. Use trace normalized tensor (a) and the applied
            #  unit field directions (tmpH) to generate model X,Y,Z
            #  components. Then compare these with the measured values.
            #------------------------------------------------------------
            S = 0.
            comp = numpy.zeros((npos * 3), 'f')
            for i in range(npos):
                for j in range(3):
                    index = i * 3 + j
                    compare = a[j][0] * tmpH[i][0] + a[j][1] * tmpH[i][1] + a[
                        j][2] * tmpH[i][2]
                    comp[index] = compare
            for i in range(npos * 3):
                d = old_div(w[i], trace) - comp[i]  # del values
                S += d * d
            nf = float(npos * 3. - 6.)  # number of degrees of freedom
            if S > 0:
                sigma = numpy.sqrt(old_div(S, nf))
            else:
                sigma = 0
            hpars = pmag.dohext(nf, sigma, s)
            #
            # prepare for output
            #
            RmagSpecRec["anisotropy_s1"] = '%8.6f' % (s[0])
            RmagSpecRec["anisotropy_s2"] = '%8.6f' % (s[1])
            RmagSpecRec["anisotropy_s3"] = '%8.6f' % (s[2])
            RmagSpecRec["anisotropy_s4"] = '%8.6f' % (s[3])
            RmagSpecRec["anisotropy_s5"] = '%8.6f' % (s[4])
            RmagSpecRec["anisotropy_s6"] = '%8.6f' % (s[5])
            RmagSpecRec["anisotropy_mean"] = '%8.3e' % (old_div(trace, 3))
            RmagSpecRec["anisotropy_sigma"] = '%8.6f' % (sigma)
            RmagSpecRec["anisotropy_unit"] = "Am^2"
            RmagSpecRec["anisotropy_n"] = '%i' % (npos)
            RmagSpecRec["anisotropy_tilt_correction"] = '-1'
            RmagSpecRec["anisotropy_F"] = '%7.1f ' % (
                hpars["F"]
            )  # used by thellier_gui - must be taken out for uploading
            RmagSpecRec["anisotropy_F_crit"] = hpars[
                "F_crit"]  # used by thellier_gui - must be taken out for uploading
            RmagResRec["anisotropy_t1"] = '%8.6f ' % (hpars["t1"])
            RmagResRec["anisotropy_t2"] = '%8.6f ' % (hpars["t2"])
            RmagResRec["anisotropy_t3"] = '%8.6f ' % (hpars["t3"])
            RmagResRec["anisotropy_v1_dec"] = '%7.1f ' % (hpars["v1_dec"])
            RmagResRec["anisotropy_v2_dec"] = '%7.1f ' % (hpars["v2_dec"])
            RmagResRec["anisotropy_v3_dec"] = '%7.1f ' % (hpars["v3_dec"])
            RmagResRec["anisotropy_v1_inc"] = '%7.1f ' % (hpars["v1_inc"])
            RmagResRec["anisotropy_v2_inc"] = '%7.1f ' % (hpars["v2_inc"])
            RmagResRec["anisotropy_v3_inc"] = '%7.1f ' % (hpars["v3_inc"])
            RmagResRec["anisotropy_ftest"] = '%7.1f ' % (hpars["F"])
            RmagResRec["anisotropy_ftest12"] = '%7.1f ' % (hpars["F12"])
            RmagResRec["anisotropy_ftest23"] = '%7.1f ' % (hpars["F23"])
            RmagResRec["result_description"] = 'Critical F: ' + hpars[
                "F_crit"] + ';Critical F12/F13: ' + hpars["F12_crit"]
            if hpars["e12"] > hpars["e13"]:
                RmagResRec["anisotropy_v1_zeta_semi_angle"] = '%7.1f ' % (
                    hpars['e12'])
                RmagResRec["anisotropy_v1_zeta_dec"] = '%7.1f ' % (
                    hpars['v2_dec'])
                RmagResRec["anisotropy_v1_zeta_inc"] = '%7.1f ' % (
                    hpars['v2_inc'])
                RmagResRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f ' % (
                    hpars['e12'])
                RmagResRec["anisotropy_v2_zeta_dec"] = '%7.1f ' % (
                    hpars['v1_dec'])
                RmagResRec["anisotropy_v2_zeta_inc"] = '%7.1f ' % (
                    hpars['v1_inc'])
                RmagResRec["anisotropy_v1_eta_semi_angle"] = '%7.1f ' % (
                    hpars['e13'])
                RmagResRec["anisotropy_v1_eta_dec"] = '%7.1f ' % (
                    hpars['v3_dec'])
                RmagResRec["anisotropy_v1_eta_inc"] = '%7.1f ' % (
                    hpars['v3_inc'])
                RmagResRec["anisotropy_v3_eta_semi_angle"] = '%7.1f ' % (
                    hpars['e13'])
                RmagResRec["anisotropy_v3_eta_dec"] = '%7.1f ' % (
                    hpars['v1_dec'])
                RmagResRec["anisotropy_v3_eta_inc"] = '%7.1f ' % (
                    hpars['v1_inc'])
            else:
                RmagResRec["anisotropy_v1_zeta_semi_angle"] = '%7.1f ' % (
                    hpars['e13'])
                RmagResRec["anisotropy_v1_zeta_dec"] = '%7.1f ' % (
                    hpars['v3_dec'])
                RmagResRec["anisotropy_v1_zeta_inc"] = '%7.1f ' % (
                    hpars['v3_inc'])
                RmagResRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f ' % (
                    hpars['e13'])
                RmagResRec["anisotropy_v3_zeta_dec"] = '%7.1f ' % (
                    hpars['v1_dec'])
                RmagResRec["anisotropy_v3_zeta_inc"] = '%7.1f ' % (
                    hpars['v1_inc'])
                RmagResRec["anisotropy_v1_eta_semi_angle"] = '%7.1f ' % (
                    hpars['e12'])
                RmagResRec["anisotropy_v1_eta_dec"] = '%7.1f ' % (
                    hpars['v2_dec'])
                RmagResRec["anisotropy_v1_eta_inc"] = '%7.1f ' % (
                    hpars['v2_inc'])
                RmagResRec["anisotropy_v2_eta_semi_angle"] = '%7.1f ' % (
                    hpars['e12'])
                RmagResRec["anisotropy_v2_eta_dec"] = '%7.1f ' % (
                    hpars['v1_dec'])
                RmagResRec["anisotropy_v2_eta_inc"] = '%7.1f ' % (
                    hpars['v1_inc'])
            if hpars["e23"] > hpars['e12']:
                RmagResRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f ' % (
                    hpars['e23'])
                RmagResRec["anisotropy_v2_zeta_dec"] = '%7.1f ' % (
                    hpars['v3_dec'])
                RmagResRec["anisotropy_v2_zeta_inc"] = '%7.1f ' % (
                    hpars['v3_inc'])
                RmagResRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f ' % (
                    hpars['e23'])
                RmagResRec["anisotropy_v3_zeta_dec"] = '%7.1f ' % (
                    hpars['v2_dec'])
                RmagResRec["anisotropy_v3_zeta_inc"] = '%7.1f ' % (
                    hpars['v2_inc'])
                RmagResRec["anisotropy_v3_eta_semi_angle"] = '%7.1f ' % (
                    hpars['e13'])
                RmagResRec["anisotropy_v3_eta_dec"] = '%7.1f ' % (
                    hpars['v1_dec'])
                RmagResRec["anisotropy_v3_eta_inc"] = '%7.1f ' % (
                    hpars['v1_inc'])
                RmagResRec["anisotropy_v2_eta_semi_angle"] = '%7.1f ' % (
                    hpars['e12'])
                RmagResRec["anisotropy_v2_eta_dec"] = '%7.1f ' % (
                    hpars['v1_dec'])
                RmagResRec["anisotropy_v2_eta_inc"] = '%7.1f ' % (
                    hpars['v1_inc'])
            else:
                RmagResRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f ' % (
                    hpars['e12'])
                RmagResRec["anisotropy_v2_zeta_dec"] = '%7.1f ' % (
                    hpars['v1_dec'])
                RmagResRec["anisotropy_v2_zeta_inc"] = '%7.1f ' % (
                    hpars['v1_inc'])
                RmagResRec["anisotropy_v3_eta_semi_angle"] = '%7.1f ' % (
                    hpars['e23'])
                RmagResRec["anisotropy_v3_eta_dec"] = '%7.1f ' % (
                    hpars['v2_dec'])
                RmagResRec["anisotropy_v3_eta_inc"] = '%7.1f ' % (
                    hpars['v2_inc'])
                RmagResRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f ' % (
                    hpars['e13'])
                RmagResRec["anisotropy_v3_zeta_dec"] = '%7.1f ' % (
                    hpars['v1_dec'])
                RmagResRec["anisotropy_v3_zeta_inc"] = '%7.1f ' % (
                    hpars['v1_inc'])
                RmagResRec["anisotropy_v2_eta_semi_angle"] = '%7.1f ' % (
                    hpars['e23'])
                RmagResRec["anisotropy_v2_eta_dec"] = '%7.1f ' % (
                    hpars['v3_dec'])
                RmagResRec["anisotropy_v2_eta_inc"] = '%7.1f ' % (
                    hpars['v3_inc'])
            RmagResRec["tilt_correction"] = '-1'
            RmagResRec["anisotropy_type"] = 'ATRM'
            RmagResRec["magic_method_codes"] = 'LP-AN-TRM:AE-H'
            RmagSpecRec["magic_method_codes"] = 'LP-AN-TRM:AE-H'
            RmagResRec["magic_software_packages"] = pmag.get_version()
            RmagSpecRec["magic_software_packages"] = pmag.get_version()
            RmagSpecRecs.append(RmagSpecRec)
            RmagResRecs.append(RmagResRec)
            specimen += 1
    pmag.magic_write(rmag_anis, RmagSpecRecs, 'rmag_anisotropy')
    print("specimen tensor elements stored in ", rmag_anis)
    pmag.magic_write(rmag_res, RmagResRecs, 'rmag_results')
    print("specimen statistics and eigenparameters stored in ", rmag_res)
Ejemplo n.º 32
0
def main():
    """
    NAME
        zeq_magic_redo.py
   
    DESCRIPTION
        Calculate principal components through demagnetization data using bounds and calculation type stored in "redo" file
  
    SYNTAX
        zeq_magic_redo.py [command line options]

    OPTIONS
        -h prints help message
        -usr USER:   identify user, default is ""
        -f: specify input file, default is magic_measurements.txt
        -F: specify output file, default is zeq_specimens.txt
        -fre  REDO: specify redo file, default is "zeq_redo"
        -fsa  SAMPFILE: specify er_samples format file, default is "er_samples.txt"
        -A : don't average replicate measurements, default is yes
        -crd [s,g,t] : 
             specify coordinate system [s,g,t]  [default is specimen coordinates]
                 are specimen, geographic, and tilt corrected respectively
             NB: you must have a SAMPFILE in this directory to rotate from specimen coordinates
        -leg:  attaches "Recalculated from original measurements; supercedes published results. " to comment field
    INPUTS
        zeq_redo format file is:
        specimen_name calculation_type[DE-BFL,DE-BFL-A,DE-BFL-O,DE-BFP,DE-FM]  step_min step_max component_name[A,B,C]
    """
    dir_path = '.'
    INCL = ["LT-NO", "LT-AF-Z", "LT-T-Z", "LT-M-Z"]  # looking for demag data
    beg, end, pole, geo, tilt, askave, save = 0, 0, [], 0, 0, 0, 0
    user, doave, comment = "", 1, ""
    geo, tilt = 0, 0
    version_num = pmag.get_version()
    args = sys.argv
    if '-WD' in args:
        ind = args.index('-WD')
        dir_path = args[ind + 1]
    meas_file, pmag_file, mk_file = dir_path + "/" + "magic_measurements.txt", dir_path + "/" + "zeq_specimens.txt", dir_path + "/" + "zeq_redo"
    samp_file, coord = dir_path + "/" + "er_samples.txt", ""
    if "-h" in args:
        print(main.__doc__)
        sys.exit()
    if "-usr" in args:
        ind = args.index("-usr")
        user = sys.argv[ind + 1]
    if "-A" in args: doave = 0
    if "-leg" in args:
        comment = "Recalculated from original measurements; supercedes published results. "
    if "-f" in args:
        ind = args.index("-f")
        meas_file = dir_path + '/' + sys.argv[ind + 1]
    if "-F" in args:
        ind = args.index("-F")
        pmag_file = dir_path + '/' + sys.argv[ind + 1]
    if "-fre" in args:
        ind = args.index("-fre")
        mk_file = dir_path + "/" + args[ind + 1]
    try:
        mk_f = open(mk_file, 'r')
    except:
        print("Bad redo file")
        sys.exit()
    mkspec, skipped = [], []
    speclist = []
    for line in mk_f.readlines():
        tmp = line.split()
        mkspec.append(tmp)
        speclist.append(tmp[0])
    if "-fsa" in args:
        ind = args.index("-fsa")
        samp_file = dir_path + '/' + sys.argv[ind + 1]
    if "-crd" in args:
        ind = args.index("-crd")
        coord = sys.argv[ind + 1]
        if coord == "g": geo, tilt = 1, 0
        if coord == "t": geo, tilt = 1, 1
#
# now get down to bidness
    if geo == 1:
        samp_data, file_type = pmag.magic_read(samp_file)
        if file_type != 'er_samples':
            print(file_type)
            print("This is not a valid er_samples file ")
            sys.exit()
    #
    #
    #

    meas_data, file_type = pmag.magic_read(meas_file)
    if file_type != 'magic_measurements':
        print(file_type)
        print(file_type, "This is not a valid magic_measurements file ")
        sys.exit()
    #
    # sort the specimen names
    #
    k = 0
    print('Processing ', len(speclist), ' specimens - please wait')
    PmagSpecs = []
    while k < len(speclist):
        s = speclist[k]
        recnum = 0
        PmagSpecRec = {}
        method_codes, inst_codes = [], []
        # find the data from the meas_data file for this sample
        #
        #  collect info for the PmagSpecRec dictionary
        #
        meas_meth = []
        spec = pmag.get_dictitem(meas_data, 'er_specimen_name', s, 'T')
        if len(spec) == 0:
            print('no data found for specimen:  ', s)
            print('delete from zeq_redo input file...., then try again')
        else:
            for rec in spec:  # copy of vital stats to PmagSpecRec from first spec record in demag block
                skip = 1
                methods = rec["magic_method_codes"].split(":")
                if len(set(methods) & set(INCL)) > 0:
                    PmagSpecRec["er_analyst_mail_names"] = user
                    PmagSpecRec["magic_software_packages"] = version_num
                    PmagSpecRec["er_specimen_name"] = s
                    PmagSpecRec["er_sample_name"] = rec["er_sample_name"]
                    PmagSpecRec["er_site_name"] = rec["er_site_name"]
                    PmagSpecRec["er_location_name"] = rec["er_location_name"]
                    if "er_expedition_name" in list(rec.keys()):
                        PmagSpecRec["er_expedition_name"] = rec[
                            "er_expedition_name"]
                    PmagSpecRec["er_citation_names"] = "This study"
                    if "magic_experiment_name" not in list(rec.keys()):
                        rec["magic_experiment_name"] = ""
                    PmagSpecRec["magic_experiment_names"] = rec[
                        "magic_experiment_name"]
                    if "magic_instrument_codes" not in list(rec.keys()):
                        rec["magic_instrument_codes"] = ""
                    inst = rec['magic_instrument_codes'].split(":")
                    for I in inst:
                        if I not in inst_codes:  # copy over instruments
                            inst_codes.append(I)
                    meths = rec["magic_method_codes"].split(":")
                    for meth in meths:
                        if meth.strip() not in meas_meth:
                            meas_meth.append(meth)
                    if "LP-DIR-AF" in meas_meth or "LT-AF-Z" in meas_meth:
                        PmagSpecRec["measurement_step_unit"] = "T"
                        if "LP-DIR-AF" not in method_codes:
                            method_codes.append("LP-DIR-AF")
                    if "LP-DIR-T" in meas_meth or "LT-T-Z" in meas_meth:
                        PmagSpecRec["measurement_step_unit"] = "K"
                        if "LP-DIR-T" not in method_codes:
                            method_codes.append("LP-DIR-T")
                    if "LP-DIR-M" in meas_meth or "LT-M-Z" in meas_meth:
                        PmagSpecRec["measurement_step_unit"] = "J"
                        if "LP-DIR-M" not in method_codes:
                            method_codes.append("LP-DIR-M")
    #
    #
        datablock, units = pmag.find_dmag_rec(
            s, spec)  # fish out the demag data for this specimen
        #
        if len(datablock) < 2 or s not in speclist:
            k += 1


#            print 'skipping ', s,len(datablock)
        else:
            #
            # find replicate measurements at given treatment step and average them
            #
            #            step_meth,avedata=pmag.vspec(data)
            #
            #            if len(avedata) != len(datablock):
            #                if doave==1:
            #                    method_codes.append("DE-VM")
            #                    datablock=avedata
            #
            # do geo or stratigraphic correction now
            #
            if geo == 1 or tilt == 1:
                # find top priority orientation method
                orient, az_type = pmag.get_orient(
                    samp_data, PmagSpecRec["er_sample_name"])
                if az_type not in method_codes: method_codes.append(az_type)
                #
                #  if tilt selected,  get stratigraphic correction
                #
                tiltblock, geoblock = [], []
                for rec in datablock:
                    if "sample_azimuth" in list(
                            orient.keys()) and orient["sample_azimuth"] != "":
                        d_geo, i_geo = pmag.dogeo(
                            rec[1], rec[2], float(orient["sample_azimuth"]),
                            float(orient["sample_dip"]))
                        geoblock.append(
                            [rec[0], d_geo, i_geo, rec[3], rec[4], rec[5]])
                        if tilt == 1 and "sample_bed_dip_direction" in list(
                                orient.keys()):
                            d_tilt, i_tilt = pmag.dotilt(
                                d_geo, i_geo,
                                float(orient["sample_bed_dip_direction"]),
                                float(orient["sample_bed_dip"]))
                            tiltblock.append([
                                rec[0], d_tilt, i_tilt, rec[3], rec[4], rec[5]
                            ])
                        elif tilt == 1:
                            if PmagSpecRec["er_sample_name"] not in skipped:
                                print('no tilt correction for ',
                                      PmagSpecRec["er_sample_name"],
                                      ' skipping....')
                                skipped.append(PmagSpecRec["er_sample_name"])
                    else:
                        if PmagSpecRec["er_sample_name"] not in skipped:
                            print('no geographic correction for ',
                                  PmagSpecRec["er_sample_name"],
                                  ' skipping....')
                            skipped.append(PmagSpecRec["er_sample_name"])
    #
    #	get beg_pca, end_pca, pca
            if PmagSpecRec['er_sample_name'] not in skipped:
                compnum = -1
                for spec in mkspec:
                    if spec[0] == s:
                        CompRec = {}
                        for key in list(PmagSpecRec.keys()):
                            CompRec[key] = PmagSpecRec[key]
                        compnum += 1
                        calculation_type = spec[1]
                        beg = float(spec[2])
                        end = float(spec[3])
                        if len(spec) > 4:
                            comp_name = spec[4]
                        else:
                            comp_name = string.uppercase[compnum]
                        CompRec['specimen_comp_name'] = comp_name
                        if beg < float(datablock[0][0]):
                            beg = float(datablock[0][0])
                        if end > float(datablock[-1][0]):
                            end = float(datablock[-1][0])
                        for l in range(len(datablock)):
                            if datablock[l][0] == beg: beg_pca = l
                            if datablock[l][0] == end: end_pca = l
                        if geo == 1 and tilt == 0:
                            mpars = pmag.domean(geoblock, beg_pca, end_pca,
                                                calculation_type)
                            if mpars["specimen_direction_type"] != "Error":
                                CompRec["specimen_dec"] = '%7.1f ' % (
                                    mpars["specimen_dec"])
                                CompRec["specimen_inc"] = '%7.1f ' % (
                                    mpars["specimen_inc"])
                                CompRec["specimen_tilt_correction"] = '0'
                        if geo == 1 and tilt == 1:
                            mpars = pmag.domean(tiltblock, beg_pca, end_pca,
                                                calculation_type)
                            if mpars["specimen_direction_type"] != "Error":
                                CompRec["specimen_dec"] = '%7.1f ' % (
                                    mpars["specimen_dec"])
                                CompRec["specimen_inc"] = '%7.1f ' % (
                                    mpars["specimen_inc"])
                                CompRec["specimen_tilt_correction"] = '100'
                        if geo == 0 and tilt == 0:
                            mpars = pmag.domean(datablock, beg_pca, end_pca,
                                                calculation_type)
                            if mpars["specimen_direction_type"] != "Error":
                                CompRec["specimen_dec"] = '%7.1f ' % (
                                    mpars["specimen_dec"])
                                CompRec["specimen_inc"] = '%7.1f ' % (
                                    mpars["specimen_inc"])
                                CompRec["specimen_tilt_correction"] = '-1'
                        if mpars["specimen_direction_type"] == "Error":
                            pass
                        else:
                            CompRec["measurement_step_min"] = '%8.3e ' % (
                                datablock[beg_pca][0])
                            try:
                                CompRec["measurement_step_max"] = '%8.3e ' % (
                                    datablock[end_pca][0])
                            except:
                                print('error in end_pca ',
                                      PmagSpecRec['er_specimen_name'])
                            CompRec["specimen_correction"] = 'u'
                            if calculation_type != 'DE-FM':
                                CompRec["specimen_mad"] = '%7.1f ' % (
                                    mpars["specimen_mad"])
                                CompRec["specimen_alpha95"] = ""
                            else:
                                CompRec["specimen_mad"] = ""
                                CompRec["specimen_alpha95"] = '%7.1f ' % (
                                    mpars["specimen_alpha95"])
                            CompRec["specimen_n"] = '%i ' % (
                                mpars["specimen_n"])
                            CompRec["specimen_dang"] = '%7.1f ' % (
                                mpars["specimen_dang"])
                            CompMeths = []
                            for meth in method_codes:
                                if meth not in CompMeths:
                                    CompMeths.append(meth)
                            if calculation_type not in CompMeths:
                                CompMeths.append(calculation_type)
                            if geo == 1: CompMeths.append("DA-DIR-GEO")
                            if tilt == 1: CompMeths.append("DA-DIR-TILT")
                            if "DE-BFP" not in calculation_type:
                                CompRec["specimen_direction_type"] = 'l'
                            else:
                                CompRec["specimen_direction_type"] = 'p'
                            CompRec["magic_method_codes"] = ""
                            if len(CompMeths) != 0:
                                methstring = ""
                                for meth in CompMeths:
                                    methstring = methstring + ":" + meth
                                CompRec[
                                    "magic_method_codes"] = methstring.strip(
                                        ':')
                            CompRec["specimen_description"] = comment
                            if len(inst_codes) != 0:
                                inststring = ""
                                for inst in inst_codes:
                                    inststring = inststring + ":" + inst
                                CompRec[
                                    "magic_instrument_codes"] = inststring.strip(
                                        ':')
                            PmagSpecs.append(CompRec)
            k += 1
    pmag.magic_write(pmag_file, PmagSpecs, 'pmag_specimens')
    print("Recalculated specimen data stored in ", pmag_file)
Ejemplo n.º 33
0
def main():
    """
    NAME
       foldtest_magic.py

    DESCRIPTION
       does a fold test (Tauxe, 2010) on data

    INPUT FORMAT
       pmag_specimens format file, er_samples.txt format file (for bedding)

    SYNTAX
       foldtest_magic.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f sites  formatted file [default for 3.0 is sites.txt, for 2.5, pmag_sites.txt]
        -fsa samples  formatted file
        -fsi sites  formatted file
        -exc use criteria to set acceptance criteria (supported only for data model 3)
        -n NB, set number of bootstraps, default is 1000
        -b MIN, MAX, set bounds for untilting, default is -10, 150
        -fmt FMT, specify format - default is svg
        -sav saves plots and quits
        -DM NUM MagIC data model number (2 or 3, default 3)

    OUTPUT
        Geographic: is an equal area projection of the input data in
                    original coordinates
        Stratigraphic: is an equal area projection of the input data in
                    tilt adjusted coordinates
        % Untilting: The dashed (red) curves are representative plots of
                    maximum eigenvalue (tau_1) as a function of untilting
                    The solid line is the cumulative distribution of the
                    % Untilting required to maximize tau for all the
                    bootstrapped data sets.  The dashed vertical lines
                    are 95% confidence bounds on the % untilting that yields
                   the most clustered result (maximum tau_1).
        Command line: prints out the bootstrapped iterations and
                   finally the confidence bounds on optimum untilting.
        If the 95% conf bounds include 0, then a pre-tilt magnetization is indicated
        If the 95% conf bounds include 100, then a post-tilt magnetization is indicated
        If the 95% conf bounds exclude both 0 and 100, syn-tilt magnetization is
                possible as is vertical axis rotation or other pathologies

    """
    if '-h' in sys.argv:  # check if help is needed
        print(main.__doc__)
        sys.exit()  # graceful quit

    kappa = 0

    dir_path = pmag.get_named_arg("-WD", ".")
    nboot = int(float(pmag.get_named_arg("-n", 1000)))  # number of bootstraps
    fmt = pmag.get_named_arg("-fmt", "svg")
    data_model_num = int(float(pmag.get_named_arg("-DM", 3)))
    if data_model_num == 3:
        infile = pmag.get_named_arg("-f", 'sites.txt')
        orfile = 'samples.txt'
        site_col = 'site'
        dec_col = 'dir_dec'
        inc_col = 'dir_inc'
        tilt_col = 'dir_tilt_correction'
        dipkey, azkey = 'bed_dip', 'bed_dip_direction'
        crit_col = 'criterion'
        critfile = 'criteria.txt'
    else:
        infile = pmag.get_named_arg("-f", 'pmag_sites.txt')
        orfile = 'er_samples.txt'
        site_col = 'er_site_name'
        dec_col = 'site_dec'
        inc_col = 'site_inc'
        tilt_col = 'site_tilt_correction'
        dipkey, azkey = 'sample_bed_dip', 'sample_bed_dip_direction'
        crit_col = 'pmag_criteria_code'
        critfile = 'pmag_criteria.txt'
    if '-sav' in sys.argv:
        plot = 1
    else:
        plot = 0
    if '-b' in sys.argv:
        ind = sys.argv.index('-b')
        untilt_min = int(sys.argv[ind + 1])
        untilt_max = int(sys.argv[ind + 2])
    else:
        untilt_min, untilt_max = -10, 150
    if '-fsa' in sys.argv:
        orfile = pmag.get_named_arg("-fsa", "")
    elif '-fsi' in sys.argv:
        orfile = pmag.get_named_arg("-fsi", "")
        if data_model_num == 3:
            dipkey, azkey = 'bed_dip', 'bed_dip_direction'
        else:
            dipkey, azkey = 'site_bed_dip', 'site_bed_dip_direction'
    else:
        if data_model_num == 3:
            orfile = 'sites.txt'
        else:
            orfile = 'pmag_sites.txt'
    orfile = pmag.resolve_file_name(orfile, dir_path)
    infile = pmag.resolve_file_name(infile, dir_path)
    critfile = pmag.resolve_file_name(critfile, dir_path)
    df = pd.read_csv(infile, sep='\t', header=1)
    # keep only records with tilt_col
    data = df.copy()
    data = data[data[tilt_col].notnull()]
    data = data.where(data.notnull(), "")
    # turn into pmag data list
    data = list(data.T.apply(dict))
    # get orientation data
    if data_model_num == 3:
        # often orientation will be in infile (sites table)
        if os.path.split(orfile)[1] == os.path.split(infile)[1]:
            ordata = df[df[azkey].notnull()]
            ordata = ordata[ordata[dipkey].notnull()]
            ordata = list(ordata.T.apply(dict))
        # sometimes orientation might be in a sample file instead
        else:
            ordata = pd.read_csv(orfile, sep='\t', header=1)
            ordata = list(ordata.T.apply(dict))
    else:
        ordata, file_type = pmag.magic_read(orfile)

    if '-exc' in sys.argv:
        crits, file_type = pmag.magic_read(critfile)
        SiteCrits = []
        for crit in crits:
            if crit[crit_col] == "DE-SITE":
                SiteCrits.append(crit)
                #break


# get to work
#
    PLTS = {'geo': 1, 'strat': 2, 'taus': 3}  # make plot dictionary
    if not set_env.IS_WIN:
        pmagplotlib.plot_init(PLTS['geo'], 5, 5)
        pmagplotlib.plot_init(PLTS['strat'], 5, 5)
        pmagplotlib.plot_init(PLTS['taus'], 5, 5)
    if data_model_num == 2:
        GEOrecs = pmag.get_dictitem(data, tilt_col, '0', 'T')
    else:
        GEOrecs = data
    if len(GEOrecs) > 0:  # have some geographic data
        num_dropped = 0
        DIDDs = []  # set up list for dec inc  dip_direction, dip
        for rec in GEOrecs:  # parse data
            dip, dip_dir = 0, -1
            Dec = float(rec[dec_col])
            Inc = float(rec[inc_col])
            orecs = pmag.get_dictitem(ordata, site_col, rec[site_col], 'T')
            if len(orecs) > 0:
                if orecs[0][azkey] != "":
                    dip_dir = float(orecs[0][azkey])
                if orecs[0][dipkey] != "":
                    dip = float(orecs[0][dipkey])
            if dip != 0 and dip_dir != -1:
                if '-exc' in sys.argv:
                    keep = 1
                    for site_crit in SiteCrits:
                        crit_name = site_crit['table_column'].split('.')[1]
                        if crit_name and crit_name in rec.keys(
                        ) and rec[crit_name]:
                            # get the correct operation (<, >=, =, etc.)
                            op = OPS[site_crit['criterion_operation']]
                            # then make sure the site record passes
                            if op(float(rec[crit_name]),
                                  float(site_crit['criterion_value'])):
                                keep = 0

                    if keep == 1:
                        DIDDs.append([Dec, Inc, dip_dir, dip])
                    else:
                        num_dropped += 1
                else:
                    DIDDs.append([Dec, Inc, dip_dir, dip])
        if num_dropped:
            print(
                "-W- Dropped {} records because each failed one or more criteria"
                .format(num_dropped))
    else:
        print('no geographic directional data found')
        sys.exit()

    pmagplotlib.plot_eq(PLTS['geo'], DIDDs, 'Geographic')
    data = np.array(DIDDs)
    D, I = pmag.dotilt_V(data)
    TCs = np.array([D, I]).transpose()
    pmagplotlib.plot_eq(PLTS['strat'], TCs, 'Stratigraphic')
    if plot == 0:
        pmagplotlib.draw_figs(PLTS)
    Percs = list(range(untilt_min, untilt_max))
    Cdf, Untilt = [], []
    plt.figure(num=PLTS['taus'])
    print('doing ', nboot, ' iterations...please be patient.....')
    for n in range(
            nboot
    ):  # do bootstrap data sets - plot first 25 as dashed red line
        if n % 50 == 0:
            print(n)
        Taus = []  # set up lists for taus
        PDs = pmag.pseudo(DIDDs)
        if kappa != 0:
            for k in range(len(PDs)):
                d, i = pmag.fshdev(kappa)
                dipdir, dip = pmag.dodirot(d, i, PDs[k][2], PDs[k][3])
                PDs[k][2] = dipdir
                PDs[k][3] = dip
        for perc in Percs:
            tilt = np.array([1., 1., 1., 0.01 * perc])
            D, I = pmag.dotilt_V(PDs * tilt)
            TCs = np.array([D, I]).transpose()
            ppars = pmag.doprinc(TCs)  # get principal directions
            Taus.append(ppars['tau1'])
        if n < 25:
            plt.plot(Percs, Taus, 'r--')
        # tilt that gives maximum tau
        Untilt.append(Percs[Taus.index(np.max(Taus))])
        Cdf.append(float(n) / float(nboot))
    plt.plot(Percs, Taus, 'k')
    plt.xlabel('% Untilting')
    plt.ylabel('tau_1 (red), CDF (green)')
    Untilt.sort()  # now for CDF of tilt of maximum tau
    plt.plot(Untilt, Cdf, 'g')
    lower = int(.025 * nboot)
    upper = int(.975 * nboot)
    plt.axvline(x=Untilt[lower], ymin=0, ymax=1, linewidth=1, linestyle='--')
    plt.axvline(x=Untilt[upper], ymin=0, ymax=1, linewidth=1, linestyle='--')
    tit = '%i - %i %s' % (Untilt[lower], Untilt[upper], 'Percent Unfolding')
    print(tit)
    plt.title(tit)
    if plot == 0:
        pmagplotlib.draw_figs(PLTS)
        ans = input('S[a]ve all figures, <Return> to quit  \n ')
        if ans != 'a':
            print("Good bye")
            sys.exit()
    files = {}
    for key in list(PLTS.keys()):
        files[key] = ('foldtest_' + '%s' % (key.strip()[:2]) + '.' + fmt)
    pmagplotlib.save_plots(PLTS, files)
Ejemplo n.º 34
0
def main():
    """
    NAME
        irmaq_magic.py

    DESCRIPTION
       plots IRM acquisition curves from magic_measurements file

    SYNTAX 
        irmaq_magic [command line options]
    
    INPUT 
       takes magic formatted magic_measurements.txt files
    
    OPTIONS
        -h prints help message and quits
        -f FILE: specify input file, default is: magic_measurements.txt
        -obj OBJ: specify  object  [loc, sit, sam, spc] for plot, default is by location
        -N ; do not normalize by last point - use original units
        -fmt [png,jpg,eps,pdf] set plot file format [default is svg]
        -sav save plot[s] and quit
    NOTE
        loc: location (study); sit: site; sam: sample; spc: specimen
    """
    FIG = {}  # plot dictionary
    FIG['exp'] = 1  # exp is figure 1
    dir_path = './'
    plot, fmt = 0, 'svg'
    units, dmag_key = 'T', 'treatment_dc_field'
    XLP = []
    norm = 1
    in_file, plot_key, LP = 'magic_measurements.txt', 'er_location_name', "LP-IRM"
    if len(sys.argv) > 1:
        if '-h' in sys.argv:
            print main.__doc__
            sys.exit()
        if '-N' in sys.argv: norm = 0
        if '-sav' in sys.argv: plot = 1
        if '-fmt' in sys.argv:
            ind = sys.argv.index("-fmt")
            fmt = sys.argv[ind + 1]
        if '-f' in sys.argv:
            ind = sys.argv.index("-f")
            in_file = sys.argv[ind + 1]
        if '-WD' in sys.argv:
            ind = sys.argv.index('-WD')
            dir_path = sys.argv[ind + 1]
            in_file = dir_path + '/' + in_file
        if '-obj' in sys.argv:
            ind = sys.argv.index('-obj')
            plot_by = sys.argv[ind + 1]
            if plot_by == 'sit': plot_key = 'er_site_name'
            if plot_by == 'sam': plot_key = 'er_sample_name'
            if plot_by == 'spc': plot_key = 'er_specimen_name'
    data, file_type = pmag.magic_read(in_file)
    sids = pmag.get_specs(data)
    pmagplotlib.plot_init(FIG['exp'], 6, 6)
    #
    #
    # find desired intensity data
    #
    # get plotlist
    #
    plotlist, intlist = [], [
        'measurement_magnitude', 'measurement_magn_moment',
        'measurement_magn_volume', 'measurement_magn_mass'
    ]
    IntMeths = []
    data = pmag.get_dictitem(
        data, 'magic_method_codes', LP,
        'has')  # get all the records with this lab protocol
    Ints = {}
    NoInts, int_key = 1, ""
    for key in intlist:
        Ints[key] = pmag.get_dictitem(
            data, key, '', 'F')  # get all non-blank data for intensity type
        if len(Ints[key]) > 0:
            NoInts = 0
            if int_key == "": int_key = key
    if NoInts == 1:
        print 'No intensity information found'
        sys.exit()
    for rec in Ints[int_key]:
        if rec[plot_key] not in plotlist: plotlist.append(rec[plot_key])
    plotlist.sort()
    for plt in plotlist:
        print plt
        INTblock = []
        data = pmag.get_dictitem(
            Ints[int_key], plot_key, plt, 'T'
        )  # get data with right intensity info whose plot_key matches plot
        sids = pmag.get_specs(
            data)  # get a list of specimens with appropriate data
        if len(sids) > 0:
            title = data[0][plot_key]
        for s in sids:
            INTblock = []
            sdata = pmag.get_dictitem(data, 'er_specimen_name', s,
                                      'T')  # get data for each specimen
            for rec in sdata:
                INTblock.append(
                    [float(rec[dmag_key]), 0, 0,
                     float(rec[int_key]), 1, 'g'])
            pmagplotlib.plotMT(FIG['exp'], INTblock, title, 0, units, norm)
        files = {}
        for key in FIG.keys():
            files[key] = title + '_' + LP + '.' + fmt
        if plot == 0:
            pmagplotlib.drawFIGS(FIG)
            ans = raw_input(
                " S[a]ve to save plot, [q]uit,  Return to continue:  ")
            if ans == 'q': sys.exit()
            if ans == "a":
                pmagplotlib.saveP(FIG, files)
        else:
            pmagplotlib.saveP(FIG, files)
        pmagplotlib.clearFIG(FIG['exp'])
Ejemplo n.º 35
0
def main(command_line=True, **kwargs):
    """
    NAME
        old_iodp_jr6_magic.py
 
    DESCRIPTION
        converts shipboard .jr6 format files to magic_measurements format files

    SYNTAX
        old_iodp_jr6_magic.py [command line options]

    OPTIONS
        -h: prints the help message and quits.
        -f FILE: specify  input file, or
        -F FILE: specify output file, default is magic_measurements.txt
        -fsa FILE: specify  er_samples.txt file for sample name lookup ,
           default is 'er_samples.txt'
        -loc HOLE : specify hole name (U1456A)
        -A: don't average replicate measurements
 
    INPUT
        JR6 .jr6 format file
    """


    def fix_separation(filename, new_filename):
        old_file = open(filename, 'rU')
        data = old_file.readlines()
        new_data = []
        for line in data:
            new_line = line.replace('-', ' -')
            new_line = new_line.replace('  ', ' ')
            new_data.append(new_line)
        new_file = open(new_filename, 'w')
        for s in new_data:
            new_file.write(s)
        old_file.close()
        new_file.close()
        return new_filename
        

    def old_fix_separation(filename, new_filename):
        old_file = open(filename, 'rU')
        data = old_file.readlines()
        new_data = []
        for line in data:
            new_line = []
            for i in line.split():
                if '-' in i[1:]:
                    lead_char = '-' if i[0] == '-' else ''
                    if lead_char:
                        v = i[1:].split('-')
                    else:
                        v = i.split('-')
                    new_line.append(lead_char + v[0])
                    new_line.append('-' + v[1])
                else:
                    new_line.append(i)
            new_line = (' '.join(new_line)) + '\n'
            new_data.append(new_line)
        new_file = open(new_filename, 'w')
        for s in new_data:
            new_file.write(s)
        new_file.close()
        old_file.close()
        return new_filename


    
# initialize some stuff
    noave=0
    volume=2.5**3 #default volume is a 2.5cm cube
    inst=""
    samp_con,Z='5',""
    missing=1
    demag="N"
    er_location_name="unknown"
    citation='This study'
    args=sys.argv
    meth_code="LP-NO"
    version_num=pmag.get_version()
    dir_path='.'
    MagRecs=[]
    samp_file = 'er_samples.txt'
    meas_file = 'magic_measurements.txt'
    mag_file = ''
    #
    # get command line arguments
    #
    if command_line:
        if '-WD' in sys.argv:
            ind = sys.argv.index('-WD')
            dir_path=sys.argv[ind+1]
        if '-ID' in sys.argv:
            ind = sys.argv.index('-ID')
            input_dir_path = sys.argv[ind+1]
        else:
            input_dir_path = dir_path
        output_dir_path = dir_path
        if "-h" in args:
            print main.__doc__
            return False
        if '-F' in args:
            ind=args.index("-F")
            meas_file = args[ind+1]
        if '-fsa' in args:
            ind = args.index("-fsa")
            samp_file = args[ind+1]
            if samp_file[0]!='/':
                samp_file = os.path.join(input_dir_path, samp_file)
            try:
                open(samp_file,'rU')
                ErSamps,file_type=pmag.magic_read(samp_file)
            except:
                print samp_file,' not found: '
                print '   download csv file and import to MagIC with iodp_samples_magic.py'
        if '-f' in args:
            ind = args.index("-f")
            mag_file= args[ind+1]
        if "-loc" in args:
            ind=args.index("-loc")
            er_location_name=args[ind+1]
        if "-A" in args:
            noave=1
    if not command_line:
        dir_path = kwargs.get('dir_path', '.')
        input_dir_path = kwargs.get('input_dir_path', dir_path)
        output_dir_path = dir_path
        meas_file = kwargs.get('meas_file', 'magic_measurements.txt')
        mag_file = kwargs.get('mag_file', '')
        samp_file = kwargs.get('samp_file', 'er_samples.txt')
        specnum = kwargs.get('specnum', 1)
        samp_con = kwargs.get('samp_con', '1')
        if len(str(samp_con)) > 1:
            samp_con, Z = samp_con.split('-')
        else:
            Z = ''
        er_location_name = kwargs.get('er_location_name', '')
        noave = kwargs.get('noave', 0) # default (0) means DO average
        meth_code = kwargs.get('meth_code', "LP-NO")


    # format variables
    meth_code=meth_code+":FS-C-DRILL-IODP:SP-SS-C:SO-V"
    meth_code=meth_code.strip(":")
    if mag_file:
        mag_file = os.path.join(input_dir_path, mag_file)
    samp_file = os.path.join(input_dir_path, samp_file)
    meas_file = os.path.join(output_dir_path, meas_file)

    # validate variables
    if not mag_file:
        print "You must provide an IODP_jr6 format file"
        return False, "You must provide an IODP_jr6 format file"
    if not os.path.exists(mag_file):
        print 'The input file you provided: {} does not exist.\nMake sure you have specified the correct filename AND correct input directory name.'.format(os.path.join(input_dir_path, mag_file))
        return False, 'The input file you provided: {} does not exist.\nMake sure you have specified the correct filename AND correct input directory name.'.format(magfile)
    if not os.path.exists(samp_file):
        print 'samp_file', samp_file
        print "Your input directory:\n{}\nmust contain an er_samples.txt file, or you must explicitly provide one".format(input_dir_path)
        return False, "Your input directory:\n{}\nmust contain an er_samples.txt file, or you must explicitly provide one".format(input_dir_path)
    
    # parse data
    temp = os.path.join(output_dir_path, 'temp.txt')
    fix_separation(mag_file, temp)
    #os.rename('temp.txt', mag_file)
    #data = open(mag_file, 'rU').readlines()
    data=pd.read_csv(temp, delim_whitespace=True,header=None)
    os.remove(temp)
    samples,filetype = pmag.magic_read(samp_file)
    data.columns=['specname','step','negz','y','x','expon','sample_azimuth','sample_dip','sample_bed_dip_direction','sample_bed_dip','bed_dip_dir2','bed_dip2','param1','param2','param3','param4','measurement_csd']
    cart=np.array([data['x'],data['y'],-data['negz']]).transpose()
    dir= pmag.cart2dir(cart).transpose()
    data['measurement_dec']=dir[0]
    data['measurement_inc']=dir[1]
    data['measurement_magn_volume']=dir[2]*(10.0**data['expon']) # A/m  - data in A/m
    data['measurement_flag']='g'
    data['measurement_standard']='u'
    data['measurement_number']='1'
    data['measurement_temp']='273'
    data['er_location_name']=er_location_name
    for rowNum, row in data.iterrows():
        MagRec={}
        spec_text_id=row['specname'].split('_')[1]
        SampRecs=pmag.get_dictitem(samples,'er_sample_alternatives',spec_text_id,'has') # retrieve sample record for this specimen
        if len(SampRecs)>0: # found one
            MagRec['er_specimen_name']=SampRecs[0]['er_sample_name']
            MagRec['er_sample_name']=MagRec['er_specimen_name']
            MagRec['er_site_name']=MagRec['er_specimen_name']
            MagRec["er_citation_names"]="This study"
            MagRec['er_location_name']=er_location_name
            MagRec['magic_software_packages']=version_num
            MagRec["treatment_temp"]='%8.3e' % (273) # room temp in kelvin
            MagRec["measurement_temp"]='%8.3e' % (273) # room temp in kelvin
            MagRec["measurement_flag"]='g'
            MagRec["measurement_standard"]='u'
            MagRec["measurement_number"]='1'
            MagRec["treatment_ac_field"]='0'
            volume=float(SampRecs[0]['sample_volume'])
            moment=row['measurement_magn_volume'] * volume 
            MagRec["measurement_magn_moment"]=str(moment)
            MagRec["measurement_magn_volume"]=str(row['measurement_magn_volume'])
            MagRec["measurement_dec"]='%7.1f'%(row['measurement_dec'])
            MagRec["measurement_inc"]='%7.1f'%(row['measurement_inc'])
            if row['step'] == 'NRM':
                meas_type="LT-NO"
            elif row['step'][0:2] == 'AD':
                meas_type="LT-AF-Z"
                treat=float(row['step'][2:])
                MagRec["treatment_ac_field"]='%8.3e' %(treat*1e-3) # convert from mT to tesla
            elif row['step'][0] == 'TD':
                meas_type="LT-T-Z"
                treat=float(row['step'][2:])
                MagRec["treatment_temp"]='%8.3e' % (treat+273.) # temp in kelvin
            elif row['step'][0:3]=='ARM': # 
                meas_type="LT-AF-I"
                treat=float(row['step'][3:])
                MagRec["treatment_ac_field"]='%8.3e' %(treat*1e-3) # convert from mT to tesla
                MagRec["treatment_dc_field"]='%8.3e' %(50e-6) # assume 50uT DC field
                MagRec["measurement_description"]='Assumed DC field - actual unknown'
            elif row['step'][0:3]=='IRM': # 
                meas_type="LT-IRM"
                treat=float(row['step'][3:])
                MagRec["treatment_dc_field"]='%8.3e' %(treat*1e-3) # convert from mT to tesla
            else:
                print 'unknown treatment type for ',row
                return False, 'unknown treatment type for ',row
            MagRec['magic_method_codes']=meas_type
            MagRecs.append(MagRec.copy())
        else:
            print 'sample name not found: ',row['specname']
    MagOuts=pmag.measurements_methods(MagRecs,noave)
    file_created, error_message = pmag.magic_write(meas_file,MagOuts,'magic_measurements')
    if file_created:
        return True, meas_file
    else:
        return False, 'Results not written to file'
Ejemplo n.º 36
0
def main():
    """
    NAME 
        magic_select.py

    DESCRIPTION
        picks out records and dictitem options saves to magic_special file

    SYNTAX
        magic_select.py [command line optins]

    OPTIONS
        -h prints help message and quits
        -f FILE: specify input magic format file 
        -F FILE: specify output magic format file 
        -key KEY string [T,F,has, not, eval,min,max]
           returns records where the value of the key either:
               matches exactly the string (T)
               does not match the string (F)
               contains the string (has)
               does not contain the string (not)
               the value equals the numerical value of the string (eval)
               the value is greater than the numerical value of the string (min)
               the value is less than the numerical value of the string (max)
      NOTES
         for age range: 
             use KEY: age (converts to Ma, takes mid point of low, high if no value for age.
         for paleolat:
             use KEY: model_lat (uses lat, if age<5 Ma, else, model_lat, or attempts calculation from average_inc if no model_lat.) returns estimate in model_lat key

    """
    dir_path="."
    flag=''
    if '-WD' in sys.argv:
        ind=sys.argv.index('-WD')
        dir_path=sys.argv[ind+1]
    if '-h' in sys.argv:
        print main.__doc__
        sys.exit()
    if '-f' in sys.argv:
        ind=sys.argv.index('-f')
        magic_file=dir_path+'/'+sys.argv[ind+1]
    else:
        print main.__doc__
        sys.exit()
    if '-F' in sys.argv:
        ind=sys.argv.index('-F')
        outfile=dir_path+'/'+sys.argv[ind+1]
    else:
        print main.__doc__
        sys.exit()
    if '-key' in sys.argv:
        ind=sys.argv.index('-key')
        grab_key=sys.argv[ind+1]
        v=sys.argv[ind+2]
        flag=sys.argv[ind+3]
    else:
        print main.__doc__
        print '-key is required'
        sys.exit()
    #
    # get data read in
    Data,file_type=pmag.magic_read(magic_file) 
    if grab_key =='age': 
        grab_key='average_age'
        Data=pmag.convert_ages(Data)
    if grab_key =='model_lat': 
        Data=pmag.convert_lat(Data)
        Data=pmag.convert_ages(Data)
    Selection=pmag.get_dictitem(Data,grab_key,v,flag)
    if len(Selection)>0:
        pmag.magic_write(outfile,Selection,file_type)
    else:
        print 'no data matched your criteria'
Ejemplo n.º 37
0
def main():
    """
    NAME
       foldtest_magic.py

    DESCRIPTION
       does a fold test (Tauxe, 2010) on data

    INPUT FORMAT
       pmag_specimens format file, er_samples.txt format file (for bedding)

    SYNTAX
       foldtest_magic.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f sites  formatted file [default for 3.0 is sites.txt, for 2.5, pmag_sites.txt]
        -fsa samples  formatted file
        -fsi sites  formatted file
        -exc use criteria to set acceptance criteria (supported only for data model 3)
        -n NB, set number of bootstraps, default is 1000
        -b MIN, MAX, set bounds for untilting, default is -10, 150
        -fmt FMT, specify format - default is svg
        -sav saves plots and quits
        -DM NUM MagIC data model number (2 or 3, default 3)

    OUTPUT
        Geographic: is an equal area projection of the input data in
                    original coordinates
        Stratigraphic: is an equal area projection of the input data in
                    tilt adjusted coordinates
        % Untilting: The dashed (red) curves are representative plots of
                    maximum eigenvalue (tau_1) as a function of untilting
                    The solid line is the cumulative distribution of the
                    % Untilting required to maximize tau for all the
                    bootstrapped data sets.  The dashed vertical lines
                    are 95% confidence bounds on the % untilting that yields
                   the most clustered result (maximum tau_1).
        Command line: prints out the bootstrapped iterations and
                   finally the confidence bounds on optimum untilting.
        If the 95% conf bounds include 0, then a pre-tilt magnetization is indicated
        If the 95% conf bounds include 100, then a post-tilt magnetization is indicated
        If the 95% conf bounds exclude both 0 and 100, syn-tilt magnetization is
                possible as is vertical axis rotation or other pathologies

    """
    if '-h' in sys.argv:  # check if help is needed
        print(main.__doc__)
        sys.exit()  # graceful quit

    kappa = 0

    dir_path = pmag.get_named_arg("-WD", ".")
    nboot = int(float(pmag.get_named_arg("-n", 1000)))     # number of bootstraps
    fmt = pmag.get_named_arg("-fmt", "svg")
    data_model_num = int(float(pmag.get_named_arg("-DM", 3)))
    if data_model_num == 3:
        infile = pmag.get_named_arg("-f", 'sites.txt')
        orfile = 'samples.txt'
        site_col = 'site'
        dec_col = 'dir_dec'
        inc_col = 'dir_inc'
        tilt_col = 'dir_tilt_correction'
        dipkey, azkey = 'bed_dip', 'bed_dip_direction'
        crit_col = 'criterion'
        critfile = 'criteria.txt'
    else:
        infile = pmag.get_named_arg("-f", 'pmag_sites.txt')
        orfile = 'er_samples.txt'
        site_col = 'er_site_name'
        dec_col = 'site_dec'
        inc_col = 'site_inc'
        tilt_col = 'site_tilt_correction'
        dipkey, azkey = 'sample_bed_dip', 'sample_bed_dip_direction'
        crit_col = 'pmag_criteria_code'
        critfile = 'pmag_criteria.txt'
    if '-sav' in sys.argv:
        plot = 1
    else:
        plot = 0
    if '-b' in sys.argv:
        ind = sys.argv.index('-b')
        untilt_min = int(sys.argv[ind+1])
        untilt_max = int(sys.argv[ind+2])
    else:
        untilt_min, untilt_max = -10, 150
    if '-fsa' in sys.argv:
        orfile = pmag.get_named_arg("-fsa", "")
    elif '-fsi' in sys.argv:
        orfile = pmag.get_named_arg("-fsi", "")
        if data_model_num == 3:
            dipkey, azkey = 'bed_dip', 'bed_dip_direction'
        else:
            dipkey, azkey = 'site_bed_dip', 'site_bed_dip_direction'
    else:
        if data_model_num == 3:
            orfile = 'sites.txt'
        else:
            orfile = 'pmag_sites.txt'
    orfile = pmag.resolve_file_name(orfile, dir_path)
    infile = pmag.resolve_file_name(infile, dir_path)
    critfile = pmag.resolve_file_name(critfile, dir_path)
    df = pd.read_csv(infile, sep='\t', header=1)
    # keep only records with tilt_col
    data = df.copy()
    data = data[data[tilt_col].notnull()]
    data = data.where(data.notnull(), "")
    # turn into pmag data list
    data = list(data.T.apply(dict))
    # get orientation data
    if data_model_num == 3:
        # often orientation will be in infile (sites table)
        if os.path.split(orfile)[1] == os.path.split(infile)[1]:
            ordata = df[df[azkey].notnull()]
            ordata = ordata[ordata[dipkey].notnull()]
            ordata = list(ordata.T.apply(dict))
        # sometimes orientation might be in a sample file instead
        else:
            ordata = pd.read_csv(orfile, sep='\t', header=1)
            ordata = list(ordata.T.apply(dict))
    else:
        ordata, file_type = pmag.magic_read(orfile)

    if '-exc' in sys.argv:
        crits, file_type = pmag.magic_read(critfile)
        SiteCrits = []
        for crit in crits:
            if crit[crit_col] == "DE-SITE":
                SiteCrits.append(crit)
                #break

# get to work
#
    PLTS = {'geo': 1, 'strat': 2, 'taus': 3}  # make plot dictionary
    if not set_env.IS_WIN:
        pmagplotlib.plot_init(PLTS['geo'], 5, 5)
        pmagplotlib.plot_init(PLTS['strat'], 5, 5)
        pmagplotlib.plot_init(PLTS['taus'], 5, 5)
    if data_model_num == 2:
        GEOrecs = pmag.get_dictitem(data, tilt_col, '0', 'T')
    else:
        GEOrecs = data
    if len(GEOrecs) > 0:  # have some geographic data
        num_dropped = 0
        DIDDs = []  # set up list for dec inc  dip_direction, dip
        for rec in GEOrecs:   # parse data
            dip, dip_dir = 0, -1
            Dec = float(rec[dec_col])
            Inc = float(rec[inc_col])
            orecs = pmag.get_dictitem(
                ordata, site_col, rec[site_col], 'T')
            if len(orecs) > 0:
                if orecs[0][azkey] != "":
                    dip_dir = float(orecs[0][azkey])
                if orecs[0][dipkey] != "":
                    dip = float(orecs[0][dipkey])
            if dip != 0 and dip_dir != -1:
                if '-exc' in sys.argv:
                    keep = 1
                    for site_crit in SiteCrits:
                        crit_name = site_crit['table_column'].split('.')[1]
                        if crit_name and crit_name in rec.keys() and rec[crit_name]:
                            # get the correct operation (<, >=, =, etc.)
                            op = OPS[site_crit['criterion_operation']]
                            # then make sure the site record passes
                            if op(float(rec[crit_name]), float(site_crit['criterion_value'])):
                                keep = 0

                    if keep == 1:
                        DIDDs.append([Dec, Inc, dip_dir, dip])
                    else:
                        num_dropped += 1
                else:
                    DIDDs.append([Dec, Inc, dip_dir, dip])
        if num_dropped:
            print("-W- Dropped {} records because each failed one or more criteria".format(num_dropped))
    else:
        print('no geographic directional data found')
        sys.exit()

    pmagplotlib.plot_eq(PLTS['geo'], DIDDs, 'Geographic')
    data = np.array(DIDDs)
    D, I = pmag.dotilt_V(data)
    TCs = np.array([D, I]).transpose()
    pmagplotlib.plot_eq(PLTS['strat'], TCs, 'Stratigraphic')
    if plot == 0:
        pmagplotlib.draw_figs(PLTS)
    Percs = list(range(untilt_min, untilt_max))
    Cdf, Untilt = [], []
    plt.figure(num=PLTS['taus'])
    print('doing ', nboot, ' iterations...please be patient.....')
    for n in range(nboot):  # do bootstrap data sets - plot first 25 as dashed red line
        if n % 50 == 0:
            print(n)
        Taus = []  # set up lists for taus
        PDs = pmag.pseudo(DIDDs)
        if kappa != 0:
            for k in range(len(PDs)):
                d, i = pmag.fshdev(kappa)
                dipdir, dip = pmag.dodirot(d, i, PDs[k][2], PDs[k][3])
                PDs[k][2] = dipdir
                PDs[k][3] = dip
        for perc in Percs:
            tilt = np.array([1., 1., 1., 0.01*perc])
            D, I = pmag.dotilt_V(PDs*tilt)
            TCs = np.array([D, I]).transpose()
            ppars = pmag.doprinc(TCs)  # get principal directions
            Taus.append(ppars['tau1'])
        if n < 25:
            plt.plot(Percs, Taus, 'r--')
        # tilt that gives maximum tau
        Untilt.append(Percs[Taus.index(np.max(Taus))])
        Cdf.append(float(n) / float(nboot))
    plt.plot(Percs, Taus, 'k')
    plt.xlabel('% Untilting')
    plt.ylabel('tau_1 (red), CDF (green)')
    Untilt.sort()  # now for CDF of tilt of maximum tau
    plt.plot(Untilt, Cdf, 'g')
    lower = int(.025*nboot)
    upper = int(.975*nboot)
    plt.axvline(x=Untilt[lower], ymin=0, ymax=1, linewidth=1, linestyle='--')
    plt.axvline(x=Untilt[upper], ymin=0, ymax=1, linewidth=1, linestyle='--')
    tit = '%i - %i %s' % (Untilt[lower], Untilt[upper], 'Percent Unfolding')
    print(tit)
    plt.title(tit)
    if plot == 0:
        pmagplotlib.draw_figs(PLTS)
        ans = input('S[a]ve all figures, <Return> to quit  \n ')
        if ans != 'a':
            print("Good bye")
            sys.exit()
    files = {}
    for key in list(PLTS.keys()):
        files[key] = ('foldtest_'+'%s' % (key.strip()[:2])+'.'+fmt)
    pmagplotlib.save_plots(PLTS, files)
Ejemplo n.º 38
0
def main():
    """
    NAME
	specimens_results_magic.py

    DESCRIPTION
	combines pmag_specimens.txt file with age, location, acceptance criteria and
	outputs pmag_results table along with other MagIC tables necessary for uploading to the database

    SYNTAX
	specimens_results_magic.py [command line options]

    OPTIONS
	-h prints help message and quits
	-usr USER:   identify user, default is ""
	-f: specimen input magic_measurements format file, default is "magic_measurements.txt"
	-fsp: specimen input pmag_specimens format file, default is "pmag_specimens.txt"
	-fsm: sample input er_samples format file, default is "er_samples.txt"
	-fsi: specimen input er_sites format file, default is "er_sites.txt"
	-fla: specify a file with paleolatitudes for calculating VADMs, default is not to calculate VADMS
               format is:  site_name paleolatitude (space delimited file)
	-fa AGES: specify er_ages format file with age information
	-crd [s,g,t,b]:   specify coordinate system
	    (s, specimen, g geographic, t, tilt corrected, b, geographic and tilt corrected)
	    Default is to assume geographic
	    NB: only the tilt corrected data will appear on the results table, if both g and t are selected.
        -cor [AC:CR:NL]: colon delimited list of required data adjustments for all specimens 
            included in intensity calculations (anisotropy, cooling rate, non-linear TRM)
            unless specified, corrections will not be applied
        -pri [TRM:ARM] colon delimited list of priorities for anisotropy correction (-cor must also be set to include AC). default is TRM, then ARM 
	-age MIN MAX UNITS:   specify age boundaries and units
	-exc:  use exiting selection criteria (in pmag_criteria.txt file), default is default criteria
	-C: no acceptance criteria
	-aD:  average directions per sample, default is NOT
	-aI:  average multiple specimen intensities per sample, default is by site 
	-aC:  average all components together, default is NOT
	-pol:  calculate polarity averages
	-sam:  save sample level vgps and v[a]dms, default is by site
	-xSi:  skip the site level intensity calculation
	-p: plot directions and look at intensities by site, default is NOT
	    -fmt: specify output for saved images, default is svg (only if -p set)
	-lat: use present latitude for calculating VADMs, default is not to calculate VADMs
	-xD: skip directions
	-xI: skip intensities
    OUPUT
	writes pmag_samples, pmag_sites, pmag_results tables
    """
    # set defaults
    Comps = []  # list of components
    version_num = pmag.get_version()
    args = sys.argv
    DefaultAge = ["none"]
    skipdirs, coord, excrit, custom, vgps, average, Iaverage, plotsites, opt = 1, 0, 0, 0, 0, 0, 0, 0, 0
    get_model_lat = 0  # this skips VADM calculation altogether, when get_model_lat=1, uses present day
    fmt = 'svg'
    dir_path = "."
    model_lat_file = ""
    Caverage = 0
    infile = 'pmag_specimens.txt'
    measfile = "magic_measurements.txt"
    sampfile = "er_samples.txt"
    sitefile = "er_sites.txt"
    agefile = "er_ages.txt"
    specout = "er_specimens.txt"
    sampout = "pmag_samples.txt"
    siteout = "pmag_sites.txt"
    resout = "pmag_results.txt"
    critout = "pmag_criteria.txt"
    instout = "magic_instruments.txt"
    sigcutoff, OBJ = "", ""
    noDir, noInt = 0, 0
    polarity = 0
    coords = ['0']
    Dcrit, Icrit, nocrit = 0, 0, 0
    corrections = []
    nocorrection = ['DA-NL', 'DA-AC', 'DA-CR']
    priorities = ['DA-AC-ARM',
                  'DA-AC-TRM']  # priorities for anisotropy correction
    # get command line stuff
    if "-h" in args:
        print main.__doc__
        sys.exit()
    if '-WD' in args:
        ind = args.index("-WD")
        dir_path = args[ind + 1]
    if '-cor' in args:
        ind = args.index('-cor')
        cors = args[ind + 1].split(':')  # list of required data adjustments
        for cor in cors:
            nocorrection.remove('DA-' + cor)
            corrections.append('DA-' + cor)
    if '-pri' in args:
        ind = args.index('-pri')
        priorities = args[ind + 1].split(
            ':')  # list of required data adjustments
        for p in priorities:
            p = 'DA-AC-' + p
    if '-f' in args:
        ind = args.index("-f")
        measfile = args[ind + 1]
    if '-fsp' in args:
        ind = args.index("-fsp")
        infile = args[ind + 1]
    if '-fsi' in args:
        ind = args.index("-fsi")
        sitefile = args[ind + 1]
    if "-crd" in args:
        ind = args.index("-crd")
        coord = args[ind + 1]
        if coord == 's': coords = ['-1']
        if coord == 'g': coords = ['0']
        if coord == 't': coords = ['100']
        if coord == 'b': coords = ['0', '100']
    if "-usr" in args:
        ind = args.index("-usr")
        user = sys.argv[ind + 1]
    else:
        user = ""
    if "-C" in args: Dcrit, Icrit, nocrit = 1, 1, 1  # no selection criteria
    if "-sam" in args: vgps = 1  # save sample level VGPS/VADMs
    if "-xSi" in args:
        nositeints = 1  # skip site level intensity
    else:
        nositeints = 0
    if "-age" in args:
        ind = args.index("-age")
        DefaultAge[0] = args[ind + 1]
        DefaultAge.append(args[ind + 2])
        DefaultAge.append(args[ind + 3])
    Daverage, Iaverage, Caverage = 0, 0, 0
    if "-aD" in args: Daverage = 1  # average by sample directions
    if "-aI" in args: Iaverage = 1  # average by sample intensities
    if "-aC" in args:
        Caverage = 1  # average all components together ???  why???
    if "-pol" in args: polarity = 1  # calculate averages by polarity
    if '-xD' in args: noDir = 1
    if '-xI' in args:
        noInt = 1
    elif "-fla" in args:
        if '-lat' in args:
            print "you should set a paleolatitude file OR use present day lat - not both"
            sys.exit()
        ind = args.index("-fla")
        model_lat_file = dir_path + '/' + args[ind + 1]
        get_model_lat = 2
        mlat = open(model_lat_file, 'rU')
        ModelLats = []
        for line in mlat.readlines():
            ModelLat = {}
            tmp = line.split()
            ModelLat["er_site_name"] = tmp[0]
            ModelLat["site_model_lat"] = tmp[1]
            ModelLat["er_sample_name"] = tmp[0]
            ModelLat["sample_lat"] = tmp[1]
            ModelLats.append(ModelLat)
        get_model_lat = 2
    elif '-lat' in args:
        get_model_lat = 1
    if "-p" in args:
        plotsites = 1
        if "-fmt" in args:
            ind = args.index("-fmt")
            fmt = args[ind + 1]
        if noDir == 0:  # plot by site - set up plot window
            import pmagplotlib
            EQ = {}
            EQ['eqarea'] = 1
            pmagplotlib.plot_init(
                EQ['eqarea'], 5, 5)  # define figure 1 as equal area projection
            pmagplotlib.plotNET(
                EQ['eqarea']
            )  # I don't know why this has to be here, but otherwise the first plot never plots...
            pmagplotlib.drawFIGS(EQ)
    if '-WD' in args:
        infile = dir_path + '/' + infile
        measfile = dir_path + '/' + measfile
        instout = dir_path + '/' + instout
        sampfile = dir_path + '/' + sampfile
        sitefile = dir_path + '/' + sitefile
        agefile = dir_path + '/' + agefile
        specout = dir_path + '/' + specout
        sampout = dir_path + '/' + sampout
        siteout = dir_path + '/' + siteout
        resout = dir_path + '/' + resout
        critout = dir_path + '/' + critout
    if "-exc" in args:  # use existing pmag_criteria file
        if "-C" in args:
            print 'you can not use both existing and no criteria - choose either -exc OR -C OR neither (for default)'
            sys.exit()
        crit_data, file_type = pmag.magic_read(critout)
        print "Acceptance criteria read in from ", critout
    else:  # use default criteria (if nocrit set, then get really loose criteria as default)
        crit_data = pmag.default_criteria(nocrit)
        if nocrit == 0:
            print "Acceptance criteria are defaults"
        else:
            print "No acceptance criteria used "
    accept = {}
    for critrec in crit_data:
        for key in critrec.keys():
            # need to migrate specimen_dang to specimen_int_dang for intensity data using old format
            if 'IE-SPEC' in critrec.keys() and 'specimen_dang' in critrec.keys(
            ) and 'specimen_int_dang' not in critrec.keys():
                critrec['specimen_int_dang'] = critrec['specimen_dang']
                del critrec['specimen_dang']
# need to get rid of ron shaars sample_int_sigma_uT
            if 'sample_int_sigma_uT' in critrec.keys():
                critrec['sample_int_sigma'] = '%10.3e' % (
                    eval(critrec['sample_int_sigma_uT']) * 1e-6)
            if key not in accept.keys() and critrec[key] != '':
                accept[key] = critrec[key]
    #
    #
    if "-exc" not in args and "-C" not in args:
        print "args", args
        pmag.magic_write(critout, [accept], 'pmag_criteria')
        print "\n Pmag Criteria stored in ", critout, '\n'
#
# now we're done slow dancing
#
    SiteNFO, file_type = pmag.magic_read(
        sitefile)  # read in site data - has the lats and lons
    SampNFO, file_type = pmag.magic_read(
        sampfile)  # read in site data - has the lats and lons
    height_nfo = pmag.get_dictitem(SiteNFO, 'site_height', '',
                                   'F')  # find all the sites with height info.
    if agefile != "":
        AgeNFO, file_type = pmag.magic_read(
            agefile)  # read in the age information
    Data, file_type = pmag.magic_read(
        infile)  # read in specimen interpretations
    IntData = pmag.get_dictitem(Data, 'specimen_int', '',
                                'F')  # retrieve specimens with intensity data
    comment, orient = "", []
    samples, sites = [], []
    for rec in Data:  # run through the data filling in missing keys and finding all components, coordinates available
        # fill in missing fields, collect unique sample and site names
        if 'er_sample_name' not in rec.keys():
            rec['er_sample_name'] = ""
        elif rec['er_sample_name'] not in samples:
            samples.append(rec['er_sample_name'])
        if 'er_site_name' not in rec.keys():
            rec['er_site_name'] = ""
        elif rec['er_site_name'] not in sites:
            sites.append(rec['er_site_name'])
        if 'specimen_int' not in rec.keys(): rec['specimen_int'] = ''
        if 'specimen_comp_name' not in rec.keys(
        ) or rec['specimen_comp_name'] == "":
            rec['specimen_comp_name'] = 'A'
        if rec['specimen_comp_name'] not in Comps:
            Comps.append(rec['specimen_comp_name'])
        rec['specimen_tilt_correction'] = rec[
            'specimen_tilt_correction'].strip('\n')
        if "specimen_tilt_correction" not in rec.keys():
            rec["specimen_tilt_correction"] = "-1"  # assume sample coordinates
        if rec["specimen_tilt_correction"] not in orient:
            orient.append(rec["specimen_tilt_correction"]
                          )  # collect available coordinate systems
        if "specimen_direction_type" not in rec.keys():
            rec["specimen_direction_type"] = 'l'  # assume direction is line - not plane
        if "specimen_dec" not in rec.keys():
            rec["specimen_direction_type"] = ''  # if no declination, set direction type to blank
        if "specimen_n" not in rec.keys(): rec["specimen_n"] = ''  # put in n
        if "specimen_alpha95" not in rec.keys():
            rec["specimen_alpha95"] = ''  # put in alpha95
        if "magic_method_codes" not in rec.keys():
            rec["magic_method_codes"] = ''
    #
    # start parsing data into SpecDirs, SpecPlanes, SpecInts
    SpecInts, SpecDirs, SpecPlanes = [], [], []
    samples.sort()  # get sorted list of samples and sites
    sites.sort()
    if noInt == 0:  # don't skip intensities
        IntData = pmag.get_dictitem(
            Data, 'specimen_int', '',
            'F')  # retrieve specimens with intensity data
        if nocrit == 0:  # use selection criteria
            for rec in IntData:  # do selection criteria
                kill = pmag.grade(rec, accept, 'specimen_int')
                if len(kill) == 0:
                    SpecInts.append(
                        rec
                    )  # intensity record to be included in sample, site calculations
        else:
            SpecInts = IntData[:]  # take everything - no selection criteria
# check for required data adjustments
        if len(corrections) > 0 and len(SpecInts) > 0:
            for cor in corrections:
                SpecInts = pmag.get_dictitem(
                    SpecInts, 'magic_method_codes', cor,
                    'has')  # only take specimens with the required corrections
        if len(nocorrection) > 0 and len(SpecInts) > 0:
            for cor in nocorrection:
                SpecInts = pmag.get_dictitem(
                    SpecInts, 'magic_method_codes', cor, 'not'
                )  # exclude the corrections not specified for inclusion
# take top priority specimen of its name in remaining specimens (only one per customer)
        PrioritySpecInts = []
        specimens = pmag.get_specs(SpecInts)  # get list of uniq specimen names
        for spec in specimens:
            ThisSpecRecs = pmag.get_dictitem(
                SpecInts, 'er_specimen_name', spec,
                'T')  # all the records for this specimen
            if len(ThisSpecRecs) == 1:
                PrioritySpecInts.append(ThisSpecRecs[0])
            elif len(ThisSpecRecs) > 1:  # more than one
                prec = []
                for p in priorities:
                    ThisSpecRecs = pmag.get_dictitem(
                        SpecInts, 'magic_method_codes', p,
                        'has')  # all the records for this specimen
                    if len(ThisSpecRecs) > 0: prec.append(ThisSpecRecs[0])
                PrioritySpecInts.append(prec[0])  # take the best one
        SpecInts = PrioritySpecInts  # this has the first specimen record
    if noDir == 0:  # don't skip directions
        AllDirs = pmag.get_dictitem(
            Data, 'specimen_direction_type', '',
            'F')  # retrieve specimens with directed lines and planes
        Ns = pmag.get_dictitem(
            AllDirs, 'specimen_n', '',
            'F')  # get all specimens with specimen_n information
        if nocrit != 1:  # use selection criteria
            for rec in Ns:  # look through everything with specimen_n for "good" data
                kill = pmag.grade(rec, accept, 'specimen_dir')
                if len(kill) == 0:  # nothing killed it
                    SpecDirs.append(rec)
        else:  # no criteria
            SpecDirs = AllDirs[:]  # take them all
# SpecDirs is now the list of all specimen directions (lines and planes) that pass muster
#
    PmagSamps, SampDirs = [], [
    ]  # list of all sample data and list of those that pass the DE-SAMP criteria
    PmagSites, PmagResults = [], [
    ]  # list of all site data and selected results
    SampInts = []
    for samp in samples:  # run through the sample names
        if Daverage == 1:  #  average by sample if desired
            SampDir = pmag.get_dictitem(
                SpecDirs, 'er_sample_name', samp,
                'T')  # get all the directional data for this sample
            if len(SampDir) > 0:  # there are some directions
                for coord in coords:  # step through desired coordinate systems
                    CoordDir = pmag.get_dictitem(
                        SampDir, 'specimen_tilt_correction', coord,
                        'T')  # get all the directions for this sample
                    if len(CoordDir
                           ) > 0:  # there are some with this coordinate system
                        if Caverage == 0:  # look component by component
                            for comp in Comps:
                                CompDir = pmag.get_dictitem(
                                    CoordDir, 'specimen_comp_name', comp, 'T'
                                )  # get all directions from this component
                                if len(CompDir) > 0:  # there are some
                                    PmagSampRec = pmag.lnpbykey(
                                        CompDir, 'sample', 'specimen'
                                    )  # get a sample average from all specimens
                                    PmagSampRec["er_location_name"] = CompDir[0][
                                        'er_location_name']  # decorate the sample record
                                    PmagSampRec["er_site_name"] = CompDir[0][
                                        'er_site_name']
                                    PmagSampRec["er_sample_name"] = samp
                                    PmagSampRec[
                                        "er_citation_names"] = "This study"
                                    PmagSampRec["er_analyst_mail_names"] = user
                                    PmagSampRec[
                                        'magic_software_packages'] = version_num
                                    if nocrit != 1:
                                        PmagSampRec[
                                            'pmag_criteria_codes'] = "ACCEPT"
                                    if agefile != "":
                                        PmagSampRec = pmag.get_age(
                                            PmagSampRec, "er_site_name",
                                            "sample_inferred_", AgeNFO,
                                            DefaultAge)
                                    site_height = pmag.get_dictitem(
                                        height_nfo, 'er_site_name',
                                        PmagSampRec['er_site_name'], 'T')
                                    if len(site_height) > 0:
                                        PmagSampRec[
                                            "sample_height"] = site_height[0][
                                                'site_height']  # add in height if available
                                    PmagSampRec['sample_comp_name'] = comp
                                    PmagSampRec[
                                        'sample_tilt_correction'] = coord
                                    PmagSampRec[
                                        'er_specimen_names'] = pmag.get_list(
                                            CompDir, 'er_specimen_name'
                                        )  # get a list of the specimen names used
                                    PmagSampRec[
                                        'magic_method_codes'] = pmag.get_list(
                                            CompDir, 'magic_method_codes'
                                        )  # get a list of the methods used
                                    if nocrit != 1:  # apply selection criteria
                                        kill = pmag.grade(
                                            PmagSampRec, accept, 'sample_dir')
                                    else:
                                        kill = []
                                    if len(kill) == 0:
                                        SampDirs.append(PmagSampRec)
                                        if vgps == 1:  # if sample level VGP info desired, do that now
                                            PmagResRec = pmag.getsampVGP(
                                                PmagSampRec, SiteNFO)
                                            if PmagResRec != "":
                                                PmagResults.append(PmagResRec)
                                        PmagSamps.append(PmagSampRec)
                        if Caverage == 1:  # average all components together  basically same as above
                            PmagSampRec = pmag.lnpbykey(
                                CoordDir, 'sample', 'specimen')
                            PmagSampRec["er_location_name"] = CoordDir[0][
                                'er_location_name']
                            PmagSampRec["er_site_name"] = CoordDir[0][
                                'er_site_name']
                            PmagSampRec["er_sample_name"] = samp
                            PmagSampRec["er_citation_names"] = "This study"
                            PmagSampRec["er_analyst_mail_names"] = user
                            PmagSampRec[
                                'magic_software_packages'] = version_num
                            if nocrit != 1:
                                PmagSampRec['pmag_criteria_codes'] = ""
                            if agefile != "":
                                PmagSampRec = pmag.get_age(
                                    PmagSampRec, "er_site_name",
                                    "sample_inferred_", AgeNFO, DefaultAge)
                            site_height = pmag.get_dictitem(
                                height_nfo, 'er_site_name', site, 'T')
                            if len(site_height) > 0:
                                PmagSampRec["sample_height"] = site_height[0][
                                    'site_height']  # add in height if available
                            PmagSampRec['sample_tilt_correction'] = coord
                            PmagSampRec['sample_comp_name'] = pmag.get_list(
                                CoordDir,
                                'specimen_comp_name')  # get components used
                            PmagSampRec['er_specimen_names'] = pmag.get_list(
                                CoordDir, 'er_specimen_name'
                            )  # get specimne names averaged
                            PmagSampRec['magic_method_codes'] = pmag.get_list(
                                CoordDir,
                                'magic_method_codes')  # assemble method codes
                            if nocrit != 1:  # apply selection criteria
                                kill = pmag.grade(PmagSampRec, accept,
                                                  'sample_dir')
                                if len(kill) == 0:  # passes the mustard
                                    SampDirs.append(PmagSampRec)
                                    if vgps == 1:
                                        PmagResRec = pmag.getsampVGP(
                                            PmagSampRec, SiteNFO)
                                        if PmagResRec != "":
                                            PmagResults.append(PmagResRec)
                            else:  # take everything
                                SampDirs.append(PmagSampRec)
                                if vgps == 1:
                                    PmagResRec = pmag.getsampVGP(
                                        PmagSampRec, SiteNFO)
                                    if PmagResRec != "":
                                        PmagResults.append(PmagResRec)
                            PmagSamps.append(PmagSampRec)
        if Iaverage == 1:  #  average by sample if desired
            SampI = pmag.get_dictitem(
                SpecInts, 'er_sample_name', samp,
                'T')  # get all the intensity data for this sample
            if len(SampI) > 0:  # there are some
                PmagSampRec = pmag.average_int(
                    SampI, 'specimen', 'sample')  # get average intensity stuff
                PmagSampRec[
                    "sample_description"] = "sample intensity"  # decorate sample record
                PmagSampRec["sample_direction_type"] = ""
                PmagSampRec['er_site_name'] = SampI[0]["er_site_name"]
                PmagSampRec['er_sample_name'] = samp
                PmagSampRec['er_location_name'] = SampI[0]["er_location_name"]
                PmagSampRec["er_citation_names"] = "This study"
                PmagSampRec["er_analyst_mail_names"] = user
                if agefile != "":
                    PmagSampRec = pmag.get_age(PmagSampRec, "er_site_name",
                                               "sample_inferred_", AgeNFO,
                                               DefaultAge)
                site_height = pmag.get_dictitem(height_nfo, 'er_site_name',
                                                PmagSampRec['er_site_name'],
                                                'T')
                if len(site_height) > 0:
                    PmagSampRec["sample_height"] = site_height[0][
                        'site_height']  # add in height if available
                PmagSampRec['er_specimen_names'] = pmag.get_list(
                    SampI, 'er_specimen_name')
                PmagSampRec['magic_method_codes'] = pmag.get_list(
                    SampI, 'magic_method_codes')
                if nocrit != 1:  # apply criteria!
                    kill = pmag.grade(PmagSampRec, accept, 'sample_int')
                    if len(kill) == 0:
                        PmagSampRec['pmag_criteria_codes'] = "ACCEPT"
                        SampInts.append(PmagSampRec)
                        PmagSamps.append(PmagSampRec)
                    else:
                        PmagSampRec = {}  # sample rejected
                else:  # no criteria
                    SampInts.append(PmagSampRec)
                    PmagSamps.append(PmagSampRec)
                    PmagSampRec['pmag_criteria_codes'] = ""
                if vgps == 1 and get_model_lat != 0 and PmagSampRec != {}:  #
                    if get_model_lat == 1:  # use sample latitude
                        PmagResRec = pmag.getsampVDM(PmagSampRec, SampNFO)
                        del (PmagResRec['model_lat']
                             )  # get rid of the model lat key
                    elif get_model_lat == 2:  # use model latitude
                        PmagResRec = pmag.getsampVDM(PmagSampRec, ModelLats)
                        if PmagResRec != {}:
                            PmagResRec['magic_method_codes'] = PmagResRec[
                                'magic_method_codes'] + ":IE-MLAT"
                    if PmagResRec != {}:
                        PmagResRec['er_specimen_names'] = PmagSampRec[
                            'er_specimen_names']
                        PmagResRec['er_sample_names'] = PmagSampRec[
                            'er_sample_name']
                        PmagResRec['pmag_criteria_codes'] = 'ACCEPT'
                        PmagResRec['average_int_sigma_perc'] = PmagSampRec[
                            'sample_int_sigma_perc']
                        PmagResRec['average_int_sigma'] = PmagSampRec[
                            'sample_int_sigma']
                        PmagResRec['average_int_n'] = PmagSampRec[
                            'sample_int_n']
                        PmagResRec['vadm_n'] = PmagSampRec['sample_int_n']
                        PmagResRec['data_type'] = 'i'
                        PmagResults.append(PmagResRec)
    if len(PmagSamps) > 0:
        TmpSamps, keylist = pmag.fillkeys(
            PmagSamps)  # fill in missing keys from different types of records
        pmag.magic_write(sampout, TmpSamps,
                         'pmag_samples')  # save in sample output file
        print ' sample averages written to ', sampout

#
#create site averages from specimens or samples as specified
#
    for site in sites:
        if Daverage == 0:
            key, dirlist = 'specimen', SpecDirs  # if specimen averages at site level desired
        if Daverage == 1:
            key, dirlist = 'sample', SampDirs  # if sample averages at site level desired
        tmp = pmag.get_dictitem(dirlist, 'er_site_name', site,
                                'T')  # get all the sites with  directions
        tmp1 = pmag.get_dictitem(
            tmp, key + '_tilt_correction', coords[-1],
            'T')  # use only the last coordinate if Caverage==0
        sd = pmag.get_dictitem(
            SiteNFO, 'er_site_name', site,
            'T')  # fish out site information (lat/lon, etc.)
        if len(sd) > 0:
            sitedat = sd[0]
            if Caverage == 0:  # do component wise averaging
                for comp in Comps:
                    siteD = pmag.get_dictitem(tmp1, key + '_comp_name', comp,
                                              'T')  # get all components comp
                    if len(
                            siteD
                    ) > 0:  # there are some for this site and component name
                        PmagSiteRec = pmag.lnpbykey(
                            siteD, 'site', key)  # get an average for this site
                        PmagSiteRec[
                            'site_comp_name'] = comp  # decorate the site record
                        PmagSiteRec["er_location_name"] = siteD[0][
                            'er_location_name']
                        PmagSiteRec["er_site_name"] = siteD[0]['er_site_name']
                        PmagSiteRec['site_tilt_correction'] = coords[-1]
                        PmagSiteRec['site_comp_name'] = pmag.get_list(
                            siteD, key + '_comp_name')
                        if Daverage == 1:
                            PmagSiteRec['er_sample_names'] = pmag.get_list(
                                siteD, 'er_sample_name')
                        else:
                            PmagSiteRec['er_specimen_names'] = pmag.get_list(
                                siteD, 'er_specimen_name')


# determine the demagnetization code (DC3,4 or 5) for this site
                        AFnum = len(
                            pmag.get_dictitem(siteD, 'magic_method_codes',
                                              'LP-DIR-AF', 'has'))
                        Tnum = len(
                            pmag.get_dictitem(siteD, 'magic_method_codes',
                                              'LP-DIR-T', 'has'))
                        DC = 3
                        if AFnum > 0: DC += 1
                        if Tnum > 0: DC += 1
                        PmagSiteRec['magic_method_codes'] = pmag.get_list(
                            siteD,
                            'magic_method_codes') + ':' + 'LP-DC' + str(DC)
                        PmagSiteRec['magic_method_codes'].strip(":")
                        if plotsites == 1:
                            print PmagSiteRec['er_site_name']
                            pmagplotlib.plotSITE(EQ['eqarea'], PmagSiteRec,
                                                 siteD,
                                                 key)  # plot and list the data
                            pmagplotlib.drawFIGS(EQ)
                        PmagSites.append(PmagSiteRec)
            else:  # last component only
                siteD = tmp1[:]  # get the last orientation system specified
                if len(siteD) > 0:  # there are some
                    PmagSiteRec = pmag.lnpbykey(
                        siteD, 'site', key)  # get the average for this site
                    PmagSiteRec["er_location_name"] = siteD[0][
                        'er_location_name']  # decorate the record
                    PmagSiteRec["er_site_name"] = siteD[0]['er_site_name']
                    PmagSiteRec['site_comp_name'] = comp
                    PmagSiteRec['site_tilt_correction'] = coords[-1]
                    PmagSiteRec['site_comp_name'] = pmag.get_list(
                        siteD, key + '_comp_name')
                    PmagSiteRec['er_specimen_names'] = pmag.get_list(
                        siteD, 'er_specimen_name')
                    PmagSiteRec['er_sample_names'] = pmag.get_list(
                        siteD, 'er_sample_name')
                    AFnum = len(
                        pmag.get_dictitem(siteD, 'magic_method_codes',
                                          'LP-DIR-AF', 'has'))
                    Tnum = len(
                        pmag.get_dictitem(siteD, 'magic_method_codes',
                                          'LP-DIR-T', 'has'))
                    DC = 3
                    if AFnum > 0: DC += 1
                    if Tnum > 0: DC += 1
                    PmagSiteRec['magic_method_codes'] = pmag.get_list(
                        siteD, 'magic_method_codes') + ':' + 'LP-DC' + str(DC)
                    PmagSiteRec['magic_method_codes'].strip(":")
                    if Daverage == 0:
                        PmagSiteRec['site_comp_name'] = pmag.get_list(
                            siteD, key + '_comp_name')
                    if plotsites == 1:
                        pmagplotlib.plotSITE(EQ['eqarea'], PmagSiteRec, siteD,
                                             key)
                        pmagplotlib.drawFIGS(EQ)
                    PmagSites.append(PmagSiteRec)
        else:
            print 'site information not found in er_sites for site, ', site, ' site will be skipped'
    for PmagSiteRec in PmagSites:  # now decorate each dictionary some more, and calculate VGPs etc. for results table
        PmagSiteRec["er_citation_names"] = "This study"
        PmagSiteRec["er_analyst_mail_names"] = user
        PmagSiteRec['magic_software_packages'] = version_num
        if agefile != "":
            PmagSiteRec = pmag.get_age(PmagSiteRec, "er_site_name",
                                       "site_inferred_", AgeNFO, DefaultAge)
        PmagSiteRec['pmag_criteria_codes'] = 'ACCEPT'
        if 'site_n_lines' in PmagSiteRec.keys(
        ) and 'site_n_planes' in PmagSiteRec.keys() and PmagSiteRec[
                'site_n_lines'] != "" and PmagSiteRec['site_n_planes'] != "":
            if int(PmagSiteRec["site_n_planes"]) > 0:
                PmagSiteRec["magic_method_codes"] = PmagSiteRec[
                    'magic_method_codes'] + ":DE-FM-LP"
            elif int(PmagSiteRec["site_n_lines"]) > 2:
                PmagSiteRec["magic_method_codes"] = PmagSiteRec[
                    'magic_method_codes'] + ":DE-FM"
            kill = pmag.grade(PmagSiteRec, accept, 'site_dir')
            if len(kill) == 0:
                PmagResRec = {
                }  # set up dictionary for the pmag_results table entry
                PmagResRec['data_type'] = 'i'  # decorate it a bit
                PmagResRec['magic_software_packages'] = version_num
                PmagSiteRec[
                    'site_description'] = 'Site direction included in results table'
                PmagResRec['pmag_criteria_codes'] = 'ACCEPT'
                dec = float(PmagSiteRec["site_dec"])
                inc = float(PmagSiteRec["site_inc"])
                if 'site_alpha95' in PmagSiteRec.keys(
                ) and PmagSiteRec['site_alpha95'] != "":
                    a95 = float(PmagSiteRec["site_alpha95"])
                else:
                    a95 = 180.
                sitedat = pmag.get_dictitem(
                    SiteNFO, 'er_site_name', PmagSiteRec['er_site_name'],
                    'T')[0]  # fish out site information (lat/lon, etc.)
                lat = float(sitedat['site_lat'])
                lon = float(sitedat['site_lon'])
                plong, plat, dp, dm = pmag.dia_vgp(
                    dec, inc, a95, lat, lon)  # get the VGP for this site
                if PmagSiteRec['site_tilt_correction'] == '-1':
                    C = ' (spec coord) '
                if PmagSiteRec['site_tilt_correction'] == '0':
                    C = ' (geog. coord) '
                if PmagSiteRec['site_tilt_correction'] == '100':
                    C = ' (strat. coord) '
                PmagResRec["pmag_result_name"] = "VGP Site: " + PmagSiteRec[
                    "er_site_name"]  # decorate some more
                PmagResRec[
                    "result_description"] = "Site VGP, coord system = " + str(
                        coord) + ' component: ' + comp
                PmagResRec['er_site_names'] = PmagSiteRec['er_site_name']
                PmagResRec['pmag_criteria_codes'] = 'ACCEPT'
                PmagResRec['er_citation_names'] = 'This study'
                PmagResRec['er_analyst_mail_names'] = user
                PmagResRec["er_location_names"] = PmagSiteRec[
                    "er_location_name"]
                if Daverage == 1:
                    PmagResRec["er_sample_names"] = PmagSiteRec[
                        "er_sample_names"]
                else:
                    PmagResRec["er_specimen_names"] = PmagSiteRec[
                        "er_specimen_names"]
                PmagResRec["tilt_correction"] = PmagSiteRec[
                    'site_tilt_correction']
                PmagResRec["pole_comp_name"] = PmagSiteRec['site_comp_name']
                PmagResRec["average_dec"] = PmagSiteRec["site_dec"]
                PmagResRec["average_inc"] = PmagSiteRec["site_inc"]
                PmagResRec["average_alpha95"] = PmagSiteRec["site_alpha95"]
                PmagResRec["average_n"] = PmagSiteRec["site_n"]
                PmagResRec["average_n_lines"] = PmagSiteRec["site_n_lines"]
                PmagResRec["average_n_planes"] = PmagSiteRec["site_n_planes"]
                PmagResRec["vgp_n"] = PmagSiteRec["site_n"]
                PmagResRec["average_k"] = PmagSiteRec["site_k"]
                PmagResRec["average_r"] = PmagSiteRec["site_r"]
                PmagResRec["average_lat"] = '%10.4f ' % (lat)
                PmagResRec["average_lon"] = '%10.4f ' % (lon)
                if agefile != "":
                    PmagResRec = pmag.get_age(PmagResRec, "er_site_names",
                                              "average_", AgeNFO, DefaultAge)
                site_height = pmag.get_dictitem(height_nfo, 'er_site_name',
                                                site, 'T')
                if len(site_height) > 0:
                    PmagResRec["average_height"] = site_height[0][
                        'site_height']
                PmagResRec["vgp_lat"] = '%7.1f ' % (plat)
                PmagResRec["vgp_lon"] = '%7.1f ' % (plong)
                PmagResRec["vgp_dp"] = '%7.1f ' % (dp)
                PmagResRec["vgp_dm"] = '%7.1f ' % (dm)
                PmagResRec["magic_method_codes"] = PmagSiteRec[
                    "magic_method_codes"]
                if PmagSiteRec['site_tilt_correction'] == '0':
                    PmagSiteRec['magic_method_codes'] = PmagSiteRec[
                        'magic_method_codes'] + ":DA-DIR-GEO"
                if PmagSiteRec['site_tilt_correction'] == '100':
                    PmagSiteRec['magic_method_codes'] = PmagSiteRec[
                        'magic_method_codes'] + ":DA-DIR-TILT"
                PmagSiteRec['site_polarity'] = ""
                if polarity == 1:  # assign polarity based on angle of pole lat to spin axis - may want to re-think this sometime
                    angle = pmag.angle([0, 0], [0, (90 - plat)])
                    if angle <= 55.: PmagSiteRec["site_polarity"] = 'n'
                    if angle > 55. and angle < 125.:
                        PmagSiteRec["site_polarity"] = 't'
                    if angle >= 125.: PmagSiteRec["site_polarity"] = 'r'
                PmagResults.append(PmagResRec)
    if polarity == 1:
        crecs = pmag.get_dictitem(PmagSites, 'site_tilt_correction', '100',
                                  'T')  # find the tilt corrected data
        if len(crecs) < 2:
            crecs = pmag.get_dictitem(
                PmagSites, 'site_tilt_correction', '0',
                'T')  # if there aren't any, find the geographic corrected data
        if len(crecs) > 2:  # if there are some,
            comp = pmag.get_list(
                crecs,
                'site_comp_name').split(':')[0]  # find the first component
            crecs = pmag.get_dictitem(
                crecs, 'site_comp_name', comp,
                'T')  # fish out all of the first component
            precs = []
            for rec in crecs:
                precs.append({
                    'dec': rec['site_dec'],
                    'inc': rec['site_inc'],
                    'name': rec['er_site_name'],
                    'loc': rec['er_location_name']
                })
            polpars = pmag.fisher_by_pol(
                precs)  # calculate average by polarity
            for mode in polpars.keys(
            ):  # hunt through all the modes (normal=A, reverse=B, all=ALL)
                PolRes = {}
                PolRes['er_citation_names'] = 'This study'
                PolRes[
                    "pmag_result_name"] = "Polarity Average: Polarity " + mode  #
                PolRes["data_type"] = "a"
                PolRes["average_dec"] = '%7.1f' % (polpars[mode]['dec'])
                PolRes["average_inc"] = '%7.1f' % (polpars[mode]['inc'])
                PolRes["average_n"] = '%i' % (polpars[mode]['n'])
                PolRes["average_r"] = '%5.4f' % (polpars[mode]['r'])
                PolRes["average_k"] = '%6.0f' % (polpars[mode]['k'])
                PolRes["average_alpha95"] = '%7.1f' % (
                    polpars[mode]['alpha95'])
                PolRes['er_site_names'] = polpars[mode]['sites']
                PolRes['er_location_names'] = polpars[mode]['locs']
                PolRes['magic_software_packages'] = version_num
                PmagResults.append(PolRes)

    if noInt != 1 and nositeints != 1:
        for site in sites:  # now do intensities for each site
            if plotsites == 1: print site
            if Iaverage == 0:
                key, intlist = 'specimen', SpecInts  # if using specimen level data
            if Iaverage == 1:
                key, intlist = 'sample', PmagSamps  # if using sample level data
            Ints = pmag.get_dictitem(
                intlist, 'er_site_name', site,
                'T')  # get all the intensities  for this site
            if len(Ints) > 0:  # there are some
                PmagSiteRec = pmag.average_int(
                    Ints, key,
                    'site')  # get average intensity stuff for site table
                PmagResRec = pmag.average_int(
                    Ints, key,
                    'average')  # get average intensity stuff for results table
                if plotsites == 1:  # if site by site examination requested - print this site out to the screen
                    for rec in Ints:
                        print rec['er_' + key + '_name'], ' %7.1f' % (
                            1e6 * float(rec[key + '_int']))
                    if len(Ints) > 1:
                        print 'Average: ', '%7.1f' % (1e6 * float(
                            PmagResRec['average_int'])), 'N: ', len(Ints)
                        print 'Sigma: ', '%7.1f' % (
                            1e6 * float(PmagResRec['average_int_sigma'])
                        ), 'Sigma %: ', PmagResRec['average_int_sigma_perc']
                    raw_input('Press any key to continue\n')
                er_location_name = Ints[0]["er_location_name"]
                PmagSiteRec[
                    "er_location_name"] = er_location_name  # decorate the records
                PmagSiteRec["er_citation_names"] = "This study"
                PmagResRec["er_location_names"] = er_location_name
                PmagResRec["er_citation_names"] = "This study"
                PmagSiteRec["er_analyst_mail_names"] = user
                PmagResRec["er_analyst_mail_names"] = user
                PmagResRec["data_type"] = 'i'
                if Iaverage == 0:
                    PmagSiteRec['er_specimen_names'] = pmag.get_list(
                        Ints, 'er_specimen_name')  # list of all specimens used
                    PmagResRec['er_specimen_names'] = pmag.get_list(
                        Ints, 'er_specimen_name')
                PmagSiteRec['er_sample_names'] = pmag.get_list(
                    Ints, 'er_sample_name')  # list of all samples used
                PmagResRec['er_sample_names'] = pmag.get_list(
                    Ints, 'er_sample_name')
                PmagSiteRec['er_site_name'] = site
                PmagResRec['er_site_names'] = site
                PmagSiteRec['magic_method_codes'] = pmag.get_list(
                    Ints, 'magic_method_codes')
                PmagResRec['magic_method_codes'] = pmag.get_list(
                    Ints, 'magic_method_codes')
                kill = pmag.grade(PmagSiteRec, accept, 'site_int')
                if nocrit == 1 or len(kill) == 0:
                    b, sig = float(PmagResRec['average_int']), ""
                    if (PmagResRec['average_int_sigma']) != "":
                        sig = float(PmagResRec['average_int_sigma'])
                    sdir = pmag.get_dictitem(PmagResults, 'er_site_names',
                                             site,
                                             'T')  # fish out site direction
                    if len(sdir) > 0 and sdir[-1][
                            'average_inc'] != "":  # get the VDM for this record using last average inclination (hope it is the right one!)
                        inc = float(sdir[0]['average_inc'])  #
                        mlat = pmag.magnetic_lat(
                            inc)  # get magnetic latitude using dipole formula
                        PmagResRec["vdm"] = '%8.3e ' % (pmag.b_vdm(
                            b, mlat))  # get VDM with magnetic latitude
                        PmagResRec["vdm_n"] = PmagResRec['average_int_n']
                        if 'average_int_sigma' in PmagResRec.keys(
                        ) and PmagResRec['average_int_sigma'] != "":
                            vdm_sig = pmag.b_vdm(
                                float(PmagResRec['average_int_sigma']), mlat)
                            PmagResRec["vdm_sigma"] = '%8.3e ' % (vdm_sig)
                        else:
                            PmagResRec["vdm_sigma"] = ""
                    mlat = ""  # define a model latitude
                    if get_model_lat == 1:  # use present site latitude
                        mlats = pmag.get_dictitem(SiteNFO, 'er_site_name',
                                                  site, 'T')
                        if len(mlats) > 0: mlat = mlats[0]['site_lat']
                    elif get_model_lat == 2:  # use a model latitude from some plate reconstruction model (or something)
                        mlats = pmag.get_dictitem(ModelLats, 'er_site_name',
                                                  site, 'T')
                        if len(mlats) > 0:
                            PmagResRec['model_lat'] = mlats[0][
                                'site_model_lat']
                        mlat = PmagResRec['model_lat']
                    if mlat != "":
                        PmagResRec["vadm"] = '%8.3e ' % (
                            pmag.b_vdm(b, float(mlat))
                        )  # get the VADM using the desired latitude
                        if sig != "":
                            vdm_sig = pmag.b_vdm(
                                float(PmagResRec['average_int_sigma']),
                                float(mlat))
                            PmagResRec["vadm_sigma"] = '%8.3e ' % (vdm_sig)
                            PmagResRec["vadm_n"] = PmagResRec['average_int_n']
                        else:
                            PmagResRec["vadm_sigma"] = ""
                    sitedat = pmag.get_dictitem(
                        SiteNFO, 'er_site_name', PmagSiteRec['er_site_name'],
                        'T')  # fish out site information (lat/lon, etc.)
                    if len(sitedat) > 0:
                        sitedat = sitedat[0]
                        PmagResRec['average_lat'] = sitedat['site_lat']
                        PmagResRec['average_lon'] = sitedat['site_lon']
                    else:
                        PmagResRec['average_lon'] = 'UNKNOWN'
                        PmagResRec['average_lon'] = 'UNKNOWN'
                    PmagResRec['magic_software_packages'] = version_num
                    PmagResRec["pmag_result_name"] = "V[A]DM: Site " + site
                    PmagResRec["result_description"] = "V[A]DM of site"
                    PmagResRec["pmag_criteria_codes"] = "ACCEPT"
                    if agefile != "":
                        PmagResRec = pmag.get_age(PmagResRec, "er_site_names",
                                                  "average_", AgeNFO,
                                                  DefaultAge)
                    site_height = pmag.get_dictitem(height_nfo, 'er_site_name',
                                                    site, 'T')
                    if len(site_height) > 0:
                        PmagResRec["average_height"] = site_height[0][
                            'site_height']
                    PmagSites.append(PmagSiteRec)
                    PmagResults.append(PmagResRec)
    if len(PmagSites) > 0:
        Tmp, keylist = pmag.fillkeys(PmagSites)
        pmag.magic_write(siteout, Tmp, 'pmag_sites')
        print ' sites written to ', siteout
    else:
        print "No Site level table"
    if len(PmagResults) > 0:
        TmpRes, keylist = pmag.fillkeys(PmagResults)
        pmag.magic_write(resout, TmpRes, 'pmag_results')
        print ' results written to ', resout
    else:
        print "No Results level table"
Ejemplo n.º 39
0
def main():
    """
    NAME
        vgpmap_magic.py

    DESCRIPTION
        makes a map of vgps and a95/dp,dm for site means in a pmag_results table

    SYNTAX
        vgpmap_magic.py [command line options]

    OPTIONS
        -h prints help and quits
        -eye  ELAT ELON [specify eyeball location], default is 90., 0.
        -f FILE pmag_results format file, [default is pmag_results.txt]
        -res [c,l,i,h] specify resolution (crude, low, intermediate, high]
        -etp plot the etopo20 topographpy data (requires high resolution data set)
        -prj PROJ,  specify one of the following:
             ortho = orthographic
             lcc = lambert conformal
             moll = molweide
             merc = mercator
        -sym SYM SIZE: choose a symbol and size, examples:
            ro 5 : small red circles
            bs 10 : intermediate blue squares
            g^ 20 : large green triangles
        -ell  plot dp/dm or a95 ellipses
        -rev RSYM RSIZE : flip reverse poles to normal antipode
        -S:  plot antipodes of all poles
        -age : plot the ages next to the poles
        -crd [g,t] : choose coordinate system, default is to plot all site VGPs
        -fmt [pdf, png, eps...] specify output format, default is pdf
        -sav  save and quit
    DEFAULTS
        FILE: pmag_results.txt
        res:  c
        prj: ortho
        ELAT,ELON = 0,0
        SYM SIZE: ro 8
        RSYM RSIZE: g^ 8

    """
    dir_path = '.'
    res, ages = 'c', 0
    plot = 0
    proj = 'ortho'
    results_file = 'pmag_results.txt'
    ell, flip = 0, 0
    lat_0, lon_0 = 90., 0.
    fmt = 'pdf'
    sym, size = 'ro', 8
    rsym, rsize = 'g^', 8
    anti = 0
    fancy = 0
    coord = ""
    if '-WD' in sys.argv:
        ind = sys.argv.index('-WD')
        dir_path = sys.argv[ind+1]
    if '-h' in sys.argv:
        print(main.__doc__)
        sys.exit()
    if '-S' in sys.argv:
        anti = 1
    if '-fmt' in sys.argv:
        ind = sys.argv.index('-fmt')
        fmt = sys.argv[ind+1]
    if '-sav' in sys.argv:
        plot = 1
    if '-res' in sys.argv:
        ind = sys.argv.index('-res')
        res = sys.argv[ind+1]
    if '-etp' in sys.argv:
        fancy = 1
    if '-prj' in sys.argv:
        ind = sys.argv.index('-prj')
        proj = sys.argv[ind+1]
    if '-rev' in sys.argv:
        flip = 1
        ind = sys.argv.index('-rev')
        rsym = (sys.argv[ind+1])
        rsize = int(sys.argv[ind+2])
    if '-sym' in sys.argv:
        ind = sys.argv.index('-sym')
        sym = (sys.argv[ind+1])
        size = int(sys.argv[ind+2])
    if '-eye' in sys.argv:
        ind = sys.argv.index('-eye')
        lat_0 = float(sys.argv[ind+1])
        lon_0 = float(sys.argv[ind+2])
    if '-ell' in sys.argv:
        ell = 1
    if '-age' in sys.argv:
        ages = 1
    if '-f' in sys.argv:
        ind = sys.argv.index('-f')
        results_file = sys.argv[ind+1]
    if '-crd' in sys.argv:
        ind = sys.argv.index('-crd')
        crd = sys.argv[ind+1]
        if crd == 'g':
            coord = '0'
        if crd == 't':
            coord = '100'
    results_file = dir_path+'/'+results_file
    data, file_type = pmag.magic_read(results_file)
    if file_type != 'pmag_results':
        print("bad results file")
        sys.exit()
    FIG = {'map': 1}
    pmagplotlib.plot_init(FIG['map'], 6, 6)
    # read in er_sites file
    lats, lons, dp, dm, a95 = [], [], [], [], []
    Pars = []
    dates, rlats, rlons = [], [], []
    if 'data_type' in data[0].keys():
        # get all site level data
        Results = pmag.get_dictitem(data, 'data_type', 'i', 'T')
    else:
        Results = data
    # get all non-blank latitudes
    Results = pmag.get_dictitem(Results, 'vgp_lat', '', 'F')
    # get all non-blank longitudes
    Results = pmag.get_dictitem(Results, 'vgp_lon', '', 'F')
    if coord != "":
        # get specified coordinate system
        Results = pmag.get_dictitem(Results, 'tilt_correction', coord, 'T')
    location = ""
    for rec in Results:
        if rec['er_location_names'] not in location:
            location = location+':'+rec['er_location_names']
        if 'average_age' in rec.keys() and rec['average_age'] != "" and ages == 1:
            dates.append(rec['average_age'])
        lat = float(rec['vgp_lat'])
        lon = float(rec['vgp_lon'])
        if flip == 0:
            lats.append(lat)
            lons.append(lon)
        elif flip == 1:
            if lat < 0:
                rlats.append(-lat)
                lon = lon+180.
                if lon > 360:
                    lon = lon-360.
                rlons.append(lon)
            else:
                lats.append(lat)
                lons.append(lon)
        elif anti == 1:
            lats.append(-lat)
            lon = lon+180.
            if lon > 360:
                lon = lon-360.
            lons.append(lon)
        ppars = []
        ppars.append(lon)
        ppars.append(lat)
        ell1, ell2 = "", ""
        if 'vgp_dm' in rec.keys() and rec['vgp_dm'] != "":
            ell1 = float(rec['vgp_dm'])
        if 'vgp_dp' in rec.keys() and rec['vgp_dp'] != "":
            ell2 = float(rec['vgp_dp'])
        if 'vgp_alpha95' in rec.keys() and rec['vgp_alpha95'] != "":
            ell1, ell2 = float(rec['vgp_alpha95']), float(rec['vgp_alpha95'])
        if ell1 != "" and ell2 != "":
            ppars = []
            ppars.append(lons[-1])
            ppars.append(lats[-1])
            ppars.append(ell1)
            ppars.append(lons[-1])
            isign = abs(lats[-1])/lats[-1]
            ppars.append(lats[-1]-isign*90.)
            ppars.append(ell2)
            ppars.append(lons[-1]+90.)
            ppars.append(0.)
            Pars.append(ppars)
    location = location.strip(':')
    Opts = {'latmin': -90, 'latmax': 90, 'lonmin': 0., 'lonmax': 360., 'lat_0': lat_0, 'lon_0': lon_0,
            'proj': proj, 'sym': 'bs', 'symsize': 3, 'pltgrid': 0, 'res': res, 'boundinglat': 0.}
    Opts['details'] = {'coasts': 1, 'rivers': 0, 'states': 0,
                       'countries': 0, 'ocean': 1, 'fancy': fancy}
    # make the base map with a blue triangle at the pole`
    pmagplotlib.plot_map(FIG['map'], [90.], [0.], Opts)
    Opts['pltgrid'] = -1
    Opts['sym'] = sym
    Opts['symsize'] = size
    if len(dates) > 0:
        Opts['names'] = dates
    if len(lats) > 0:
        # add the lats and lons of the poles
        pmagplotlib.plot_map(FIG['map'], lats, lons, Opts)
    Opts['names'] = []
    if len(rlats) > 0:
        Opts['sym'] = rsym
        Opts['symsize'] = rsize
        # add the lats and lons of the poles
        pmagplotlib.plot_map(FIG['map'], rlats, rlons, Opts)
    if plot == 0:
        pmagplotlib.draw_figs(FIG)
    if ell == 1:  # add ellipses if desired.
        Opts['details'] = {'coasts': 0, 'rivers': 0,
                           'states': 0, 'countries': 0, 'ocean': 0}
        Opts['pltgrid'] = -1  # turn off meridian replotting
        Opts['symsize'] = 2
        Opts['sym'] = 'g-'
        for ppars in Pars:
            if ppars[2] != 0:
                PTS = pmagplotlib.plot_ell(FIG['map'], ppars, 'g.', 0, 0)
                elats, elons = [], []
                for pt in PTS:
                    elons.append(pt[0])
                    elats.append(pt[1])
                # make the base map with a blue triangle at the pole`
                pmagplotlib.plot_map(FIG['map'], elats, elons, Opts)
                if plot == 0:
                    pmagplotlib.draw_figs(FIG)
    files = {}
    for key in FIG.keys():
        if pmagplotlib.isServer:  # use server plot naming convention
            files[key] = 'LO:_'+location+'_VGP_map.'+fmt
        else:  # use more readable plot naming convention
            files[key] = '{}_VGP_map.{}'.format(
                location.replace(' ', '_'), fmt)
    if pmagplotlib.isServer:
        black = '#000000'
        purple = '#800080'
        titles = {}
        titles['eq'] = 'LO:_'+location+'_VGP_map'
        FIG = pmagplotlib.add_borders(FIG, titles, black, purple)
        pmagplotlib.save_plots(FIG, files)
    elif plot == 0:
        pmagplotlib.draw_figs(FIG)
        ans = input(" S[a]ve to save plot, Return to quit:  ")
        if ans == "a":
            pmagplotlib.save_plots(FIG, files)
        else:
            print("Good bye")
            sys.exit()
    else:
        pmagplotlib.save_plots(FIG, files)
Ejemplo n.º 40
0
def main():
    """
    NAME
        eqarea_magic.py

    DESCRIPTION
       makes equal area projections from declination/inclination data

    SYNTAX
        eqarea_magic.py [command line options]

    INPUT
       takes magic formatted pmag_results, pmag_sites, pmag_samples or pmag_specimens

    OPTIONS
        -h prints help message and quits
        -f FILE: specify input magic format file from magic,default='pmag_results.txt'
         supported types=[magic_measurements,pmag_specimens, pmag_samples, pmag_sites, pmag_results, magic_web]
        -obj OBJ: specify  level of plot  [all, sit, sam, spc], default is all
        -crd [s,g,t]: specify coordinate system, [s]pecimen, [g]eographic, [t]ilt adjusted
                default is geographic, unspecified assumed geographic
        -fmt [svg,png,jpg] format for output plots
        -ell [F,K,B,Be,Bv] plot Fisher, Kent, Bingham, Bootstrap ellipses or Boostrap eigenvectors
        -c plot as colour contour
        -sav save plot and quit quietly
    NOTE
        all: entire file; sit: site; sam: sample; spc: specimen
    """
    FIG = {}  # plot dictionary
    FIG['eqarea'] = 1  # eqarea is figure 1
    in_file, plot_key, coord, crd = 'pmag_results.txt', 'all', "0", 'g'
    plotE, contour = 0, 0
    dir_path = '.'
    fmt = 'svg'
    verbose = pmagplotlib.verbose
    if '-h' in sys.argv:
        print(main.__doc__)
        sys.exit()
    if '-WD' in sys.argv:
        ind = sys.argv.index('-WD')
        dir_path = sys.argv[ind+1]
    pmagplotlib.plot_init(FIG['eqarea'], 5, 5)
    if '-f' in sys.argv:
        ind = sys.argv.index("-f")
        in_file = dir_path+"/"+sys.argv[ind+1]
    if '-obj' in sys.argv:
        ind = sys.argv.index('-obj')
        plot_by = sys.argv[ind+1]
        if plot_by == 'all':
            plot_key = 'all'
        if plot_by == 'sit':
            plot_key = 'er_site_name'
        if plot_by == 'sam':
            plot_key = 'er_sample_name'
        if plot_by == 'spc':
            plot_key = 'er_specimen_name'
    if '-c' in sys.argv:
        contour = 1
    plt = 0
    if '-sav' in sys.argv:
        plt = 1
        verbose = 0
    if '-ell' in sys.argv:
        plotE = 1
        ind = sys.argv.index('-ell')
        ell_type = sys.argv[ind+1]
        if ell_type == 'F':
            dist = 'F'
        if ell_type == 'K':
            dist = 'K'
        if ell_type == 'B':
            dist = 'B'
        if ell_type == 'Be':
            dist = 'BE'
        if ell_type == 'Bv':
            dist = 'BV'
            FIG['bdirs'] = 2
            pmagplotlib.plot_init(FIG['bdirs'], 5, 5)
    if '-crd' in sys.argv:
        ind = sys.argv.index("-crd")
        crd = sys.argv[ind+1]
        if crd == 's':
            coord = "-1"
        if crd == 'g':
            coord = "0"
        if crd == 't':
            coord = "100"
    if '-fmt' in sys.argv:
        ind = sys.argv.index("-fmt")
        fmt = sys.argv[ind+1]
    Dec_keys = ['site_dec', 'sample_dec', 'specimen_dec',
                'measurement_dec', 'average_dec', 'none']
    Inc_keys = ['site_inc', 'sample_inc', 'specimen_inc',
                'measurement_inc', 'average_inc', 'none']
    Tilt_keys = ['tilt_correction', 'site_tilt_correction',
                 'sample_tilt_correction', 'specimen_tilt_correction', 'none']
    Dir_type_keys = ['', 'site_direction_type',
                     'sample_direction_type', 'specimen_direction_type']
    Name_keys = ['er_specimen_name', 'er_sample_name',
                 'er_site_name', 'pmag_result_name']
    data, file_type = pmag.magic_read(in_file)
    if file_type == 'pmag_results' and plot_key != "all":
        plot_key = plot_key+'s'  # need plural for results table
    if verbose:
        print(len(data), ' records read from ', in_file)
    #
    #
    # find desired dec,inc data:
    #
    dir_type_key = ''
    #
    # get plotlist if not plotting all records
    #
    plotlist = []
    if plot_key != "all":
        plots = pmag.get_dictitem(data, plot_key, '', 'F')
        for rec in plots:
            if rec[plot_key] not in plotlist:
                plotlist.append(rec[plot_key])
        plotlist.sort()
    else:
        plotlist.append('All')
    for plot in plotlist:
        # if verbose: print plot
        DIblock = []
        GCblock = []
        SLblock, SPblock = [], []
        title = plot
        mode = 1
        dec_key, inc_key, tilt_key, name_key, k = "", "", "", "", 0
        if plot != "All":
            odata = pmag.get_dictitem(data, plot_key, plot, 'T')
        else:
            odata = data  # data for this obj
        for dec_key in Dec_keys:
            # get all records with this dec_key not blank
            Decs = pmag.get_dictitem(odata, dec_key, '', 'F')
            if len(Decs) > 0:
                break
        for inc_key in Inc_keys:
            # get all records with this inc_key not blank
            Incs = pmag.get_dictitem(Decs, inc_key, '', 'F')
            if len(Incs) > 0:
                break
        for tilt_key in Tilt_keys:
            if tilt_key in Incs[0].keys():
                break  # find the tilt_key for these records
        if tilt_key == 'none':  # no tilt key in data, need to fix this with fake data which will be unknown tilt
            tilt_key = 'tilt_correction'
            for rec in Incs:
                rec[tilt_key] = ''
        # get all records matching specified coordinate system
        cdata = pmag.get_dictitem(Incs, tilt_key, coord, 'T')
        if coord == '0':  # geographic
            # get all the blank records - assume geographic
            udata = pmag.get_dictitem(Incs, tilt_key, '', 'T')
            if len(cdata) == 0:
                crd = ''
            if len(udata) > 0:
                for d in udata:
                    cdata.append(d)
                crd = crd+'u'
        for name_key in Name_keys:
            # get all records with this name_key not blank
            Names = pmag.get_dictitem(cdata, name_key, '', 'F')
            if len(Names) > 0:
                break
        for dir_type_key in Dir_type_keys:
            # get all records with this direction type
            Dirs = pmag.get_dictitem(cdata, dir_type_key, '', 'F')
            if len(Dirs) > 0:
                break
        if dir_type_key == "":
            dir_type_key = 'direction_type'
        locations, site, sample, specimen = "", "", "", ""
        for rec in cdata:  # pick out the data
            if 'er_location_name' in rec.keys() and rec['er_location_name'] != "" and rec['er_location_name'] not in locations:
                locations = locations + \
                    rec['er_location_name'].replace("/", "")+"_"
            if 'er_location_names' in rec.keys() and rec['er_location_names'] != "":
                locs = rec['er_location_names'].split(':')
                for loc in locs:
                    if loc not in locations:
                        locations = locations+loc.replace("/", "")+'_'
            if plot_key == 'er_site_name' or plot_key == 'er_sample_name' or plot_key == 'er_specimen_name':
                site = rec['er_site_name']
            if plot_key == 'er_sample_name' or plot_key == 'er_specimen_name':
                sample = rec['er_sample_name']
            if plot_key == 'er_specimen_name':
                specimen = rec['er_specimen_name']
            if plot_key == 'er_site_names' or plot_key == 'er_sample_names' or plot_key == 'er_specimen_names':
                site = rec['er_site_names']
            if plot_key == 'er_sample_names' or plot_key == 'er_specimen_names':
                sample = rec['er_sample_names']
            if plot_key == 'er_specimen_names':
                specimen = rec['er_specimen_names']
            if dir_type_key not in rec.keys() or rec[dir_type_key] == "":
                rec[dir_type_key] = 'l'
            if 'magic_method_codes' not in rec.keys():
                rec['magic_method_codes'] = ""
            DIblock.append([float(rec[dec_key]), float(rec[inc_key])])
            SLblock.append([rec[name_key], rec['magic_method_codes']])
            if rec[tilt_key] == coord and rec[dir_type_key] != 'l' and rec[dec_key] != "" and rec[inc_key] != "":
                GCblock.append([float(rec[dec_key]), float(rec[inc_key])])
                SPblock.append([rec[name_key], rec['magic_method_codes']])
        if len(DIblock) == 0 and len(GCblock) == 0:
            if verbose:
                print("no records for plotting")
            sys.exit()
        if verbose:
            for k in range(len(SLblock)):
                print('%s %s %7.1f %7.1f' % (
                    SLblock[k][0], SLblock[k][1], DIblock[k][0], DIblock[k][1]))
            for k in range(len(SPblock)):
                print('%s %s %7.1f %7.1f' % (
                    SPblock[k][0], SPblock[k][1], GCblock[k][0], GCblock[k][1]))
        if len(DIblock) > 0:
            if contour == 0:
                pmagplotlib.plot_eq(FIG['eqarea'], DIblock, title)
            else:
                pmagplotlib.plot_eq_cont(FIG['eqarea'], DIblock)
        else:
            pmagplotlib.plot_net(FIG['eqarea'])
        if len(GCblock) > 0:
            for rec in GCblock:
                pmagplotlib.plot_circ(FIG['eqarea'], rec, 90., 'g')
        if plotE == 1:
            ppars = pmag.doprinc(DIblock)  # get principal directions
            nDIs, rDIs, npars, rpars = [], [], [], []
            for rec in DIblock:
                angle = pmag.angle([rec[0], rec[1]], [
                                   ppars['dec'], ppars['inc']])
                if angle > 90.:
                    rDIs.append(rec)
                else:
                    nDIs.append(rec)
            if dist == 'B':  # do on whole dataset
                etitle = "Bingham confidence ellipse"
                bpars = pmag.dobingham(DIblock)
                for key in bpars.keys():
                    if key != 'n' and verbose:
                        print("    ", key, '%7.1f' % (bpars[key]))
                    if key == 'n' and verbose:
                        print("    ", key, '       %i' % (bpars[key]))
                npars.append(bpars['dec'])
                npars.append(bpars['inc'])
                npars.append(bpars['Zeta'])
                npars.append(bpars['Zdec'])
                npars.append(bpars['Zinc'])
                npars.append(bpars['Eta'])
                npars.append(bpars['Edec'])
                npars.append(bpars['Einc'])
            if dist == 'F':
                etitle = "Fisher confidence cone"
                if len(nDIs) > 2:
                    fpars = pmag.fisher_mean(nDIs)
                    for key in fpars.keys():
                        if key != 'n' and verbose:
                            print("    ", key, '%7.1f' % (fpars[key]))
                        if key == 'n' and verbose:
                            print("    ", key, '       %i' % (fpars[key]))
                    mode += 1
                    npars.append(fpars['dec'])
                    npars.append(fpars['inc'])
                    npars.append(fpars['alpha95'])  # Beta
                    npars.append(fpars['dec'])
                    isign = abs(fpars['inc'])/fpars['inc']
                    npars.append(fpars['inc']-isign*90.)  # Beta inc
                    npars.append(fpars['alpha95'])  # gamma
                    npars.append(fpars['dec']+90.)  # Beta dec
                    npars.append(0.)  # Beta inc
                if len(rDIs) > 2:
                    fpars = pmag.fisher_mean(rDIs)
                    if verbose:
                        print("mode ", mode)
                    for key in fpars.keys():
                        if key != 'n' and verbose:
                            print("    ", key, '%7.1f' % (fpars[key]))
                        if key == 'n' and verbose:
                            print("    ", key, '       %i' % (fpars[key]))
                    mode += 1
                    rpars.append(fpars['dec'])
                    rpars.append(fpars['inc'])
                    rpars.append(fpars['alpha95'])  # Beta
                    rpars.append(fpars['dec'])
                    isign = abs(fpars['inc'])/fpars['inc']
                    rpars.append(fpars['inc']-isign*90.)  # Beta inc
                    rpars.append(fpars['alpha95'])  # gamma
                    rpars.append(fpars['dec']+90.)  # Beta dec
                    rpars.append(0.)  # Beta inc
            if dist == 'K':
                etitle = "Kent confidence ellipse"
                if len(nDIs) > 3:
                    kpars = pmag.dokent(nDIs, len(nDIs))
                    if verbose:
                        print("mode ", mode)
                    for key in kpars.keys():
                        if key != 'n' and verbose:
                            print("    ", key, '%7.1f' % (kpars[key]))
                        if key == 'n' and verbose:
                            print("    ", key, '       %i' % (kpars[key]))
                    mode += 1
                    npars.append(kpars['dec'])
                    npars.append(kpars['inc'])
                    npars.append(kpars['Zeta'])
                    npars.append(kpars['Zdec'])
                    npars.append(kpars['Zinc'])
                    npars.append(kpars['Eta'])
                    npars.append(kpars['Edec'])
                    npars.append(kpars['Einc'])
                if len(rDIs) > 3:
                    kpars = pmag.dokent(rDIs, len(rDIs))
                    if verbose:
                        print("mode ", mode)
                    for key in kpars.keys():
                        if key != 'n' and verbose:
                            print("    ", key, '%7.1f' % (kpars[key]))
                        if key == 'n' and verbose:
                            print("    ", key, '       %i' % (kpars[key]))
                    mode += 1
                    rpars.append(kpars['dec'])
                    rpars.append(kpars['inc'])
                    rpars.append(kpars['Zeta'])
                    rpars.append(kpars['Zdec'])
                    rpars.append(kpars['Zinc'])
                    rpars.append(kpars['Eta'])
                    rpars.append(kpars['Edec'])
                    rpars.append(kpars['Einc'])
            else:  # assume bootstrap
                if dist == 'BE':
                    if len(nDIs) > 5:
                        BnDIs = pmag.di_boot(nDIs)
                        Bkpars = pmag.dokent(BnDIs, 1.)
                        if verbose:
                            print("mode ", mode)
                        for key in Bkpars.keys():
                            if key != 'n' and verbose:
                                print("    ", key, '%7.1f' % (Bkpars[key]))
                            if key == 'n' and verbose:
                                print("    ", key, '       %i' % (Bkpars[key]))
                        mode += 1
                        npars.append(Bkpars['dec'])
                        npars.append(Bkpars['inc'])
                        npars.append(Bkpars['Zeta'])
                        npars.append(Bkpars['Zdec'])
                        npars.append(Bkpars['Zinc'])
                        npars.append(Bkpars['Eta'])
                        npars.append(Bkpars['Edec'])
                        npars.append(Bkpars['Einc'])
                    if len(rDIs) > 5:
                        BrDIs = pmag.di_boot(rDIs)
                        Bkpars = pmag.dokent(BrDIs, 1.)
                        if verbose:
                            print("mode ", mode)
                        for key in Bkpars.keys():
                            if key != 'n' and verbose:
                                print("    ", key, '%7.1f' % (Bkpars[key]))
                            if key == 'n' and verbose:
                                print("    ", key, '       %i' % (Bkpars[key]))
                        mode += 1
                        rpars.append(Bkpars['dec'])
                        rpars.append(Bkpars['inc'])
                        rpars.append(Bkpars['Zeta'])
                        rpars.append(Bkpars['Zdec'])
                        rpars.append(Bkpars['Zinc'])
                        rpars.append(Bkpars['Eta'])
                        rpars.append(Bkpars['Edec'])
                        rpars.append(Bkpars['Einc'])
                    etitle = "Bootstrapped confidence ellipse"
                elif dist == 'BV':
                    sym = {'lower': ['o', 'c'], 'upper': [
                        'o', 'g'], 'size': 3, 'edgecolor': 'face'}
                    if len(nDIs) > 5:
                        BnDIs = pmag.di_boot(nDIs)
                        pmagplotlib.plot_eq_sym(
                            FIG['bdirs'], BnDIs, 'Bootstrapped Eigenvectors', sym)
                    if len(rDIs) > 5:
                        BrDIs = pmag.di_boot(rDIs)
                        if len(nDIs) > 5:  # plot on existing plots
                            pmagplotlib.plot_di_sym(FIG['bdirs'], BrDIs, sym)
                        else:
                            pmagplotlib.plot_eq(
                                FIG['bdirs'], BrDIs, 'Bootstrapped Eigenvectors')
            if dist == 'B':
                if len(nDIs) > 3 or len(rDIs) > 3:
                    pmagplotlib.plot_conf(FIG['eqarea'], etitle, [], npars, 0)
            elif len(nDIs) > 3 and dist != 'BV':
                pmagplotlib.plot_conf(FIG['eqarea'], etitle, [], npars, 0)
                if len(rDIs) > 3:
                    pmagplotlib.plot_conf(FIG['eqarea'], etitle, [], rpars, 0)
            elif len(rDIs) > 3 and dist != 'BV':
                pmagplotlib.plot_conf(FIG['eqarea'], etitle, [], rpars, 0)
        if verbose:
            pmagplotlib.draw_figs(FIG)
            #
        files = {}
        locations = locations[:-1]
        for key in FIG.keys():
            if pmagplotlib.isServer:  # use server plot naming convention
                filename = 'LO:_'+locations+'_SI:_'+site+'_SA:_'+sample + \
                    '_SP:_'+specimen+'_CO:_'+crd+'_TY:_'+key+'_.'+fmt
            else:  # use more readable plot naming convention
                filename = ''
                for item in [locations, site, sample, specimen, crd, key]:
                    if item:
                        item = item.replace(' ', '_')
                        filename += item + '_'
                if filename.endswith('_'):
                    filename = filename[:-1]
                filename += ".{}".format(fmt)
            files[key] = filename
        if pmagplotlib.isServer:
            black = '#000000'
            purple = '#800080'
            titles = {}
            titles['eq'] = 'Equal Area Plot'
            FIG = pmagplotlib.add_borders(FIG, titles, black, purple)
            pmagplotlib.save_plots(FIG, files)
        elif verbose:
            ans = raw_input(
                " S[a]ve to save plot, [q]uit, Return to continue:  ")
            if ans == "q":
                sys.exit()
            if ans == "a":
                pmagplotlib.save_plots(FIG, files)
        if plt:
            pmagplotlib.save_plots(FIG, files)
Ejemplo n.º 41
0
def main():
    """
    NAME
        hysteresis_magic.py

    DESCRIPTION
        calculates hystereis parameters and saves them in 3.0 specimen format file
        makes plots if option selected

    SYNTAX
        hysteresis_magic.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f: specify input file, default is agm_measurements.txt
        -F: specify specimens.txt output file
        -P: do not make the plots
        -spc SPEC: specify specimen name to plot and quit
        -sav save all plots and quit
        -fmt [png,svg,eps,jpg]
    """
    args=sys.argv
    PLT=1
    plots=0
    fmt=pmag.get_named_arg_from_sys('-fmt','svg')
    dir_path=pmag.get_named_arg_from_sys('-WD','.')
    dir_path=os.path.realpath(dir_path)
    verbose=pmagplotlib.verbose
    version_num=pmag.get_version()
    user=pmag.get_named_arg_from_sys('-usr','')
    if "-h" in args:
        print(main.__doc__)
        sys.exit()
    meas_file=pmag.get_named_arg_from_sys('-f','agm_measurements.txt')
    spec_file=pmag.get_named_arg_from_sys('-F','specimens.txt')
    if '-P' in args:
        PLT=0
        irm_init,imag_init=-1,-1
    if '-sav' in args:
        verbose=0
        plots=1
    pltspec=pmag.get_named_arg_from_sys('-spc',0)
    if pltspec:
        #pltspec= args[ind+1]
        verbose=0
        plots=1
    spec_file=dir_path+'/'+spec_file
    meas_file=dir_path+'/'+meas_file
    SpecRecs=[]
    #
    #
    meas_data,file_type=pmag.magic_read(meas_file)
    if file_type!='measurements':
        print(main.__doc__)
        print('bad file')
        sys.exit()
    #
    # initialize some variables
    # define figure numbers for hyst,deltaM,DdeltaM curves
    HystRecs,RemRecs=[],[]
    HDD={}
    if verbose:
        if verbose and PLT:print("Plots may be on top of each other - use mouse to place ")
    if PLT:
        HDD['hyst'],HDD['deltaM'],HDD['DdeltaM']=1,2,3
        pmagplotlib.plot_init(HDD['DdeltaM'],5,5)
        pmagplotlib.plot_init(HDD['deltaM'],5,5)
        pmagplotlib.plot_init(HDD['hyst'],5,5)
        imag_init=0
        irm_init=0
    else:
        HDD['hyst'],HDD['deltaM'],HDD['DdeltaM'],HDD['irm'],HDD['imag']=0,0,0,0,0
    #
    if spec_file: prior_data,file_type=pmag.magic_read(spec_file)
    #
    # get list of unique experiment names and specimen names
    #
    experiment_names,sids=[],[]
    hys_data=pmag.get_dictitem(meas_data,'method_codes','LP-HYS','has')
    dcd_data=pmag.get_dictitem(meas_data,'method_codes','LP-IRM-DCD','has')
    imag_data=pmag.get_dictitem(meas_data,'method_codes','LP-IMAG','has')
    for rec in hys_data:
        if rec['experiment'] not in experiment_names:experiment_names.append(rec['experiment'])
        if rec['specimen'] not in sids:sids.append(rec['specimen'])
    #
    k=0
    if pltspec:
        k=sids.index(pltspec)
        print(sids[k])
    while k < len(sids):
        specimen=sids[k]
        HystRec={'specimen':specimen,'experiment':""} # initialize a new specimen hysteresis record
        if verbose and PLT:print(specimen, k+1 , 'out of ',len(sids))
    #
    #
        B,M,Bdcd,Mdcd=[],[],[],[] #B,M for hysteresis, Bdcd,Mdcd for irm-dcd data
        Bimag,Mimag=[],[] #Bimag,Mimag for initial magnetization curves
        spec_data=pmag.get_dictitem(hys_data,'specimen',specimen,'T') # fish out all the LP-HYS data for this specimen
        if len(spec_data)>0:
            meths=spec_data[0]['method_codes'].split(':')
            e=spec_data[0]['experiment']
            HystRec['experiment']=spec_data[0]['experiment']
            for rec in  spec_data:
                B.append(float(rec['meas_field_dc']))
                M.append(float(rec['magn_moment']))
        spec_data=pmag.get_dictitem(dcd_data,'specimen',specimen,'T') # fish out all the data for this specimen
        if len(spec_data)>0:
            HystRec['experiment']=HystRec['experiment']+':'+spec_data[0]['experiment']
            irm_exp=spec_data[0]['experiment']
            for rec in  spec_data:
                Bdcd.append(float(rec['treat_dc_field']))
                Mdcd.append(float(rec['magn_moment']))
        spec_data=pmag.get_dictitem(imag_data,'specimen',specimen,'T') # fish out all the data for this specimen
        if len(spec_data)>0:
            imag_exp=spec_data[0]['experiment']
            for rec in  spec_data:
                Bimag.append(float(rec['meas_field_dc']))
                Mimag.append(float(rec['magn_moment']))
    #
    # now plot the hysteresis curve
    #
        if len(B)>0:
            hmeths=[]
            for meth in meths: hmeths.append(meth)

            hpars=pmagplotlib.plotHDD(HDD,B,M,e)
            if verbose and PLT:pmagplotlib.drawFIGS(HDD)
    #
            if verbose:pmagplotlib.plotHPARS(HDD,hpars,'bs')
            HystRec['hyst_mr_moment']=hpars['hysteresis_mr_moment']
            HystRec['hyst_ms_moment']=hpars['hysteresis_ms_moment']
            HystRec['hyst_bc']=hpars['hysteresis_bc']
            HystRec['hyst_bcr']=hpars['hysteresis_bcr']
            HystRec['susc_h']=hpars['hysteresis_xhf']
            HystRec['experiments']=e
            HystRec['software_packages']=version_num
            if hpars["magic_method_codes"] not in hmeths:hmeths.append(hpars["magic_method_codes"])
            methods=""
            for meth in hmeths:
                methods=methods+meth.strip()+":"
            HystRec["method_codes"]=methods[:-1]
            HystRec["citations"]="This study"
    #
        if len(Bdcd)>0:
            rmeths=[]
            for meth in meths: rmeths.append(meth)
            if verbose and PLT:print('plotting IRM')
            if irm_init==0:
                HDD['irm']=5
                pmagplotlib.plot_init(HDD['irm'],5,5)
                irm_init=1
            rpars=pmagplotlib.plotIRM(HDD['irm'],Bdcd,Mdcd,irm_exp)
            HystRec['rem_mr_moment']=rpars['remanence_mr_moment']
            HystRec['rem_bcr']=rpars['remanence_bcr']
            HystRec['experiments']=specimen+':'+irm_exp
            if rpars["magic_method_codes"] not in meths:meths.append(rpars["magic_method_codes"])
            methods=""
            for meth in rmeths:
                methods=methods+meth.strip()+":"
            HystRec["method_codes"]=HystRec['method_codes']+':'+methods[:-1]
            HystRec["citations"]="This study"
        else:
            if irm_init:pmagplotlib.clearFIG(HDD['irm'])
        if len(Bimag)>0:
            if verbose and PLT:print('plotting initial magnetization curve')
# first normalize by Ms
            Mnorm=[]
            for m in Mimag: Mnorm.append(old_div(m,float(hpars['hysteresis_ms_moment'])))
            if imag_init==0:
                HDD['imag']=4
                pmagplotlib.plot_init(HDD['imag'],5,5)
                imag_init=1
            pmagplotlib.plotIMAG(HDD['imag'],Bimag,Mnorm,imag_exp)
        else:
            if imag_init:pmagplotlib.clearFIG(HDD['imag'])
        if len(list(HystRec.keys()))>0:HystRecs.append(HystRec)
    #
        files={}
        if plots:
            if pltspec:s=pltspec
            files={}
            for key in list(HDD.keys()):
                files[key]=s+'_'+key+'.'+fmt
            pmagplotlib.saveP(HDD,files)
            if pltspec:sys.exit()
        if verbose and PLT:
            pmagplotlib.drawFIGS(HDD)
            ans=input("S[a]ve plots, [s]pecimen name, [q]uit, <return> to continue\n ")
            if ans=="a":
                files={}
                for key in list(HDD.keys()):
                    files[key]=specimen+'_'+key+'.'+fmt
                pmagplotlib.saveP(HDD,files)
            if ans=='':k+=1
            if ans=="p":
                del HystRecs[-1]
                k-=1
            if  ans=='q':
                print("Good bye")
                sys.exit()
            if ans=='s':
                keepon=1
                specimen=input('Enter desired specimen name (or first part there of): ')
                while keepon==1:
                    try:
                        k =sids.index(specimen)
                        keepon=0
                    except:
                        tmplist=[]
                        for qq in range(len(sids)):
                            if specimen in sids[qq]:tmplist.append(sids[qq])
                        print(specimen," not found, but this was: ")
                        print(tmplist)
                        specimen=input('Select one or try again\n ')
                        k =sids.index(specimen)
        else:
            k+=1
        if len(B)==0 and len(Bdcd)==0:
            if verbose:print('skipping this one - no hysteresis data')
            k+=1
    if len(HystRecs)>0:
    #  go through prior_data, clean out prior results and save combined file as spec_file
        SpecRecs,keys=[],list(HystRecs[0].keys())
        if len(prior_data)>0:
            prior_keys=list(prior_data[0].keys())
        else: prior_keys=[]
        for rec in prior_data:
            for key in keys:
                if key not in list(rec.keys()):rec[key]=""
            if  'LP-HYS' not in rec['method_codes']:
                SpecRecs.append(rec)
        for rec in HystRecs:
            for key in prior_keys:
                if key not in list(rec.keys()):rec[key]=""
            prior=pmag.get_dictitem(prior_data,'specimen',rec['specimen'],'T')
            if len(prior)>0 and 'sample' in list(prior[0].keys()):
                rec['sample']=prior[0]['sample'] # pull sample name from prior specimens table
            SpecRecs.append(rec)
        pmag.magic_write(spec_file,SpecRecs,"specimens")
        if verbose:print("hysteresis parameters saved in ",spec_file)
Ejemplo n.º 42
0
def main():
    """
    NAME
        zeq_magic.py

    DESCRIPTION
        reads in magic_measurements formatted file, makes plots of remanence decay
        during demagnetization experiments.  Reads in prior interpretations saved in
        a pmag_specimens formatted file [and  allows re-interpretations of best-fit lines
        and planes and saves (revised or new) interpretations in a pmag_specimens file.
        interpretations are saved in the coordinate system used. Also allows judicious editting of
        measurements to eliminate "bad" measurements.  These are marked as such in the magic_measurements
        input file.  they are NOT deleted, just ignored. ] Bracketed part not yet implemented

    SYNTAX
        zeq_magic.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f  MEASFILE: sets measurements format input file, default: measurements.txt
        -fsp SPECFILE: sets specimens format file with prior interpreations, default: specimens.txt
        -fsa SAMPFILE: sets samples format file sample=>site information, default: samples.txt
        -fsi SITEFILE: sets sites format file with site=>location informationprior interpreations, default: samples.txt
        -Fp PLTFILE: sets filename for saved plot, default is name_type.fmt (where type is zijd, eqarea or decay curve)
        -crd [s,g,t]: sets coordinate system,  g=geographic, t=tilt adjusted, default: specimen coordinate system
        -spc SPEC  plots single specimen SPEC, saves plot with specified format
              with optional -dir settings and quits
        -dir [L,P,F][beg][end]: sets calculation type for principal component analysis, default is none
             beg: starting step for PCA calculation
             end: ending step for PCA calculation
             [L,P,F]: calculation type for line, plane or fisher mean
             must be used with -spc option
        -fmt FMT: set format of saved plot [png,svg,jpg]
        -A:  suppresses averaging of  replicate measurements, default is to average
        -sav: saves all plots without review
    SCREEN OUTPUT:
        Specimen, N, a95, StepMin, StepMax, Dec, Inc, calculation type

    """
    # initialize some variables
    doave, e, b = 1, 0, 0  # average replicates, initial end and beginning step
    intlist = ['magn_moment', 'magn_volume', 'magn_mass', 'magnitude']
    plots, coord = 0, 's'
    noorient = 0
    version_num = pmag.get_version()
    verbose = pmagplotlib.verbose
    calculation_type, fmt = "", "svg"
    spec_keys = []
    geo, tilt, ask = 0, 0, 0
    PriorRecs = []  # empty list for prior interpretations
    backup = 0
    specimen = ""  # can skip everything and just plot one specimen with bounds e,b
    if '-h' in sys.argv:
        print(main.__doc__)
        sys.exit()
    dir_path = pmag.get_named_arg("-WD", default_val=os.getcwd())
    meas_file = pmag.get_named_arg("-f", default_val="measurements.txt")
    spec_file = pmag.get_named_arg("-fsp", default_val="specimens.txt")
    samp_file = pmag.get_named_arg("-fsa", default_val="samples.txt")
    site_file = pmag.get_named_arg("-fsi", default_val="sites.txt")
    #meas_file = os.path.join(dir_path, meas_file)
    #spec_file = os.path.join(dir_path, spec_file)
    #samp_file = os.path.join(dir_path, samp_file)
    #site_file = os.path.join(dir_path, site_file)
    plot_file = pmag.get_named_arg("-Fp", default_val="")
    crd = pmag.get_named_arg("-crd", default_val="s")
    if crd == "s":
        coord = "-1"
    elif crd == "t":
        coord = "100"
    else:
        coord = "0"
    saved_coord = coord
    fmt = pmag.get_named_arg("-fmt", "svg")
    specimen = pmag.get_named_arg("-spc", default_val="")
    #if specimen: # just save plot and exit
    #    plots, verbose = 1, 0
    beg_pca, end_pca = "", ""
    if '-dir' in sys.argv:
        ind = sys.argv.index('-dir')
        direction_type = sys.argv[ind + 1]
        beg_pca = int(sys.argv[ind + 2])
        end_pca = int(sys.argv[ind + 3])
        if direction_type == 'L':
            calculation_type = 'DE-BFL'
        if direction_type == 'P':
            calculation_type = 'DE-BFP'
        if direction_type == 'F':
            calculation_type = 'DE-FM'
    if '-A' in sys.argv:
        doave = 0
    if '-sav' in sys.argv:
        plots, verbose = 1, 0
    #
    first_save = 1
    fnames = {
        'measurements': meas_file,
        'specimens': spec_file,
        'samples': samp_file,
        'sites': site_file
    }
    contribution = cb.Contribution(
        dir_path,
        custom_filenames=fnames,
        read_tables=['measurements', 'specimens', 'samples', 'sites'])
    #
    #   import  specimens

    if 'measurements' not in contribution.tables:
        print('-W- No measurements table found in your working directory')
        return

    specimen_cols = [
        'analysts', 'aniso_ftest', 'aniso_ftest12', 'aniso_ftest23', 'aniso_s',
        'aniso_s_mean', 'aniso_s_n_measurements', 'aniso_s_sigma',
        'aniso_s_unit', 'aniso_tilt_correction', 'aniso_type', 'aniso_v1',
        'aniso_v2', 'aniso_v3', 'citations', 'description', 'dir_alpha95',
        'dir_comp', 'dir_dec', 'dir_inc', 'dir_mad_free', 'dir_n_measurements',
        'dir_tilt_correction', 'experiments', 'geologic_classes',
        'geologic_types', 'hyst_bc', 'hyst_bcr', 'hyst_mr_moment',
        'hyst_ms_moment', 'int_abs', 'int_b', 'int_b_beta', 'int_b_sigma',
        'int_corr', 'int_dang', 'int_drats', 'int_f', 'int_fvds', 'int_gamma',
        'int_mad_free', 'int_md', 'int_n_measurements', 'int_n_ptrm', 'int_q',
        'int_rsc', 'int_treat_dc_field', 'lithologies', 'meas_step_max',
        'meas_step_min', 'meas_step_unit', 'method_codes', 'sample',
        'software_packages', 'specimen'
    ]
    if 'specimens' in contribution.tables:
        contribution.propagate_name_down('sample', 'measurements')
        # add location/site info to measurements table for naming plots
        if pmagplotlib.isServer:
            contribution.propagate_name_down('site', 'measurements')
            contribution.propagate_name_down('location', 'measurements')
        spec_container = contribution.tables['specimens']
        if 'method_codes' not in spec_container.df.columns:
            spec_container.df['method_codes'] = None
        prior_spec_data = spec_container.get_records_for_code(
            'LP-DIR', strict_match=False
        )  # look up all prior directional interpretations
#
#  tie sample names to measurement data
#
    else:
        spec_container, prior_spec_data = None, []

#
#   import samples  for orientation info
#
    if 'samples' in contribution.tables:
        samp_container = contribution.tables['samples']
        samps = samp_container.df
        samp_data = samps.to_dict(
            'records'
        )  # convert to list of dictionaries for use with get_orient
    else:
        samp_data = []
    #if ('samples' in contribution.tables) and ('specimens' in contribution.tables):
    #    #        contribution.propagate_name_down('site','measurements')
    #    contribution.propagate_cols(col_names=[
    #                                'azimuth', 'dip', 'orientation_quality','bed_dip','bed_dip_direction'], target_df_name='measurements', source_df_name='samples')
##
# define figure numbers for equal area, zijderveld,
#  and intensity vs. demagnetiztion step respectively
#
    ZED = {}
    ZED['eqarea'], ZED['zijd'], ZED['demag'] = 1, 2, 3
    pmagplotlib.plot_init(ZED['eqarea'], 6, 6)
    pmagplotlib.plot_init(ZED['zijd'], 6, 6)
    pmagplotlib.plot_init(ZED['demag'], 6, 6)
    #    save_pca=0
    angle, direction_type, setangle = "", "", 0
    #   create measurement dataframe
    #
    meas_container = contribution.tables['measurements']
    meas_data = meas_container.df
    #
    meas_data = meas_data[meas_data['method_codes'].str.contains(
        'LT-NO|LT-AF-Z|LT-T-Z|LT-M-Z') == True]  # fish out steps for plotting
    meas_data = meas_data[meas_data['method_codes'].str.contains(
        'AN|ARM|LP-TRM|LP-PI-ARM') == False]  # strip out unwanted experiments
    intensity_types = [
        col_name for col_name in meas_data.columns if col_name in intlist
    ]
    intensity_types = [
        col_name for col_name in intensity_types if any(meas_data[col_name])
    ]
    if not len(intensity_types):
        print('-W- No intensity columns found')
        return
    # plot first non-empty intensity method found - normalized to initial value anyway -
    # doesn't matter which used
    int_key = intensity_types[0]
    # get all the non-null intensity records of the same type
    meas_data = meas_data[meas_data[int_key].notnull()]
    if 'quality' not in meas_data.columns:
        meas_data['quality'] = 'g'  # set the default flag to good
# need to treat LP-NO specially  for af data, treatment should be zero,
# otherwise 273.
#meas_data['treatment'] = meas_data['treat_ac_field'].where(
#    cond=meas_data['treat_ac_field'] != 0, other=meas_data['treat_temp'])
    meas_data['treatment'] = meas_data['treat_ac_field'].where(
        cond=meas_data['treat_ac_field'].astype(bool),
        other=meas_data['treat_temp'])
    meas_data['ZI'] = 1  # initialize these to one
    meas_data['instrument_codes'] = ""  # initialize these to blank
    #   for unusual case of microwave power....
    if 'treat_mw_power' in meas_data.columns:
        meas_data.loc[
            (meas_data.treat_mw_power != 0) & (meas_data.treat_mw_power) &
            (meas_data.treat_mw_time),
            'treatment'] = meas_data.treat_mw_power * meas_data.treat_mw_time
#
# get list of unique specimen names from measurement data
#
# this is a list of all the specimen names
    specimen_names = meas_data.specimen.unique()
    specimen_names = specimen_names.tolist()
    specimen_names.sort()
    #
    # set up new DataFrame for this sessions specimen interpretations
    #
    data_container = cb.MagicDataFrame(dtype='specimens',
                                       columns=specimen_cols)
    # this is for interpretations from this session
    current_spec_data = data_container.df
    if specimen == "":
        k = 0
    else:
        k = specimen_names.index(specimen)
    # let's look at the data now
    while k < len(specimen_names):
        mpars = {"specimen_direction_type": "Error"}
        # set the current specimen for plotting
        this_specimen = specimen_names[k]
        # reset beginning/end pca if plotting more than one specimen
        if not specimen:
            beg_pca, end_pca = "", ""
        if verbose and this_specimen != "":
            print(this_specimen, k + 1, 'out of ', len(specimen_names))
        if setangle == 0:
            angle = ""
        this_specimen_measurements = meas_data[
            meas_data['specimen'].str.contains(this_specimen).astype(
                bool)]  # fish out this specimen
        this_specimen_measurements = this_specimen_measurements[
            -this_specimen_measurements['quality'].str.contains('b').astype(
                bool)]  # remove bad measurements
        if len(this_specimen_measurements) != 0:  # if there are measurements
            meas_list = this_specimen_measurements.to_dict(
                'records')  # get a list of dictionaries
            this_sample = ""
            if coord != '-1' and 'sample' in meas_list[0].keys(
            ):  # look up sample name
                this_sample = pmag.get_dictitem(meas_list, 'specimen',
                                                this_specimen, 'T')
                if len(this_sample) > 0:
                    this_sample = this_sample[0]['sample']
            #
            #    set up datablock [[treatment,dec, inc, int, direction_type],[....]]
            #
            #
            # figure out the method codes
            #
            units, methods, title = "", "", this_specimen

            if pmagplotlib.isServer:
                try:
                    loc = this_specimen_measurements.loc[:,
                                                         'location'].values[0]
                except:
                    loc = ""
                try:
                    site = this_specimen_measurements.loc[:, 'site'].values[0]
                except:
                    site = ""
                try:
                    samp = this_specimen_measurements.loc[:,
                                                          'sample'].values[0]
                except:
                    samp = ""
                title = "LO:_{}_SI:_{}_SA:_{}_SP:_{}_".format(
                    loc, site, samp, this_specimen)
            # this is a list of all the specimen method codes
            meas_meths = this_specimen_measurements.method_codes.unique()
            tr = pd.to_numeric(this_specimen_measurements.treatment).tolist()
            if any(cb.is_null(treat, False) for treat in tr):
                print(
                    '-W- Missing required values in measurements.treatment for {}, skipping'
                    .format(this_specimen))
                if specimen:
                    return
                k += 1
                continue
            if set(tr) == set([0]):
                print(
                    '-W- Missing required values in measurements.treatment for {}, skipping'
                    .format(this_specimen))
                if specimen:
                    return
                k += 1
                continue
            for m in meas_meths:
                if 'LT-AF-Z' in m and 'T' not in units:
                    units = 'T'  # units include tesla
                    tr[0] = 0
                if 'LT-T-Z' in m and 'K' not in units:
                    units = units + ":K"  # units include kelvin
                if 'LT-M-Z' in m and 'J' not in units:
                    units = units + ':J'  # units include joules
                    tr[0] = 0
                units = units.strip(':')  # strip off extra colons
                if 'LP-' in m:
                    methods = methods + ":" + m
            decs = pd.to_numeric(this_specimen_measurements.dir_dec).tolist()
            incs = pd.to_numeric(this_specimen_measurements.dir_inc).tolist()

            #
            #    fix the coordinate system
            #
            # revert to original coordinate system
            coord = saved_coord
            if coord != '-1':  # need to transform coordinates to geographic
                # get the azimuth
                or_info, az_type = pmag.get_orient(samp_data,
                                                   this_sample,
                                                   data_model=3)
                if 'azimuth' in or_info.keys() and cb.not_null(
                        or_info['azimuth']):
                    #azimuths = pd.to_numeric(
                    #    this_specimen_measurements.azimuth).tolist()
                    #dips = pd.to_numeric(this_specimen_measurements.dip).tolist()
                    azimuths = len(decs) * [or_info['azimuth']]
                    dips = len(decs) * [or_info['dip']]
                # if azimuth/dip is missing, plot using specimen coordinates instead
                else:
                    azimuths, dips = [], []
                if any([cb.is_null(az) for az in azimuths if az != 0]):
                    coord = '-1'
                    print("-W- Couldn't find azimuth and dip for {}".format(
                        this_specimen))
                    print("    Plotting with specimen coordinates instead")
                elif any([cb.is_null(dip) for dip in dips if dip != 0]):
                    coord = '-1'
                    print("-W- Couldn't find azimuth and dip for {}".format(
                        this_specimen))
                    print("    Plotting with specimen coordinates instead")
                else:
                    coord = saved_coord
                # if azimuth and dip were found, continue with geographic coordinates
                if coord != "-1" and len(azimuths) > 0:
                    dirs = [decs, incs, azimuths, dips]
                    # this transposes the columns and rows of the list of lists
                    dirs_geo = np.array(list(map(list, list(zip(*dirs)))))
                    decs, incs = pmag.dogeo_V(dirs_geo)
                    if coord == '100' and 'bed_dip_direction' in or_info.keys(
                    ) and or_info[
                            'bed_dip_direction'] != "":  # need to do tilt correction too
                        bed_dip_dirs = len(decs) * [
                            or_info['bed_dip_direction']
                        ]
                        bed_dips = len(decs) * [or_info['bed_dip']]
                        #bed_dip_dirs = pd.to_numeric(
                        #    this_specimen_measurements.bed_dip_direction).tolist()  # get the azimuths
                        #bed_dips = pd.to_numeric(
                        #    this_specimen_measurements.bed_dip).tolist()  # get the azimuths

                        dirs = [decs, incs, bed_dip_dirs, bed_dips]
                        ## this transposes the columns and rows of the list of lists
                        dirs_tilt = np.array(list(map(list, list(zip(*dirs)))))
                        decs, incs = pmag.dotilt_V(dirs_tilt)
                        if pmagplotlib.isServer:
                            title = title + "CO:_t_"
                        else:
                            title = title + '_t'
                    else:
                        if pmagplotlib.isServer:
                            title = title + "CO:_g_"
                        else:
                            title = title + '_g'
            if angle == "":
                angle = decs[0]
            ints = pd.to_numeric(this_specimen_measurements[int_key]).tolist()
            ZI = this_specimen_measurements.ZI.tolist()
            flags = this_specimen_measurements.quality.tolist()
            codes = this_specimen_measurements.instrument_codes.tolist()
            datalist = [tr, decs, incs, ints, ZI, flags, codes]
            # this transposes the columns and rows of the list of lists
            datablock = list(map(list, list(zip(*datalist))))
            pmagplotlib.plot_zed(ZED, datablock, angle, title, units)
            if verbose and not set_env.IS_WIN:
                pmagplotlib.draw_figs(ZED)
#
#     collect info for current_specimen_interpretation dictionary
#

#
#     find prior interpretation
#
            prior_specimen_interpretations = []
            if len(prior_spec_data):
                prior_specimen_interpretations = prior_spec_data[
                    prior_spec_data['specimen'].str.contains(
                        this_specimen) == True]
            if (beg_pca == "") and (len(prior_specimen_interpretations) != 0):
                if len(prior_specimen_interpretations) > 0:
                    beg_pcas = pd.to_numeric(prior_specimen_interpretations.
                                             meas_step_min.values).tolist()
                    end_pcas = pd.to_numeric(prior_specimen_interpretations.
                                             meas_step_max.values).tolist()
                    spec_methods = prior_specimen_interpretations.method_codes.tolist(
                    )
                    # step through all prior interpretations and plot them
                    for ind in range(len(beg_pcas)):
                        spec_meths = spec_methods[ind].split(':')
                        for m in spec_meths:
                            if 'DE-BFL' in m:
                                calculation_type = 'DE-BFL'  # best fit line
                            if 'DE-BFP' in m:
                                calculation_type = 'DE-BFP'  # best fit plane
                            if 'DE-FM' in m:
                                calculation_type = 'DE-FM'  # fisher mean
                            if 'DE-BFL-A' in m:
                                calculation_type = 'DE-BFL-A'  # anchored best fit line
                        if len(beg_pcas) != 0:
                            try:
                                # getting the starting and ending points
                                start, end = tr.index(beg_pcas[ind]), tr.index(
                                    end_pcas[ind])
                                mpars = pmag.domean(datablock, start, end,
                                                    calculation_type)
                            except ValueError:
                                print(
                                    '-W- Specimen record contains invalid start/stop bounds:'
                                )
                                mpars['specimen_direction_type'] = "Error"
                        # calculate direction/plane
                            if mpars["specimen_direction_type"] != "Error":
                                # put it on the plot
                                pmagplotlib.plot_dir(ZED, mpars, datablock,
                                                     angle)
                                if verbose and not set_env.IS_WIN:
                                    pmagplotlib.draw_figs(ZED)
### SKIP if no prior interpretation - this section should not be used:
#            else:
#                try:
#                    start, end = int(beg_pca), int(end_pca)
#                except ValueError:
#                    beg_pca = 0
#                    end_pca = len(datablock) - 1
#                    start, end = int(beg_pca), int(end_pca)
#            #    # calculate direction/plane
#                try:
#                    mpars = pmag.domean(datablock, start, end, calculation_type)
#                except Exception as ex:
#                    print('-I- Problem with {}'.format(this_specimen))
#                    print('   ', ex)
#                    print('    Skipping')
#                    continue
#                    k += 1
#                if mpars["specimen_direction_type"] != "Error":
#                    # put it on the plot
#                    pmagplotlib.plot_dir(ZED, mpars, datablock, angle)
#                    if verbose:
#                        pmagplotlib.draw_figs(ZED)

            if plots == 1 or specimen != "":
                if plot_file == "":
                    basename = title
                else:
                    basename = plot_file
                files = {}
                for key in list(ZED.keys()):
                    files[key] = basename + '_' + key + '.' + fmt
                    if pmagplotlib.isServer:
                        files[key] = basename + "TY:_{}_.".format(key) + fmt
                pmagplotlib.save_plots(ZED, files)
                if specimen != "":
                    sys.exit()
            if verbose:
                recnum = 0
                for plotrec in datablock:
                    if units == 'T':
                        print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' %
                              (plotrec[5], recnum, plotrec[0] * 1e3, " mT",
                               plotrec[3], plotrec[1], plotrec[2], plotrec[6]))
                    if units == "K":
                        print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' %
                              (plotrec[5], recnum, plotrec[0] - 273, ' C',
                               plotrec[3], plotrec[1], plotrec[2], plotrec[6]))
                    if units == "J":
                        print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' %
                              (plotrec[5], recnum, plotrec[0], ' J',
                               plotrec[3], plotrec[1], plotrec[2], plotrec[6]))
                    if 'K' in units and 'T' in units:
                        if plotrec[0] >= 1.:
                            print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' %
                                  (plotrec[5], recnum, plotrec[0] - 273, ' C',
                                   plotrec[3], plotrec[1], plotrec[2],
                                   plotrec[6]))
                        if plotrec[0] < 1.:
                            print('%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' %
                                  (plotrec[5], recnum, plotrec[0] * 1e3, " mT",
                                   plotrec[3], plotrec[1], plotrec[2],
                                   plotrec[6]))
                    recnum += 1
            # we have a current interpretation
            elif mpars["specimen_direction_type"] != "Error":
                #
                # create a new specimen record for the interpreation for this
                # specimen
                this_specimen_interpretation = {
                    col: ""
                    for col in specimen_cols
                }
                #               this_specimen_interpretation["analysts"]=user
                this_specimen_interpretation['software_packages'] = version_num
                this_specimen_interpretation['specimen'] = this_specimen
                this_specimen_interpretation["method_codes"] = calculation_type
                this_specimen_interpretation["meas_step_unit"] = units
                this_specimen_interpretation["meas_step_min"] = tr[start]
                this_specimen_interpretation["meas_step_max"] = tr[end]
                this_specimen_interpretation["dir_dec"] = '%7.1f' % (
                    mpars['specimen_dec'])
                this_specimen_interpretation["dir_inc"] = '%7.1f' % (
                    mpars['specimen_inc'])
                this_specimen_interpretation["dir_dang"] = '%7.1f' % (
                    mpars['specimen_dang'])
                this_specimen_interpretation["dir_n_measurements"] = '%i' % (
                    mpars['specimen_n'])
                this_specimen_interpretation["dir_tilt_correction"] = coord
                methods = methods.replace(" ", "")
                if "T" in units:
                    methods = methods + ":LP-DIR-AF"
                if "K" in units:
                    methods = methods + ":LP-DIR-T"
                if "J" in units:
                    methods = methods + ":LP-DIR-M"
                this_specimen_interpretation["method_codes"] = methods.strip(
                    ':')
                this_specimen_interpretation[
                    "experiments"] = this_specimen_measurements.experiment.unique(
                    )[0]
                #
                #   print some stuff
                #
                if calculation_type != 'DE-FM':
                    this_specimen_interpretation["dir_mad_free"] = '%7.1f' % (
                        mpars['specimen_mad'])
                    this_specimen_interpretation["dir_alpha95"] = ''
                    if verbose:
                        if units == 'K':
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n'
                                %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_mad_free"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]) - 273,
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]) - 273,
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                        elif units == 'T':
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n'
                                %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_mad_free"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]) * 1e3,
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]) * 1e3,
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                        elif 'T' in units and 'K' in units:
                            if float(this_specimen_interpretation[
                                    'meas_step_min']) < 1.0:
                                min = float(this_specimen_interpretation[
                                    'meas_step_min']) * 1e3
                            else:
                                min = float(this_specimen_interpretation[
                                    'meas_step_min']) - 273
                            if float(this_specimen_interpretation[
                                    'meas_step_max']) < 1.0:
                                max = float(this_specimen_interpretation[
                                    'meas_step_max']) * 1e3
                            else:
                                max = float(this_specimen_interpretation[
                                    'meas_step_max']) - 273
                            print(
                                '%s %i %7.1f %i %i %7.1f %7.1f %7.1f %s \n' %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_mad_free"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 min, max,
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                        else:
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n'
                                %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_mad_free"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]),
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                else:
                    this_specimen_interpretation["dir_alpha95"] = '%7.1f' % (
                        mpars['specimen_alpha95'])
                    this_specimen_interpretation["dir_mad_free"] = ''
                    if verbose:
                        if 'K' in units:
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n'
                                %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurments"]),
                                 float(this_specimen_interpretation[
                                     "dir_mad_free"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]) - 273,
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]) - 273,
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                        elif 'T' in units:
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %s \n'
                                %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_alpha95"]),
                                 float(
                                     this_specimen_interpretation["dir_dang"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]) * 1e3,
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]) * 1e3,
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                        elif 'T' in units and 'K' in units:
                            if float(this_specimen_interpretation[
                                    'meas_step_min']) < 1.0:
                                min = float(this_specimen_interpretation[
                                    'meas_step_min']) * 1e3
                            else:
                                min = float(this_specimen_interpretation[
                                    'meas_step_min']) - 273
                            if float(this_specimen_interpretation[
                                    'meas_step_max']) < 1.0:
                                max = float(this_specimen_interpretation[
                                    'meas_step_max']) * 1e3
                            else:
                                max = float(this_specimen_interpretation[
                                    'meas_step_max']) - 273
                            print('%s %i %7.1f %i %i %7.1f %7.1f %s \n' % (
                                this_specimen_interpretation["specimen"],
                                int(this_specimen_interpretation[
                                    "dir_n_measurements"]),
                                float(
                                    this_specimen_interpretation["dir_alpha95"]
                                ), min, max,
                                float(this_specimen_interpretation["dir_dec"]),
                                float(this_specimen_interpretation["dir_inc"]),
                                calculation_type))
                        else:
                            print(
                                '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %s \n' %
                                (this_specimen_interpretation["specimen"],
                                 int(this_specimen_interpretation[
                                     "dir_n_measurements"]),
                                 float(this_specimen_interpretation[
                                     "dir_alpha95"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_min"]),
                                 float(this_specimen_interpretation[
                                     "meas_step_max"]),
                                 float(
                                     this_specimen_interpretation["dir_dec"]),
                                 float(
                                     this_specimen_interpretation["dir_inc"]),
                                 calculation_type))
                if verbose:
                    saveit = input("Save this interpretation? [y]/n \n")
        else:
            print("no data", this_specimen)
        if verbose:
            pmagplotlib.draw_figs(ZED)
            #res = input('  <return> for next specimen, [q]uit  ')
            res = input("S[a]ve plots, [q]uit, or <return> to continue  ")
            if res == 'a':
                files = {
                    plot_type: this_specimen + "_" + plot_type + "." + fmt
                    for plot_type in ZED
                }
                pmagplotlib.save_plots(ZED, files)
                print("")
            if res == 'q':
                return
        k += 1
Ejemplo n.º 43
0
def main():
    """
    NAME
        make_magic_plots.py

    DESCRIPTION
 	inspects magic directory for available plots.

    SYNTAX
        make_magic_plots.py [command line options]

    INPUT
        magic files

    OPTIONS
        -h prints help message and quits
        -f FILE specifies input file name
        -fmt [png,eps,svg,jpg,pdf] specify format, default is png
    """
    dirlist = ['./']
    dir_path = os.getcwd()
    names = os.listdir(dir_path)
    for n in names:
        if 'Location' in n:
            dirlist.append(n)
    if '-fmt' in sys.argv:
        ind = sys.argv.index("-fmt")
        fmt = sys.argv[ind + 1]
    else:
        fmt = 'png'
    if '-f' in sys.argv:
        ind = sys.argv.index("-f")
        filelist = [sys.argv[ind + 1]]
    else:
        filelist = os.listdir(dir_path)
    if '-h' in sys.argv:
        print(main.__doc__)
        sys.exit()
    for loc in dirlist:
        print('working on: ', loc)
        os.chdir(loc)  # change working directories to each location
        crd = 's'
        if 'er_samples.txt' in filelist:  # find coordinate systems
            samps, file_type = pmag.magic_read(
                'er_samples.txt')  # read in data
            Srecs = pmag.get_dictitem(
                samps, 'sample_azimuth', '',
                'F')  # get all none blank sample orientations
            if len(Srecs) > 0:
                crd = 'g'
        if 'magic_measurements.txt' in filelist:  # start with measurement data
            print('working on measurements data')
            data, file_type = pmag.magic_read(
                'magic_measurements.txt')  # read in data
            if loc == './':
                data = pmag.get_dictitem(
                    data, 'er_location_name', '',
                    'T')  # get all the blank location names from data file
            # looking for  zeq_magic possibilities
            AFZrecs = pmag.get_dictitem(
                data, 'magic_method_codes', 'LT-AF-Z',
                'has')  # get all none blank method codes
            TZrecs = pmag.get_dictitem(
                data, 'magic_method_codes', 'LT-T-Z',
                'has')  # get all none blank method codes
            MZrecs = pmag.get_dictitem(
                data, 'magic_method_codes', 'LT-M-Z',
                'has')  # get all none blank method codes
            Drecs = pmag.get_dictitem(data, 'measurement_dec', '',
                                      'F')  # get all dec measurements
            Irecs = pmag.get_dictitem(data, 'measurement_inc', '',
                                      'F')  # get all dec measurements
            Mkeys = [
                'measurement_magnitude', 'measurement_magn_moment',
                'measurement_magn_volume', 'measurement_magn_mass'
            ]
            for key in Mkeys:
                Mrecs = pmag.get_dictitem(data, key, '',
                                          'F')  # get intensity data
                if len(Mrecs) > 0: break
            if len(AFZrecs) > 0 or len(TZrecs) > 0 or len(MZrecs) > 0 and len(
                    Drecs) > 0 and len(Irecs) > 0 and len(
                        Mrecs) > 0:  # potential for stepwise demag curves
                print('zeq_magic.py -fsp pmag_specimens.txt -sav -fmt ' + fmt +
                      ' -crd ' + crd)
                os.system('zeq_magic.py -sav -fmt ' + fmt + ' -crd ' + crd)
            # looking for  thellier_magic possibilities
            if len(
                    pmag.get_dictitem(data, 'magic_method_codes', 'LP-PI-TRM',
                                      'has')) > 0:
                print('thellier_magic.py -fsp pmag_specimens.txt -sav -fmt ' +
                      fmt)
                os.system('thellier_magic.py -sav -fmt ' + fmt)
            # looking for hysteresis possibilities
            if len(
                    pmag.get_dictitem(data, 'magic_method_codes', 'LP-HYS',
                                      'has')) > 0:  # find hyst experiments
                print('quick_hyst.py -sav -fmt ' + fmt)
                os.system('quick_hyst.py -sav -fmt ' + fmt)
        if 'pmag_results.txt' in filelist:  # start with measurement data
            data, file_type = pmag.magic_read(
                'pmag_results.txt')  # read in data
            print('number of datapoints: ', len(data))
            if loc == './':
                data = pmag.get_dictitem(
                    data, 'er_location_names', ':', 'has'
                )  # get all the concatenated location names from data file
            print('number of datapoints: ', len(data), loc)
            print('working on pmag_results directions')
            SiteDIs = pmag.get_dictitem(data, 'average_dec', "",
                                        'F')  # find decs
            print('number of directions: ', len(SiteDIs))
            SiteDIs = pmag.get_dictitem(SiteDIs, 'average_inc', "",
                                        'F')  # find decs and incs
            print('number of directions: ', len(SiteDIs))
            SiteDIs = pmag.get_dictitem(
                SiteDIs, 'data_type', 'i',
                'has')  # only individual results - not poles
            print('number of directions: ', len(SiteDIs))
            SiteDIs_t = pmag.get_dictitem(SiteDIs, 'tilt_correction', '100',
                                          'T')  # tilt corrected coordinates
            print('number of directions: ', len(SiteDIs))
            if len(SiteDIs_t) > 0:
                print('eqarea_magic.py -sav -crd t -fmt ' + fmt)
                os.system('eqarea_magic.py -sav -crd t -fmt ' + fmt)
            elif len(SiteDIs) > 0 and 'tilt_correction' not in SiteDIs[0].keys(
            ):
                print('eqarea_magic.py -sav -fmt ' + fmt)
                os.system('eqarea_magic.py -sav -fmt ' + fmt)
            else:
                SiteDIs_g = pmag.get_dictitem(SiteDIs, 'tilt_correction', '0',
                                              'T')  # geographic coordinates
                if len(SiteDIs_g) > 0:
                    print('eqarea_magic.py -sav -crd g -fmt ' + fmt)
                    os.system('eqarea_magic.py -sav -crd g -fmt ' + fmt)
                else:
                    SiteDIs_s = pmag.get_dictitem(SiteDIs, 'tilt_correction',
                                                  '-1',
                                                  'T')  # sample coordinates
                    if len(SiteDIs_s) > 0:
                        print('eqarea_magic.py -sav -crd s -fmt ' + fmt)
                        os.system('eqarea_magic.py -sav -crd s -fmt ' + fmt)
                    else:
                        SiteDIs_x = pmag.get_dictitem(SiteDIs,
                                                      'tilt_correction', '',
                                                      'T')  # no coordinates
                        if len(SiteDIs_x) > 0:
                            print('eqarea_magic.py -sav -fmt ' + fmt)
                            os.system('eqarea_magic.py -sav -fmt ' + fmt)
            print('working on pmag_results VGP map')
            VGPs = pmag.get_dictitem(SiteDIs, 'vgp_lat', "",
                                     'F')  # are there any VGPs?
            if len(VGPs) > 0:  # YES!
                os.system(
                    'vgpmap_magic.py -prj moll -res c -sym ro 5 -sav -fmt png')
            print('working on pmag_results intensities')
            os.system(
                'magic_select.py -f pmag_results.txt -key data_type i T -F tmp.txt'
            )
            os.system(
                'magic_select.py -f tmp.txt -key average_int 0. has -F tmp1.txt'
            )
            os.system(
                "grab_magic_key.py -f tmp1.txt -key average_int | awk '{print $1*1e6}' >tmp2.txt"
            )
            data, file_type = pmag.magic_read('tmp1.txt')  # read in data
            locations = pmag.get_dictkey(data, 'er_location_names', "")
            histfile = 'LO:_' + locations[0] + '_intensities_histogram:_.' + fmt
            os.system(
                "histplot.py -b 1 -xlab 'Intensity (uT)' -sav -f tmp2.txt -F "
                + histfile)
            print(
                "histplot.py -b 1 -xlab 'Intensity (uT)' -sav -f tmp2.txt -F "
                + histfile)
            os.system('rm tmp*.txt')
        if 'rmag_hysteresis.txt' in filelist:  # start with measurement data
            print('working on rmag_hysteresis')
            data, file_type = pmag.magic_read(
                'rmag_hysteresis.txt')  # read in data
            if loc == './':
                data = pmag.get_dictitem(
                    data, 'er_location_name', '',
                    'T')  # get all the blank location names from data file
            hdata = pmag.get_dictitem(data, 'hysteresis_bcr', '', 'F')
            hdata = pmag.get_dictitem(hdata, 'hysteresis_mr_moment', '', 'F')
            hdata = pmag.get_dictitem(hdata, 'hysteresis_ms_moment', '', 'F')
            hdata = pmag.get_dictitem(hdata, 'hysteresis_bc', '',
                                      'F')  # there are data for a dayplot
            if len(hdata) > 0:
                print('dayplot_magic.py -sav -fmt ' + fmt)
                os.system('dayplot_magic.py -sav -fmt ' + fmt)
    #if 'er_sites.txt' in filelist: # start with measurement data
    #    print 'working on er_sites'
    #os.system('basemap_magic.py -sav -fmt '+fmt)
        if 'rmag_anisotropy.txt' in filelist:  # do anisotropy plots if possible
            print('working on rmag_anisotropy')
            data, file_type = pmag.magic_read(
                'rmag_anisotropy.txt')  # read in data
            if loc == './':
                data = pmag.get_dictitem(
                    data, 'er_location_name', '',
                    'T')  # get all the blank location names from data file
            sdata = pmag.get_dictitem(data, 'anisotropy_tilt_correction', '-1',
                                      'T')  # get specimen coordinates
            gdata = pmag.get_dictitem(data, 'anisotropy_tilt_correction', '0',
                                      'T')  # get specimen coordinates
            tdata = pmag.get_dictitem(data, 'anisotropy_tilt_correction',
                                      '100', 'T')  # get specimen coordinates
            if len(sdata) > 3:
                print('aniso_magic.py -x -B -crd s -sav -fmt ' + fmt)
                os.system('aniso_magic.py -x -B -crd s -sav -fmt ' + fmt)
            if len(gdata) > 3:
                os.system('aniso_magic.py -x -B -crd g -sav -fmt ' + fmt)
            if len(tdata) > 3:
                os.system('aniso_magic.py -x -B -crd t -sav -fmt ' + fmt)
        if loc != './':
            os.chdir('..')  # change working directories to each location
Ejemplo n.º 44
0
def main():
    """
    NAME
        scalc_magic.py

    DESCRIPTION
       calculates Sb from pmag_results files

    SYNTAX 
        scalc_magic -h [command line options]
    
    INPUT 
       takes magic formatted pmag_results table
       pmag_result_name must start with "VGP: Site"
       must have average_lat if spin axis is reference
    
    OPTIONS
        -h prints help message and quits
        -f FILE: specify input results file, default is 'pmag_results.txt'
        -c cutoff:  specify VGP colatitude cutoff value
        -k cutoff: specify kappa cutoff
        -crd [s,g,t]: specify coordinate system, default is geographic
        -v : use the VanDammme criterion 
        -a: use antipodes of reverse data: default is to use only normal
        -C: use all data without regard to polarity
        -r:  use reverse data only
        -p: do relative to principle axis
        -b: do bootstrap confidence bounds

     OUTPUT:
         if option -b used: N,  S_B, lower and upper bounds
         otherwise: N,  S_B, cutoff
    """
    in_file = 'pmag_results.txt'
    coord, kappa, cutoff = "0", 1., 90.
    nb, anti, spin, v, boot = 1000, 0, 1, 0, 0
    coord_key = 'tilt_correction'
    rev = 0
    if '-h' in sys.argv:
        print(main.__doc__)
        sys.exit()
    if '-f' in sys.argv:
        ind = sys.argv.index("-f")
        in_file = sys.argv[ind + 1]
    if '-c' in sys.argv:
        ind = sys.argv.index('-c')
        cutoff = float(sys.argv[ind + 1])
    if '-k' in sys.argv:
        ind = sys.argv.index('-k')
        kappa = float(sys.argv[ind + 1])
    if '-crd' in sys.argv:
        ind = sys.argv.index("-crd")
        coord = sys.argv[ind + 1]
        if coord == 's': coord = "-1"
        if coord == 'g': coord = "0"
        if coord == 't': coord = "100"
    if '-a' in sys.argv: anti = 1
    if '-C' in sys.argv: cutoff = 180.  # no cutoff
    if '-r' in sys.argv: rev = 1
    if '-p' in sys.argv: spin = 0
    if '-v' in sys.argv: v = 1
    if '-b' in sys.argv: boot = 1
    data, file_type = pmag.magic_read(in_file)
    #
    #
    # find desired vgp lat,lon, kappa,N_site data:
    #
    #
    #
    A, Vgps, Pvgps = 180., [], []
    VgpRecs = pmag.get_dictitem(data, 'vgp_lat', '',
                                'F')  # get all non-blank vgp latitudes
    VgpRecs = pmag.get_dictitem(VgpRecs, 'vgp_lon', '',
                                'F')  # get all non-blank vgp longitudes
    SiteRecs = pmag.get_dictitem(VgpRecs, 'data_type', 'i',
                                 'T')  # get VGPs (as opposed to averaged)
    SiteRecs = pmag.get_dictitem(SiteRecs, coord_key, coord,
                                 'T')  # get right coordinate system
    for rec in SiteRecs:
        if anti == 1:
            if 90. - abs(float(rec['vgp_lat'])) <= cutoff and float(
                    rec['average_k']) >= kappa:
                if float(rec['vgp_lat']) < 0:
                    rec['vgp_lat'] = '%7.1f' % (-1 * float(rec['vgp_lat']))
                    rec['vgp_lon'] = '%7.1f' % (float(rec['vgp_lon']) - 180.)
                Vgps.append(rec)
                Pvgps.append([float(rec['vgp_lon']), float(rec['vgp_lat'])])
        elif rev == 0:  # exclude normals
            if 90. - (float(rec['vgp_lat'])) <= cutoff and float(
                    rec['average_k']) >= kappa:
                Vgps.append(rec)
                Pvgps.append([float(rec['vgp_lon']), float(rec['vgp_lat'])])
        else:  # include normals
            if 90. - abs(float(rec['vgp_lat'])) <= cutoff and float(
                    rec['average_k']) >= kappa:
                if float(rec['vgp_lat']) < 0:
                    rec['vgp_lat'] = '%7.1f' % (-1 * float(rec['vgp_lat']))
                    rec['vgp_lon'] = '%7.1f' % (float(rec['vgp_lon']) - 180.)
                    Vgps.append(rec)
                    Pvgps.append(
                        [float(rec['vgp_lon']),
                         float(rec['vgp_lat'])])
    if spin == 0:  # do transformation to pole
        ppars = pmag.doprinc(Pvgps)
        for vgp in Vgps:
            vlon, vlat = pmag.dotilt(float(vgp['vgp_lon']),
                                     float(vgp['vgp_lat']),
                                     ppars['dec'] - 180., 90. - ppars['inc'])
            vgp['vgp_lon'] = vlon
            vgp['vgp_lat'] = vlat
            vgp['average_k'] = "0"
    S_B = pmag.get_Sb(Vgps)
    A = cutoff
    if v == 1:
        thetamax, A = 181., 180.
        vVgps, cnt = [], 0
        for vgp in Vgps:
            vVgps.append(vgp)  # make a copy of Vgps
        while thetamax > A:
            thetas = []
            A = 1.8 * S_B + 5
            cnt += 1
            for vgp in vVgps:
                thetas.append(90. - (float(vgp['vgp_lat'])))
            thetas.sort()
            thetamax = thetas[-1]
            if thetamax < A: break
            nVgps = []
            for vgp in vVgps:
                if 90. - (float(vgp['vgp_lat'])) < thetamax: nVgps.append(vgp)
            vVgps = []
            for vgp in nVgps:
                vVgps.append(vgp)
            S_B = pmag.get_Sb(vVgps)
        Vgps = []
        for vgp in vVgps:
            Vgps.append(vgp)  # make a new Vgp list
    SBs = []
    if boot == 1:
        for i in range(nb):  # now do bootstrap
            BVgps = []
            if i % 100 == 0: print(i, ' out of ', nb)
            for k in range(len(Vgps)):
                random.seed()
                ind = random.randint(0, len(Vgps) - 1)
                BVgps.append(Vgps[ind])
            SBs.append(pmag.get_Sb(BVgps))
        SBs.sort()
        low = int(.025 * nb)
        high = int(.975 * nb)
        print(len(Vgps),
              '%7.1f _ %7.1f ^ %7.1f %7.1f' % (S_B, SBs[low], SBs[high], A))
    else:
        print(len(Vgps), '%7.1f  %7.1f ' % (S_B, A))
Ejemplo n.º 45
0
def main():
    """
    NAME
        aniso_magic.py

    DESCRIPTION
        plots anisotropy data with either bootstrap or hext ellipses

    SYNTAX
        aniso_magic.py [-h] [command line options]
    OPTIONS
        -h plots help message and quits
        -usr USER: set the user name
        -f AFILE, specify rmag_anisotropy formatted file for input
        -F RFILE, specify rmag_results formatted file for output
        -x Hext [1963] and bootstrap
        -B DON'T do bootstrap, do Hext
        -par Tauxe [1998] parametric bootstrap
        -v plot bootstrap eigenvectors instead of ellipses
        -sit plot by site instead of entire file
        -crd [s,g,t] coordinate system, default is specimen (g=geographic, t=tilt corrected)
        -P don't make any plots - just make rmag_results table
        -sav don't make the rmag_results table - just save all the plots
        -fmt [svg, jpg, eps] format for output images, pdf default
        -gtc DEC INC  dec,inc of pole to great circle [down(up) in green (cyan)
        -d Vi DEC INC; Vi (1,2,3) to compare to direction DEC INC
        -nb N; specifies the number of bootstraps - default is 1000
    DEFAULTS
       AFILE:  rmag_anisotropy.txt
       RFILE:  rmag_results.txt
       plot bootstrap ellipses of Constable & Tauxe [1987]
    NOTES
       minor axis: circles
       major axis: triangles
       principal axis: squares
       directions are plotted on the lower hemisphere
       for bootstrapped eigenvector components: Xs: blue, Ys: red, Zs: black
"""
    #
    dir_path = "."
    version_num = pmag.get_version()
    verbose = pmagplotlib.verbose
    args = sys.argv
    ipar, ihext, ivec, iboot, imeas, isite, iplot, vec = 0, 0, 0, 1, 1, 0, 1, 0
    hpars, bpars, PDir = [], [], []
    CS, crd = '-1', 's'
    nb = 1000
    fmt = 'pdf'
    ResRecs = []
    orlist = []
    outfile, comp, Dir, gtcirc, PDir = 'rmag_results.txt', 0, [], 0, []
    infile = 'rmag_anisotropy.txt'
    if "-h" in args:
        print(main.__doc__)
        sys.exit()
    if '-WD' in args:
        ind = args.index('-WD')
        dir_path = args[ind + 1]
    if '-nb' in args:
        ind = args.index('-nb')
        nb = int(args[ind + 1])
    if '-usr' in args:
        ind = args.index('-usr')
        user = args[ind + 1]
    else:
        user = ""
    if '-B' in args: iboot, ihext = 0, 1
    if '-par' in args: ipar = 1
    if '-x' in args: ihext = 1
    if '-v' in args: ivec = 1
    if '-sit' in args: isite = 1
    if '-P' in args: iplot = 0
    if '-f' in args:
        ind = args.index('-f')
        infile = args[ind + 1]
    if '-F' in args:
        ind = args.index('-F')
        outfile = args[ind + 1]
    if '-crd' in sys.argv:
        ind = sys.argv.index('-crd')
        crd = sys.argv[ind + 1]
        if crd == 'g': CS = '0'
        if crd == 't': CS = '100'
    if '-fmt' in args:
        ind = args.index('-fmt')
        fmt = args[ind + 1]
    if '-sav' in args:
        plots = 1
        verbose = 0
    else:
        plots = 0
    if '-gtc' in args:
        ind = args.index('-gtc')
        d, i = float(args[ind + 1]), float(args[ind + 2])
        PDir.append(d)
        PDir.append(i)
    if '-d' in args:
        comp = 1
        ind = args.index('-d')
        vec = int(args[ind + 1]) - 1
        Dir = [float(args[ind + 2]), float(args[ind + 3])]
#
# set up plots
#
    if infile[0] != '/': infile = dir_path + '/' + infile
    if outfile[0] != '/': outfile = dir_path + '/' + outfile
    ANIS = {}
    initcdf, inittcdf = 0, 0
    ANIS['data'], ANIS['conf'] = 1, 2
    if iboot == 1:
        ANIS['tcdf'] = 3
        if iplot == 1:
            inittcdf = 1
            pmagplotlib.plot_init(ANIS['tcdf'], 5, 5)
        if comp == 1 and iplot == 1:
            initcdf = 1
            ANIS['vxcdf'], ANIS['vycdf'], ANIS['vzcdf'] = 4, 5, 6
            pmagplotlib.plot_init(ANIS['vxcdf'], 5, 5)
            pmagplotlib.plot_init(ANIS['vycdf'], 5, 5)
            pmagplotlib.plot_init(ANIS['vzcdf'], 5, 5)
    if iplot == 1:
        pmagplotlib.plot_init(ANIS['conf'], 5, 5)
        pmagplotlib.plot_init(ANIS['data'], 5, 5)
# read in the data
    data, ifiletype = pmag.magic_read(infile)
    for rec in data:  # find all the orientation systems
        if 'anisotropy_tilt_correction' not in rec.keys():
            rec['anisotropy_tilt_correction'] = '-1'
        if rec['anisotropy_tilt_correction'] not in orlist:
            orlist.append(rec['anisotropy_tilt_correction'])
    if CS not in orlist:
        if len(orlist) > 0:
            CS = orlist[0]
        else:
            CS = '-1'
        if CS == '-1': crd = 's'
        if CS == '0': crd = 'g'
        if CS == '100': crd = 't'
        if verbose:
            print("desired coordinate system not available, using available: ",
                  crd)
    if isite == 1:
        sitelist = []
        for rec in data:
            if rec['er_site_name'] not in sitelist:
                sitelist.append(rec['er_site_name'])
        sitelist.sort()
        plt = len(sitelist)
    else:
        plt = 1
    k = 0
    while k < plt:
        site = ""
        sdata, Ss = [], []  # list of S format data
        Locs, Sites, Samples, Specimens, Cits = [], [], [], [], []
        if isite == 0:
            sdata = data
        else:
            site = sitelist[k]
            for rec in data:
                if rec['er_site_name'] == site: sdata.append(rec)
        anitypes = []
        csrecs = pmag.get_dictitem(sdata, 'anisotropy_tilt_correction', CS,
                                   'T')
        for rec in csrecs:
            if rec['anisotropy_type'] not in anitypes:
                anitypes.append(rec['anisotropy_type'])
            if rec['er_location_name'] not in Locs:
                Locs.append(rec['er_location_name'])
            if rec['er_site_name'] not in Sites:
                Sites.append(rec['er_site_name'])
            if rec['er_sample_name'] not in Samples:
                Samples.append(rec['er_sample_name'])
            if rec['er_specimen_name'] not in Specimens:
                Specimens.append(rec['er_specimen_name'])
            if rec['er_citation_names'] not in Cits:
                Cits.append(rec['er_citation_names'])
            s = []
            s.append(float(rec["anisotropy_s1"]))
            s.append(float(rec["anisotropy_s2"]))
            s.append(float(rec["anisotropy_s3"]))
            s.append(float(rec["anisotropy_s4"]))
            s.append(float(rec["anisotropy_s5"]))
            s.append(float(rec["anisotropy_s6"]))
            if s[0] <= 1.0: Ss.append(s)  # protect against crap
            #tau,Vdirs=pmag.doseigs(s)
            ResRec = {}
            ResRec['er_location_names'] = rec['er_location_name']
            ResRec['er_citation_names'] = rec['er_citation_names']
            ResRec['er_site_names'] = rec['er_site_name']
            ResRec['er_sample_names'] = rec['er_sample_name']
            ResRec['er_specimen_names'] = rec['er_specimen_name']
            ResRec['rmag_result_name'] = rec['er_specimen_name'] + ":" + rec[
                'anisotropy_type']
            ResRec["er_analyst_mail_names"] = user
            ResRec["tilt_correction"] = CS
            ResRec["anisotropy_type"] = rec['anisotropy_type']
            if "anisotropy_n" not in rec.keys(): rec["anisotropy_n"] = "6"
            if "anisotropy_sigma" not in rec.keys():
                rec["anisotropy_sigma"] = "0"
            fpars = pmag.dohext(
                int(rec["anisotropy_n"]) - 6, float(rec["anisotropy_sigma"]),
                s)
            ResRec["anisotropy_v1_dec"] = '%7.1f' % (fpars['v1_dec'])
            ResRec["anisotropy_v2_dec"] = '%7.1f' % (fpars['v2_dec'])
            ResRec["anisotropy_v3_dec"] = '%7.1f' % (fpars['v3_dec'])
            ResRec["anisotropy_v1_inc"] = '%7.1f' % (fpars['v1_inc'])
            ResRec["anisotropy_v2_inc"] = '%7.1f' % (fpars['v2_inc'])
            ResRec["anisotropy_v3_inc"] = '%7.1f' % (fpars['v3_inc'])
            ResRec["anisotropy_t1"] = '%10.8f' % (fpars['t1'])
            ResRec["anisotropy_t2"] = '%10.8f' % (fpars['t2'])
            ResRec["anisotropy_t3"] = '%10.8f' % (fpars['t3'])
            ResRec["anisotropy_ftest"] = '%10.3f' % (fpars['F'])
            ResRec["anisotropy_ftest12"] = '%10.3f' % (fpars['F12'])
            ResRec["anisotropy_ftest23"] = '%10.3f' % (fpars['F23'])
            ResRec["result_description"] = 'F_crit: ' + fpars[
                'F_crit'] + '; F12,F23_crit: ' + fpars['F12_crit']
            ResRec['anisotropy_type'] = pmag.makelist(anitypes)
            ResRecs.append(ResRec)
        if len(Ss) > 1:
            if pmagplotlib.isServer:
                title = "LO:_" + ResRec[
                    'er_location_names'] + '_SI:_' + site + '_SA:__SP:__CO:_' + crd
            else:
                title = ResRec['er_location_names']
                if site:
                    title += "_{}".format(site)
                title += '_{}'.format(crd)
            ResRec['er_location_names'] = pmag.makelist(Locs)
            bpars, hpars = pmagplotlib.plotANIS(ANIS, Ss, iboot, ihext, ivec,
                                                ipar, title, iplot, comp, vec,
                                                Dir, nb)
            if len(PDir) > 0:
                pmagplotlib.plotC(ANIS['data'], PDir, 90., 'g')
                pmagplotlib.plotC(ANIS['conf'], PDir, 90., 'g')
            if verbose and plots == 0: pmagplotlib.drawFIGS(ANIS)
            ResRec['er_location_names'] = pmag.makelist(Locs)
            if plots == 1:
                save(ANIS, fmt, title)
            ResRec = {}
            ResRec['er_citation_names'] = pmag.makelist(Cits)
            ResRec['er_location_names'] = pmag.makelist(Locs)
            ResRec['er_site_names'] = pmag.makelist(Sites)
            ResRec['er_sample_names'] = pmag.makelist(Samples)
            ResRec['er_specimen_names'] = pmag.makelist(Specimens)
            ResRec['rmag_result_name'] = pmag.makelist(
                Sites) + ":" + pmag.makelist(anitypes)
            ResRec['anisotropy_type'] = pmag.makelist(anitypes)
            ResRec["er_analyst_mail_names"] = user
            ResRec["tilt_correction"] = CS
            if isite == "0":
                ResRec[
                    'result_description'] = "Study average using coordinate system: " + CS
            if isite == "1":
                ResRec[
                    'result_description'] = "Site average using coordinate system: " + CS
            if hpars != [] and ihext == 1:
                HextRec = {}
                for key in ResRec.keys():
                    HextRec[key] = ResRec[key]  # copy over stuff
                HextRec["anisotropy_v1_dec"] = '%7.1f' % (hpars["v1_dec"])
                HextRec["anisotropy_v2_dec"] = '%7.1f' % (hpars["v2_dec"])
                HextRec["anisotropy_v3_dec"] = '%7.1f' % (hpars["v3_dec"])
                HextRec["anisotropy_v1_inc"] = '%7.1f' % (hpars["v1_inc"])
                HextRec["anisotropy_v2_inc"] = '%7.1f' % (hpars["v2_inc"])
                HextRec["anisotropy_v3_inc"] = '%7.1f' % (hpars["v3_inc"])
                HextRec["anisotropy_t1"] = '%10.8f' % (hpars["t1"])
                HextRec["anisotropy_t2"] = '%10.8f' % (hpars["t2"])
                HextRec["anisotropy_t3"] = '%10.8f' % (hpars["t3"])
                HextRec["anisotropy_hext_F"] = '%7.1f ' % (hpars["F"])
                HextRec["anisotropy_hext_F12"] = '%7.1f ' % (hpars["F12"])
                HextRec["anisotropy_hext_F23"] = '%7.1f ' % (hpars["F23"])
                HextRec["anisotropy_v1_eta_semi_angle"] = '%7.1f ' % (
                    hpars["e12"])
                HextRec["anisotropy_v1_eta_dec"] = '%7.1f ' % (hpars["v2_dec"])
                HextRec["anisotropy_v1_eta_inc"] = '%7.1f ' % (hpars["v2_inc"])
                HextRec["anisotropy_v1_zeta_semi_angle"] = '%7.1f ' % (
                    hpars["e13"])
                HextRec["anisotropy_v1_zeta_dec"] = '%7.1f ' % (
                    hpars["v3_dec"])
                HextRec["anisotropy_v1_zeta_inc"] = '%7.1f ' % (
                    hpars["v3_inc"])
                HextRec["anisotropy_v2_eta_semi_angle"] = '%7.1f ' % (
                    hpars["e12"])
                HextRec["anisotropy_v2_eta_dec"] = '%7.1f ' % (hpars["v1_dec"])
                HextRec["anisotropy_v2_eta_inc"] = '%7.1f ' % (hpars["v1_inc"])
                HextRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f ' % (
                    hpars["e23"])
                HextRec["anisotropy_v2_zeta_dec"] = '%7.1f ' % (
                    hpars["v3_dec"])
                HextRec["anisotropy_v2_zeta_inc"] = '%7.1f ' % (
                    hpars["v3_inc"])
                HextRec["anisotropy_v3_eta_semi_angle"] = '%7.1f ' % (
                    hpars["e12"])
                HextRec["anisotropy_v3_eta_dec"] = '%7.1f ' % (hpars["v1_dec"])
                HextRec["anisotropy_v3_eta_inc"] = '%7.1f ' % (hpars["v1_inc"])
                HextRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f ' % (
                    hpars["e23"])
                HextRec["anisotropy_v3_zeta_dec"] = '%7.1f ' % (
                    hpars["v2_dec"])
                HextRec["anisotropy_v3_zeta_inc"] = '%7.1f ' % (
                    hpars["v2_inc"])
                HextRec["magic_method_codes"] = 'LP-AN:AE-H'
                if verbose:
                    print("Hext Statistics: ")
                    print(
                        " tau_i, V_i_D, V_i_I, V_i_zeta, V_i_zeta_D, V_i_zeta_I, V_i_eta, V_i_eta_D, V_i_eta_I"
                    )
                    print(HextRec["anisotropy_t1"],
                          HextRec["anisotropy_v1_dec"],
                          HextRec["anisotropy_v1_inc"],
                          HextRec["anisotropy_v1_eta_semi_angle"],
                          HextRec["anisotropy_v1_eta_dec"],
                          HextRec["anisotropy_v1_eta_inc"],
                          HextRec["anisotropy_v1_zeta_semi_angle"],
                          HextRec["anisotropy_v1_zeta_dec"],
                          HextRec["anisotropy_v1_zeta_inc"])
                    print(HextRec["anisotropy_t2"],
                          HextRec["anisotropy_v2_dec"],
                          HextRec["anisotropy_v2_inc"],
                          HextRec["anisotropy_v2_eta_semi_angle"],
                          HextRec["anisotropy_v2_eta_dec"],
                          HextRec["anisotropy_v2_eta_inc"],
                          HextRec["anisotropy_v2_zeta_semi_angle"],
                          HextRec["anisotropy_v2_zeta_dec"],
                          HextRec["anisotropy_v2_zeta_inc"])
                    print(HextRec["anisotropy_t3"],
                          HextRec["anisotropy_v3_dec"],
                          HextRec["anisotropy_v3_inc"],
                          HextRec["anisotropy_v3_eta_semi_angle"],
                          HextRec["anisotropy_v3_eta_dec"],
                          HextRec["anisotropy_v3_eta_inc"],
                          HextRec["anisotropy_v3_zeta_semi_angle"],
                          HextRec["anisotropy_v3_zeta_dec"],
                          HextRec["anisotropy_v3_zeta_inc"])
                HextRec['magic_software_packages'] = version_num
                ResRecs.append(HextRec)
            if bpars != []:
                BootRec = {}
                for key in ResRec.keys():
                    BootRec[key] = ResRec[key]  # copy over stuff
                BootRec["anisotropy_v1_dec"] = '%7.1f' % (bpars["v1_dec"])
                BootRec["anisotropy_v2_dec"] = '%7.1f' % (bpars["v2_dec"])
                BootRec["anisotropy_v3_dec"] = '%7.1f' % (bpars["v3_dec"])
                BootRec["anisotropy_v1_inc"] = '%7.1f' % (bpars["v1_inc"])
                BootRec["anisotropy_v2_inc"] = '%7.1f' % (bpars["v2_inc"])
                BootRec["anisotropy_v3_inc"] = '%7.1f' % (bpars["v3_inc"])
                BootRec["anisotropy_t1"] = '%10.8f' % (bpars["t1"])
                BootRec["anisotropy_t2"] = '%10.8f' % (bpars["t2"])
                BootRec["anisotropy_t3"] = '%10.8f' % (bpars["t3"])
                BootRec["anisotropy_v1_eta_inc"] = '%7.1f ' % (
                    bpars["v1_eta_inc"])
                BootRec["anisotropy_v1_eta_dec"] = '%7.1f ' % (
                    bpars["v1_eta_dec"])
                BootRec["anisotropy_v1_eta_semi_angle"] = '%7.1f ' % (
                    bpars["v1_eta"])
                BootRec["anisotropy_v1_zeta_inc"] = '%7.1f ' % (
                    bpars["v1_zeta_inc"])
                BootRec["anisotropy_v1_zeta_dec"] = '%7.1f ' % (
                    bpars["v1_zeta_dec"])
                BootRec["anisotropy_v1_zeta_semi_angle"] = '%7.1f ' % (
                    bpars["v1_zeta"])
                BootRec["anisotropy_v2_eta_inc"] = '%7.1f ' % (
                    bpars["v2_eta_inc"])
                BootRec["anisotropy_v2_eta_dec"] = '%7.1f ' % (
                    bpars["v2_eta_dec"])
                BootRec["anisotropy_v2_eta_semi_angle"] = '%7.1f ' % (
                    bpars["v2_eta"])
                BootRec["anisotropy_v2_zeta_inc"] = '%7.1f ' % (
                    bpars["v2_zeta_inc"])
                BootRec["anisotropy_v2_zeta_dec"] = '%7.1f ' % (
                    bpars["v2_zeta_dec"])
                BootRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f ' % (
                    bpars["v2_zeta"])
                BootRec["anisotropy_v3_eta_inc"] = '%7.1f ' % (
                    bpars["v3_eta_inc"])
                BootRec["anisotropy_v3_eta_dec"] = '%7.1f ' % (
                    bpars["v3_eta_dec"])
                BootRec["anisotropy_v3_eta_semi_angle"] = '%7.1f ' % (
                    bpars["v3_eta"])
                BootRec["anisotropy_v3_zeta_inc"] = '%7.1f ' % (
                    bpars["v3_zeta_inc"])
                BootRec["anisotropy_v3_zeta_dec"] = '%7.1f ' % (
                    bpars["v3_zeta_dec"])
                BootRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f ' % (
                    bpars["v3_zeta"])
                BootRec["anisotropy_hext_F"] = ''
                BootRec["anisotropy_hext_F12"] = ''
                BootRec["anisotropy_hext_F23"] = ''
                BootRec[
                    "magic_method_codes"] = 'LP-AN:AE-H:AE-BS'  # regular bootstrap
                if ipar == 1:
                    BootRec[
                        "magic_method_codes"] = 'LP-AN:AE-H:AE-BS-P'  # parametric bootstrap
                if verbose:
                    print("Boostrap Statistics: ")
                    print(
                        " tau_i, V_i_D, V_i_I, V_i_zeta, V_i_zeta_D, V_i_zeta_I, V_i_eta, V_i_eta_D, V_i_eta_I"
                    )
                    print(BootRec["anisotropy_t1"],
                          BootRec["anisotropy_v1_dec"],
                          BootRec["anisotropy_v1_inc"],
                          BootRec["anisotropy_v1_eta_semi_angle"],
                          BootRec["anisotropy_v1_eta_dec"],
                          BootRec["anisotropy_v1_eta_inc"],
                          BootRec["anisotropy_v1_zeta_semi_angle"],
                          BootRec["anisotropy_v1_zeta_dec"],
                          BootRec["anisotropy_v1_zeta_inc"])
                    print(BootRec["anisotropy_t2"],
                          BootRec["anisotropy_v2_dec"],
                          BootRec["anisotropy_v2_inc"],
                          BootRec["anisotropy_v2_eta_semi_angle"],
                          BootRec["anisotropy_v2_eta_dec"],
                          BootRec["anisotropy_v2_eta_inc"],
                          BootRec["anisotropy_v2_zeta_semi_angle"],
                          BootRec["anisotropy_v2_zeta_dec"],
                          BootRec["anisotropy_v2_zeta_inc"])
                    print(BootRec["anisotropy_t3"],
                          BootRec["anisotropy_v3_dec"],
                          BootRec["anisotropy_v3_inc"],
                          BootRec["anisotropy_v3_eta_semi_angle"],
                          BootRec["anisotropy_v3_eta_dec"],
                          BootRec["anisotropy_v3_eta_inc"],
                          BootRec["anisotropy_v3_zeta_semi_angle"],
                          BootRec["anisotropy_v3_zeta_dec"],
                          BootRec["anisotropy_v3_zeta_inc"])
                BootRec['magic_software_packages'] = version_num
                ResRecs.append(BootRec)
            k += 1
            goon = 1
            while goon == 1 and iplot == 1 and verbose:
                if iboot == 1: print("compare with [d]irection ")
                print(
                    " plot [g]reat circle,  change [c]oord. system, change [e]llipse calculation,  s[a]ve plots, [q]uit "
                )
                if isite == 1:
                    print("  [p]revious, [s]ite, [q]uit, <return> for next ")
                ans = input("")
                if ans == "q":
                    sys.exit()
                if ans == "e":
                    iboot, ipar, ihext, ivec = 1, 0, 0, 0
                    e = input("Do Hext Statistics  1/[0]: ")
                    if e == "1": ihext = 1
                    e = input("Suppress bootstrap 1/[0]: ")
                    if e == "1": iboot = 0
                    if iboot == 1:
                        e = input("Parametric bootstrap 1/[0]: ")
                        if e == "1": ipar = 1
                        e = input("Plot bootstrap eigenvectors:  1/[0]: ")
                        if e == "1": ivec = 1
                        if iplot == 1:
                            if inittcdf == 0:
                                ANIS['tcdf'] = 3
                                pmagplotlib.plot_init(ANIS['tcdf'], 5, 5)
                                inittcdf = 1
                    bpars, hpars = pmagplotlib.plotANIS(
                        ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp,
                        vec, Dir, nb)
                    if verbose and plots == 0: pmagplotlib.drawFIGS(ANIS)
                if ans == "c":
                    print("Current Coordinate system is: ")
                    if CS == '-1': print(" Specimen")
                    if CS == '0': print(" Geographic")
                    if CS == '100': print(" Tilt corrected")
                    key = input(
                        " Enter desired coordinate system: [s]pecimen, [g]eographic, [t]ilt corrected "
                    )
                    if key == 's': CS = '-1'
                    if key == 'g': CS = '0'
                    if key == 't': CS = '100'
                    if CS not in orlist:
                        if len(orlist) > 0:
                            CS = orlist[0]
                        else:
                            CS = '-1'
                        if CS == '-1': crd = 's'
                        if CS == '0': crd = 'g'
                        if CS == '100': crd = 't'
                        print(
                            "desired coordinate system not available, using available: ",
                            crd)
                    k -= 1
                    goon = 0
                if ans == "":
                    if isite == 1:
                        goon = 0
                    else:
                        print("Good bye ")
                        sys.exit()
                if ans == 'd':
                    if initcdf == 0:
                        initcdf = 1
                        ANIS['vxcdf'], ANIS['vycdf'], ANIS['vzcdf'] = 4, 5, 6
                        pmagplotlib.plot_init(ANIS['vxcdf'], 5, 5)
                        pmagplotlib.plot_init(ANIS['vycdf'], 5, 5)
                        pmagplotlib.plot_init(ANIS['vzcdf'], 5, 5)
                    Dir, comp = [], 1
                    print("""
                      Input: Vi D I to  compare  eigenvector Vi with direction D/I
                             where Vi=1: principal
                                   Vi=2: major
                                   Vi=3: minor
                                   D= declination of comparison direction
                                   I= inclination of comparison direction""")
                    con = 1
                    while con == 1:
                        try:
                            vdi = input("Vi D I: ").split()
                            vec = int(vdi[0]) - 1
                            Dir = [float(vdi[1]), float(vdi[2])]
                            con = 0
                        except IndexError:
                            print(" Incorrect entry, try again ")
                    bpars, hpars = pmagplotlib.plotANIS(
                        ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp,
                        vec, Dir, nb)
                    Dir, comp = [], 0
                if ans == 'g':
                    con, cnt = 1, 0
                    while con == 1:
                        try:
                            print(
                                " Input:  input pole to great circle ( D I) to  plot a great circle:   "
                            )
                            di = input(" D I: ").split()
                            PDir.append(float(di[0]))
                            PDir.append(float(di[1]))
                            con = 0
                        except:
                            cnt += 1
                            if cnt < 10:
                                print(
                                    " enter the dec and inc of the pole on one line "
                                )
                            else:
                                print(
                                    "ummm - you are doing something wrong - i give up"
                                )
                                sys.exit()
                    pmagplotlib.plotC(ANIS['data'], PDir, 90., 'g')
                    pmagplotlib.plotC(ANIS['conf'], PDir, 90., 'g')
                    if verbose and plots == 0: pmagplotlib.drawFIGS(ANIS)
                if ans == "p":
                    k -= 2
                    goon = 0
                if ans == "q":
                    k = plt
                    goon = 0
                if ans == "s":
                    keepon = 1
                    site = input(" print site or part of site desired: ")
                    while keepon == 1:
                        try:
                            k = sitelist.index(site)
                            keepon = 0
                        except:
                            tmplist = []
                            for qq in range(len(sitelist)):
                                if site in sitelist[qq]:
                                    tmplist.append(sitelist[qq])
                            print(site, " not found, but this was: ")
                            print(tmplist)
                            site = input('Select one or try again\n ')
                            k = sitelist.index(site)
                    goon, ans = 0, ""
                if ans == "a":
                    locs = pmag.makelist(Locs)
                    if pmagplotlib.isServer:  # use server plot naming convention
                        title = "LO:_" + locs + '_SI:__' + '_SA:__SP:__CO:_' + crd
                    else:  # use more readable plot naming convention
                        title = "{}_{}".format(locs, crd)
                    save(ANIS, fmt, title)
                    goon = 0
        else:
            if verbose: print('skipping plot - not enough data points')
            k += 1
#   put rmag_results stuff here
    if len(ResRecs) > 0:
        ResOut, keylist = pmag.fillkeys(ResRecs)
        pmag.magic_write(outfile, ResOut, 'rmag_results')
    if verbose:
        print(" Good bye ")
Ejemplo n.º 46
0
def main():
    """
    NAME
        zeq_magic.py

    DESCRIPTION
        reads in magic_measurements formatted file, makes plots of remanence decay
        during demagnetization experiments.  Reads in prior interpretations saved in 
        a pmag_specimens formatted file and  allows re-interpretations of best-fit lines
        and planes and saves (revised or new) interpretations in a pmag_specimens file.  
        interpretations are saved in the coordinate system used. Also allows judicious editting of
        measurements to eliminate "bad" measurements.  These are marked as such in the magic_measurements
        input file.  they are NOT deleted, just ignored. 

    SYNTAX
        zeq_magic.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f  MEASFILE: sets magic_measurements format input file, default: magic_measurements.txt
        -fsp SPECFILE: sets pmag_specimens format file with prior interpreations, default: zeq_specimens.txt
        -Fp PLTFILE: sets filename for saved plot, default is name_type.fmt (where type is zijd, eqarea or decay curve)
        -crd [s,g,t]: sets coordinate system,  g=geographic, t=tilt adjusted, default: specimen coordinate system
        -fsa SAMPFILE: sets er_samples format file with orientation information, default: er_samples.txt
        -spc SPEC  plots single specimen SPEC, saves plot with specified format 
              with optional -dir settings and quits
        -dir [L,P,F][beg][end]: sets calculation type for principal component analysis, default is none
             beg: starting step for PCA calculation
             end: ending step for PCA calculation
             [L,P,F]: calculation type for line, plane or fisher mean
             must be used with -spc option
        -fmt FMT: set format of saved plot [png,svg,jpg]
        -A:  suppresses averaging of  replicate measurements, default is to average
        -sav: saves all plots without review
    SCREEN OUTPUT:
        Specimen, N, a95, StepMin, StepMax, Dec, Inc, calculation type

    """
    # initialize some variables
    doave,e,b=1,0,0 # average replicates, initial end and beginning step
    plots,coord=0,'s'
    noorient=0
    version_num=pmag.get_version()
    verbose=pmagplotlib.verbose
    beg_pca,end_pca,direction_type="","",'l'
    calculation_type,fmt="","svg"
    user,spec_keys,locname="",[],''
    plot_file=""
    sfile=""
    plot_file=""
    PriorRecs=[] # empty list for prior interpretations
    backup=0
    specimen="" # can skip everything and just plot one specimen with bounds e,b
    if '-h' in sys.argv:
        print main.__doc__
        sys.exit()
    if '-WD' in sys.argv:
        ind=sys.argv.index('-WD')
        dir_path=sys.argv[ind+1]
    else:
        dir_path='.'
    inspec=dir_path+'/'+'zeq_specimens.txt'
    meas_file,geo,tilt,ask,samp_file=dir_path+'/magic_measurements.txt',0,0,0,dir_path+'/er_samples.txt'
    if '-f' in sys.argv:
        ind=sys.argv.index('-f')
        meas_file=dir_path+'/'+sys.argv[ind+1]
    if '-fsp' in sys.argv:
        ind=sys.argv.index('-fsp')
        inspec=dir_path+'/'+sys.argv[ind+1]
    if '-fsa' in sys.argv:
        ind=sys.argv.index('-fsa')
        samp_file=dir_path+'/'+sys.argv[ind+1]
        sfile='ok'
    if '-crd' in sys.argv:
        ind=sys.argv.index('-crd')
        coord=sys.argv[ind+1]
        if coord=='g' or coord=='t':
            samp_data,file_type=pmag.magic_read(samp_file)
            if file_type=='er_samples':sfile='ok'
            geo=1
            if coord=='t':tilt=1
    if '-spc' in sys.argv:
        ind=sys.argv.index('-spc')
        specimen=sys.argv[ind+1]
        if '-dir' in sys.argv:
            ind=sys.argv.index('-dir')
            direction_type=sys.argv[ind+1]
            beg_pca=int(sys.argv[ind+2])
            end_pca=int(sys.argv[ind+3])
            if direction_type=='L':calculation_type='DE-BFL'
            if direction_type=='P':calculation_type='DE-BFP'
            if direction_type=='F':calculation_type='DE-FM'
        if '-Fp' in sys.argv: 
            ind=sys.argv.index('-Fp')
            plot_file=dir_path+'/'+sys.argv[ind+1]
    if '-A' in sys.argv: doave=0
    if '-sav' in sys.argv: 
        plots=1
        verbose=0
    if '-fmt' in sys.argv:
        ind=sys.argv.index('-fmt')
        fmt=sys.argv[ind+1]
    #
    first_save=1
    meas_data,file_type=pmag.magic_read(meas_file)
    changeM,changeS=0,0 # check if data or interpretations have changed
    if file_type != 'magic_measurements':
        print file_type
        print file_type,"This is not a valid magic_measurements file " 
        sys.exit()
    for rec in  meas_data:
        if  "magic_method_codes" not in rec.keys(): rec["magic_method_codes"]=""
        methods=""
        tmp=rec["magic_method_codes"].replace(" ","").split(":")
        for meth in tmp:
            methods=methods+meth+":"
        rec["magic_method_codes"]=methods[:-1]  # get rid of annoying spaces in Anthony's export files 
        if "magic_instrument_codes" not in rec.keys() :rec["magic_instrument_codes"]=""
    PriorSpecs=[]
    PriorRecs,file_type=pmag.magic_read(inspec)
    if len(PriorRecs)==0: 
        if verbose:print "starting new file ",inspec
    for Rec in PriorRecs:
        if 'magic_software_packages' not in Rec.keys():Rec['magic_software_packages']=""
        if Rec['er_specimen_name'] not in PriorSpecs:
            if 'specimen_comp_name' not in Rec.keys():Rec['specimen_comp_name']="A"
            PriorSpecs.append(Rec['er_specimen_name'])
        else:
            if 'specimen_comp_name' not in Rec.keys():Rec['specimen_comp_name']="A"
        if "magic_method_codes" in Rec.keys():
            methods=[]
            tmp=Rec["magic_method_codes"].replace(" ","").split(":")
            for meth in tmp:
                methods.append(meth)
            if 'DE-FM' in methods:
                Rec['calculation_type']='DE-FM' # this won't be imported but helps
            if 'DE-BFL' in methods:
                Rec['calculation_type']='DE-BFL'
            if 'DE-BFL-A' in methods:
                Rec['calculation_type']='DE-BFL-A'
            if 'DE-BFL-O' in methods:
                Rec['calculation_type']='DE-BFL-O'
            if 'DE-BFP' in methods:
                Rec['calculation_type']='DE-BFP'
        else:
            Rec['calculation_type']='DE-BFL' # default is to assume a best-fit line
    #
    # get list of unique specimen names
    #
    sids=pmag.get_specs(meas_data)
    #
    #  set up plots, angle sets X axis to horizontal,  direction_type 'l' is best-fit line
    # direction_type='p' is great circle
    #     
    #
    # draw plots for sample s - default is just to step through zijderveld diagrams
    #
    #
    # define figure numbers for equal area, zijderveld,  
    #  and intensity vs. demagnetiztion step respectively
    ZED={}
    ZED['eqarea'],ZED['zijd'],  ZED['demag']=1,2,3 
    pmagplotlib.plot_init(ZED['eqarea'],5,5)
    pmagplotlib.plot_init(ZED['zijd'],6,5)
    pmagplotlib.plot_init(ZED['demag'],5,5)
    save_pca=0
    if specimen=="":
        k = 0
    else:
        k=sids.index(specimen)
    angle,direction_type="",""
    setangle=0
    CurrRecs=[]
    while k < len(sids):
        CurrRecs=[]
        if setangle==0:angle=""
        method_codes,inst_code=[],""
        s=sids[k]
        PmagSpecRec={}
        PmagSpecRec["er_analyst_mail_names"]=user
        PmagSpecRec['magic_software_packages']=version_num
        PmagSpecRec['specimen_description']=""
        PmagSpecRec['magic_method_codes']=""
        if verbose and  s!="":print s, k , 'out of ',len(sids)
    #
    #  collect info for the PmagSpecRec dictionary
    #
        s_meas=pmag.get_dictitem(meas_data,'er_specimen_name',s,'T') # fish out this specimen
        s_meas=pmag.get_dictitem(s_meas,'magic_method_codes','Z','has') # fish out zero field steps
        if len(s_meas)>0:
          for rec in  s_meas: # fix up a few things for the output record
               PmagSpecRec["magic_instrument_codes"]=rec["magic_instrument_codes"]  # copy over instruments
               PmagSpecRec["er_citation_names"]="This study"
               PmagSpecRec["er_specimen_name"]=s
               PmagSpecRec["er_sample_name"]=rec["er_sample_name"]
               PmagSpecRec["er_site_name"]=rec["er_site_name"]
               PmagSpecRec["er_location_name"]=rec["er_location_name"]
               locname=rec['er_location_name']
               if 'er_expedition_name' in rec.keys(): PmagSpecRec["er_expedition_name"]=rec["er_expedition_name"]
               PmagSpecRec["magic_method_codes"]=rec["magic_method_codes"]
               if "magic_experiment_name" not in rec.keys():
                   PmagSpecRec["magic_experiment_names"]=""
               else:    
                   PmagSpecRec["magic_experiment_names"]=rec["magic_experiment_name"]
               break
    #
    # find the data from the meas_data file for this specimen
    #
          data,units=pmag.find_dmag_rec(s,meas_data)
          PmagSpecRec["measurement_step_unit"]= units
          u=units.split(":")
          if "T" in units:PmagSpecRec["magic_method_codes"]=PmagSpecRec["magic_method_codes"]+":LP-DIR-AF"
          if "K" in units:PmagSpecRec["magic_method_codes"]=PmagSpecRec["magic_method_codes"]+":LP-DIR-T"
          if "J" in units:PmagSpecRec["magic_method_codes"]=PmagSpecRec["magic_method_codes"]+":LP-DIR-M"
    #
    # find prior interpretation
    #
          if len(CurrRecs)==0: # check if already in
            beg_pca,end_pca="",""
            calculation_type=""
            if inspec !="":
              if verbose: print "    looking up previous interpretations..."
              precs=pmag.get_dictitem(PriorRecs,'er_specimen_name',s,'T') # get all the prior recs with this specimen name
              precs=pmag.get_dictitem(precs,'magic_method_codes','LP-DIR','has') # get the directional data
              PriorRecs=pmag.get_dictitem(PriorRecs,'er_specimen_name',s,'F') # take them all out of prior recs
         # get the ones that meet the current coordinate system
              for prec in precs:
                if 'specimen_tilt_correction' not in prec.keys() or prec['specimen_tilt_correction']=='-1':
                    crd='s'
                elif prec['specimen_tilt_correction']=='0':
                    crd='g'
                elif prec['specimen_tilt_correction']=='100':
                    crd='t'
                else:
                    crd='?'
                CurrRec={}
                for key in prec.keys():CurrRec[key]=prec[key]
                CurrRecs.append(CurrRec) # put in CurrRecs
                method_codes= CurrRec["magic_method_codes"].replace(" ","").split(':')
                calculation_type='DE-BFL'
                if 'DE-FM' in method_codes: calculation_type='DE-FM'
                if 'DE-BFP' in method_codes: calculation_type='DE-BFP'
                if 'DE-BFL-A' in method_codes: calculation_type='DE-BFL-A'
                if 'specimen_dang' not in CurrRec.keys():
                    if verbose:print 'Run mk_redo.py and zeq_magic_redo.py to get the specimen_dang values'
                    CurrRec['specimen_dang']=-1
                if calculation_type!='DE-FM' and crd==coord: # not a fisher mean
                    if verbose:print "Specimen  N    MAD    DANG  start     end      dec     inc  type  component coordinates"
                    if units=='K':
                            if verbose:print '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f  %s  %s       %s \n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_mad"]),float(CurrRec["specimen_dang"]),float(CurrRec["measurement_step_min"])-273,float(CurrRec["measurement_step_max"])-273,float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,CurrRec['specimen_comp_name'],crd)
                    elif units=='T':
                       if verbose:print '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f  %s  %s %s \n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_mad"]),float(CurrRec["specimen_dang"]),float(CurrRec["measurement_step_min"])*1e3,float(CurrRec["measurement_step_max"])*1e3,float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,CurrRec['specimen_comp_name'],crd)
                    elif 'T' in units and 'K' in units:
                            if float(CurrRec['measurement_step_min'])<1.0 :
                                min=float(CurrRec['measurement_step_min'])*1e3
                            else:
                                min=float(CurrRec['measurement_step_min'])-273
                            if float(CurrRec['measurement_step_max'])<1.0 :
                                max=float(CurrRec['measurement_step_max'])*1e3
                            else:
                                max=float(CurrRec['measurement_step_max'])-273
                            if verbose:print '%s %i %7.1f %i %i %7.1f %7.1f %7.1f, %s        %s\n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_mad"]),float(CurrRec['specimen_dang']),min,max,float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,crd)
                    elif 'J' in units:
                       if verbose:print '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f  %s  %s       %s \n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_mad"]),float(CurrRec['specimen_dang']),float(CurrRec["measurement_step_min"]),float(CurrRec["measurement_step_max"]),float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,CurrRec['specimen_comp_name'],crd)
                elif calculation_type=='DE-FM' and crd==coord: # fisher mean
                    if verbose:print "Specimen  a95 DANG   start     end      dec     inc  type  component coordinates"
                    if units=='K':
                         if verbose:print '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f  %s  %s       %s \n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_alpha95"]),float(CurrRec["measurement_step_min"])-273,float(CurrRec["measurement_step_max"])-273,float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,CurrRec['specimen_comp_name'],crd)
                    elif units=='T':
                          if verbose:print '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f  %s  %s       %s \n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_alpha95"]),float(CurrRec["measurement_step_min"])*1e3,float(CurrRec["measurement_step_max"])*1e3,float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,CurrRec['specimen_comp_name'],crd)
                    elif 'T' in units and 'K' in units:
                            if float(CurrRec['measurement_step_min'])<1.0 :
                                min=float(CurrRec['measurement_step_min'])*1e3
                            else:
                                min=float(CurrRec['measurement_step_min'])-273
                            if float(CurrRec['measurement_step_max'])<1.0 :
                                max=float(CurrRec['measurement_step_max'])*1e3
                            else:
                                max=float(CurrRec['measurement_step_max'])-273
                            if verbose:print '%s %i %7.1f %i %i %7.1f %7.1f %s       %s \n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_alpha95"]),min,max,float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,crd)
                    elif 'J' in units:
                       if verbose:print '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %s %s       %s \n' % (CurrRec["er_specimen_name"],int(CurrRec["specimen_n"]),float(CurrRec["specimen_mad"]),float(CurrRec["measurement_step_min"]),float(CurrRec["measurement_step_max"]),float(CurrRec["specimen_dec"]),float(CurrRec["specimen_inc"]),calculation_type,CurrRec['specimen_comp_name'],crd)
              if len(CurrRecs)==0:beg_pca,end_pca="",""
          datablock=data
          noskip=1
          if len(datablock) <3: 
            noskip=0
            if backup==0:
                k+=1
            else:
                k-=1
            if len(CurrRecs)>0:
                for rec in CurrRecs:
                    PriorRecs.append(rec)
            CurrRecs=[]
          else:
            backup=0 
          if noskip:
        #
        # find replicate measurements at given treatment step and average them
        #
#            step_meth,avedata=pmag.vspec(data)
#            if len(avedata) != len(datablock):
#                if doave==1: 
#                    method_codes.append("DE-VM")
#                    datablock=avedata
#        #
        # do geo or stratigraphic correction now
        #
            if geo==1:
        #
        # find top priority orientation method
                orient,az_type=pmag.get_orient(samp_data,PmagSpecRec["er_sample_name"])
                if az_type=='SO-NO':
                    if verbose: print "no orientation data for ",s 
                    orient["sample_azimuth"]=0
                    orient["sample_dip"]=0
                    noorient=1
                    method_codes.append("SO-NO")
                    orient["sample_azimuth"]=0
                    orient["sample_dip"]=0
                    orient["sample_bed_dip_azimuth"]=0
                    orient["sample_bed_dip"]=0
                    noorient=1
                    method_codes.append("SO-NO")
                else: 
                    noorient=0
        #
        #  if stratigraphic selected,  get stratigraphic correction
        #
                tiltblock,geoblock=[],[]
                for rec in datablock:
                    d_geo,i_geo=pmag.dogeo(rec[1],rec[2],float(orient["sample_azimuth"]),float(orient["sample_dip"]))
                    geoblock.append([rec[0],d_geo,i_geo,rec[3],rec[4],rec[5],rec[6]])
                    if tilt==1 and "sample_bed_dip" in orient.keys() and float(orient['sample_bed_dip'])!=0: 
                        d_tilt,i_tilt=pmag.dotilt(d_geo,i_geo,float(orient["sample_bed_dip_direction"]),float(orient["sample_bed_dip"]))
                        tiltblock.append([rec[0],d_tilt,i_tilt,rec[3],rec[4],rec[5],rec[6]])
                    if tilt==1: plotblock=tiltblock
                    if geo==1 and tilt==0:plotblock=geoblock
            if geo==0 and tilt==0: plotblock=datablock
    #
    # set the end pca point to last point  if not set
            if e==0 or e>len(plotblock)-1: e=len(plotblock)-1
            if angle=="": angle=plotblock[0][1] # rotate to NRM declination
            title=s+'_s'
            if geo==1 and tilt==0 and noorient!=1:title=s+'_g'
            if tilt==1 and noorient!=1:title=s+'_t'
            pmagplotlib.plotZED(ZED,plotblock,angle,title,units)
            if verbose:pmagplotlib.drawFIGS(ZED)
            if len(CurrRecs)!=0:
                for prec in CurrRecs:
                    if 'calculation_type' not in prec.keys():
                        calculation_type=''
                    else:
                        calculation_type=prec["calculation_type"]
                    direction_type=prec["specimen_direction_type"]
                    if calculation_type !="":
                        beg_pca,end_pca="",""
                        for j in range(len(datablock)):
                            if data[j][0]==float(prec["measurement_step_min"]):beg_pca=j
                            if data[j][0]==float(prec["measurement_step_max"]):end_pca=j
                        if beg_pca=="" or end_pca=="":  
                            if verbose:
                                print "something wrong with prior interpretation "
                            break
                    if calculation_type!="":
                        if beg_pca=="":beg_pca=0
                        if end_pca=="":end_pca=len(plotblock)-1
                        if geo==1 and tilt==0:
                            mpars=pmag.domean(geoblock,beg_pca,end_pca,calculation_type)
                            if mpars["specimen_direction_type"]!="Error":
                                pmagplotlib.plotDir(ZED,mpars,geoblock,angle)
                                if verbose:pmagplotlib.drawFIGS(ZED)
                        if geo==1 and tilt==1:
                            mpars=pmag.domean(tiltblock,beg_pca,end_pca,calculation_type)
                            if mpars["specimen_direction_type"]!="Error":
                                pmagplotlib.plotDir(ZED,mpars,tiltblock,angle)
                                if verbose:pmagplotlib.drawFIGS(ZED)
                        if geo==0 and tilt==0: 
                            mpars=pmag.domean(datablock,beg_pca,end_pca,calculation_type)
                        if mpars["specimen_direction_type"]!="Error":
                                pmagplotlib.plotDir(ZED,mpars,plotblock,angle)
                                if verbose:pmagplotlib.drawFIGS(ZED)
    #
    # print out data for this sample to screen
    #
            recnum=0
            for plotrec in plotblock:
                if units=='T' and verbose: print '%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' % (plotrec[5], recnum,plotrec[0]*1e3," mT",plotrec[3],plotrec[1],plotrec[2],plotrec[6])
                if units=="K" and verbose: print '%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' % (plotrec[5], recnum,plotrec[0]-273,' C',plotrec[3],plotrec[1],plotrec[2],plotrec[6])
                if units=="J" and verbose: print '%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' % (plotrec[5], recnum,plotrec[0],' J',plotrec[3],plotrec[1],plotrec[2],plotrec[6])
                if 'K' in units and 'T' in units:
                    if plotrec[0]>=1. and verbose: print '%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' % (plotrec[5], recnum,plotrec[0]-273,' C',plotrec[3],plotrec[1],plotrec[2],plotrec[6])
                    if plotrec[0]<1. and  verbose: print '%s: %i  %7.1f %s  %8.3e %7.1f %7.1f %s' % (plotrec[5], recnum,plotrec[0]*1e3," mT",plotrec[3],plotrec[1],plotrec[2],plotrec[6])
                recnum += 1
            if specimen!="":
                if plot_file=="":
                    basename=locname+'_'+s
                else:
                    basename=plot_file
                files={}
                for key in ZED.keys():
                    files[key]=basename+'_'+key+'.'+fmt 
                pmagplotlib.saveP(ZED,files)
                sys.exit()
            else:  # interactive
              if plots==0:
                ans='b'
                k+=1
                changeS=0
                while ans != "":
                    if len(CurrRecs)==0:
                        print """
                g/b: indicates  good/bad measurement.  "bad" measurements excluded from calculation

                set s[a]ve plot, [b]ounds for pca and calculate, [p]revious, [s]pecimen, 
                 change [h]orizontal projection angle,   change [c]oordinate systems, 
                 [e]dit data,  [q]uit: 
                """
                    else:
                        print """
                g/b: indicates  good/bad measurement.  "bad" measurements excluded from calculation

                 set s[a]ve plot, [b]ounds for pca and calculate, [p]revious, [s]pecimen, 
                 change [h]orizontal projection angle,   change [c]oordinate systems, 
                 [d]elete current interpretation(s), [e]dit data,   [q]uit: 
                """
                    ans=raw_input('<Return>  for  next specimen \n')
                    setangle=0
                    if ans=='d': # delete this interpretation
                        CurrRecs=[]
                        k-=1 # replot same specimen
                        ans=""
                        changeS=1
                    if  ans=='q': 
                        if changeM==1:
                            ans=raw_input('Save changes to magic_measurements.txt? y/[n] ')
                            if ans=='y':
                                pmag.magic_write(meas_file,meas_data,'magic_measurements')
                        print "Good bye"
                        sys.exit()
                    if  ans=='a':
                        if plot_file=="":
                            basename=locname+'_'+s+'_'
                        else:
                            basename=plot_file
                        files={}
                        for key in ZED.keys():
                            files[key]=basename+'_'+coord+'_'+key+'.'+fmt 
                        pmagplotlib.saveP(ZED,files)
                        ans=""
                    if  ans=='p':
                        k-=2
                        ans=""
                        backup=1
                    if ans=='c':
                        k-=1 # replot same block
                        if tilt==0 and geo ==1:print "You  are currently viewing geographic  coordinates "
                        if tilt==1 and geo ==1:print "You  are currently viewing stratigraphic  coordinates "
                        if tilt==0 and geo ==0: print "You  are currently viewing sample coordinates "
                        print "\n Which coordinate system do you wish to view? "
                        coord=raw_input(" <Return>  specimen, [g] geographic, [t] tilt corrected ")
                        if coord=="g":geo,tilt=1,0
                        if coord=="t":
                            geo=1
                            tilt=1
                        if coord=="":
                            coord='s'
                            geo=0
                            tilt=0
                        if geo==1 and sfile=="":
                            samp_file=raw_input(" Input er_samples file for sample orientations [er_samples.txt] " )
                            if samp_file=="":samp_file="er_samples.txt"
                            samp_data,file_type=pmag.magic_read(samp_file)
                            if file_type != 'er_samples':
                               print file_type
                               print "This is not a valid er_samples file - coordinate system not changed" 
                            else:
                               sfile="ok"
                        ans=""
                    if ans=='s':
                        keepon=1
                        sample=raw_input('Enter desired specimen name (or first part there of): ')
                        while keepon==1:
                            try:
                                k =sids.index(sample)
                                keepon=0
                            except:
                                tmplist=[]
                                for qq in range(len(sids)):
                                    if sample in sids[qq]:tmplist.append(sids[qq])
                                print sample," not found, but this was: "
                                print tmplist
                                sample=raw_input('Select one or try again\n ')
                        angle,direction_type="",""
                        setangle=0
                        ans=""
                    if ans=='h':
                        k-=1
                        angle=raw_input("Enter desired  declination for X axis 0-360 ")
                        angle=float(angle)
                        if angle==0:angle=0.001
                        s=sids[k]
                        setangle=1
                        ans=""
                    if  ans=='e':
                        k-=1
                        ans=""
                        recnum=0
                        for plotrec in plotblock:
                            if plotrec[0]<=200 and verbose: print '%s: %i  %7.1f %s  %8.3e %7.1f %7.1f ' % (plotrec[5], recnum,plotrec[0]*1e3," mT",plotrec[3],plotrec[1],plotrec[2])
                            if plotrec[0]>200 and verbose: print '%s: %i  %7.1f %s  %8.3e %7.1f %7.1f ' % (plotrec[5], recnum,plotrec[0]-273,' C',plotrec[3],plotrec[1],plotrec[2])
                            recnum += 1
                        answer=raw_input('Enter index of point to change from bad to good or vice versa:  ')
                        try: 
                                ind=int(answer)
                                meas_data=pmag.mark_dmag_rec(s,ind,meas_data)
                                changeM=1
                        except:
                                'bad entry, try again'
                    if  ans=='b':
                        if end_pca=="":end_pca=len(plotblock)-1
                        if beg_pca=="":beg_pca=0
                        k-=1   # stay on same sample until through
                        GoOn=0
                        while GoOn==0:
                            print 'Enter index of first point for pca: ','[',beg_pca,']'
                            answer=raw_input('return to keep default  ')
                            if answer != "":
                                beg_pca=int(answer)
                            print 'Enter index  of last point for pca: ','[',end_pca,']'
                            answer=raw_input('return to keep default  ')
                            try:
                                end_pca=int(answer) 
                                if plotblock[beg_pca][5]=='b' or plotblock[end_pca][5]=='b': 
                                    print "Can't select 'bad' measurement for PCA bounds -try again"
                                    end_pca=len(plotblock)-1
                                    beg_pca=0
                                elif beg_pca >=0 and beg_pca<=len(plotblock)-2 and end_pca>0 and end_pca<len(plotblock): 
                                    GoOn=1
                                else:
                                    print beg_pca,end_pca, " are bad entry of indices - try again"
                                    end_pca=len(plotblock)-1
                                    beg_pca=0
                            except:
                                print beg_pca,end_pca, " are bad entry of indices - try again"
                                end_pca=len(plotblock)-1
                                beg_pca=0
                        GoOn=0
                        while GoOn==0:
                            if calculation_type!="":
                                print "Prior calculation type = ",calculation_type
                            ct=raw_input('Enter new Calculation Type: best-fit line,  plane or fisher mean [l]/p/f :  ' )
                            if ct=="" or ct=="l": 
                                direction_type="l"
                                calculation_type="DE-BFL"
                                GoOn=1
                            elif ct=='p':
                                direction_type="p"
                                calculation_type="DE-BFP"
                                GoOn=1
                            elif ct=='f':
                                direction_type="l"
                                calculation_type="DE-FM"
                                GoOn=1
                            else: 
                                print "bad entry of calculation type: try again. "
                        pmagplotlib.plotZED(ZED,plotblock,angle,s,units)
                        if verbose:pmagplotlib.drawFIGS(ZED)
                        if geo==1 and tilt==0:
                            mpars=pmag.domean(geoblock,beg_pca,end_pca,calculation_type)
                            if mpars['specimen_direction_type']=='Error':break
                            PmagSpecRec["specimen_dec"]='%7.1f ' %(mpars["specimen_dec"])
                            PmagSpecRec["specimen_inc"]='%7.1f ' %(mpars["specimen_inc"])
                            if "SO-NO" not in method_codes:
                                PmagSpecRec["specimen_tilt_correction"]='0'
                                method_codes.append("DA-DIR-GEO")
                            else:
                                PmagSpecRec["specimen_tilt_correction"]='-1'
                            pmagplotlib.plotDir(ZED,mpars,geoblock,angle)
                            if verbose:pmagplotlib.drawFIGS(ZED)
                        if geo==1 and  tilt==1:
                            mpars=pmag.domean(tiltblock,beg_pca,end_pca,calculation_type)
                            if mpars['specimen_direction_type']=='Error':break
                            PmagSpecRec["specimen_dec"]='%7.1f ' %(mpars["specimen_dec"])
                            PmagSpecRec["specimen_inc"]='%7.1f ' %(mpars["specimen_inc"])
                            if "SO-NO" not in method_codes:
                                PmagSpecRec["specimen_tilt_correction"]='100'
                                method_codes.append("DA-DIR-TILT")
                            else:
                                PmagSpecRec["specimen_tilt_correction"]='-1'
                            pmagplotlib.plotDir(ZED,mpars,tiltblock,angle)
                            if verbose:pmagplotlib.drawFIGS(ZED)
                        if geo==0 and tilt==0: 
                            mpars=pmag.domean(datablock,beg_pca,end_pca,calculation_type)
                            if mpars['specimen_direction_type']=='Error':break
                            PmagSpecRec["specimen_dec"]='%7.1f ' %(mpars["specimen_dec"])
                            PmagSpecRec["specimen_inc"]='%7.1f ' %(mpars["specimen_inc"])
                            PmagSpecRec["specimen_tilt_correction"]='-1'
                            pmagplotlib.plotDir(ZED,mpars,plotblock,angle)
                            if verbose:pmagplotlib.drawFIGS(ZED)
                        PmagSpecRec["measurement_step_min"]='%8.3e ' %(mpars["measurement_step_min"])
                        PmagSpecRec["measurement_step_max"]='%8.3e ' %(mpars["measurement_step_max"])
                        PmagSpecRec["specimen_correction"]='u'
                        PmagSpecRec["specimen_dang"]='%7.1f ' %(mpars['specimen_dang'])
                        print 'DANG: ',PmagSpecRec["specimen_dang"]
                        if calculation_type!='DE-FM':
                            PmagSpecRec["specimen_mad"]='%7.1f ' %(mpars["specimen_mad"])
                            PmagSpecRec["specimen_alpha95"]=""
                        else:
                            PmagSpecRec["specimen_alpha95"]='%7.1f ' %(mpars["specimen_alpha95"])
                            PmagSpecRec["specimen_mad"]=""
                        PmagSpecRec["specimen_n"]='%i ' %(mpars["specimen_n"])
                        PmagSpecRec["specimen_direction_type"]=direction_type
                        PmagSpecRec["calculation_type"]=calculation_type # redundant and won't be imported - just for convenience
                        method_codes=PmagSpecRec["magic_method_codes"].split(':')
                        if len(method_codes) != 0:
                            methstring=""
                            for meth in method_codes:
                                ctype=meth.split('-')
                                if 'DE' not in ctype:methstring=methstring+ ":" +meth # don't include old direction estimation methods
                        methstring=methstring+':'+calculation_type
                        PmagSpecRec["magic_method_codes"]= methstring.strip(':')
                        print 'Method codes: ',PmagSpecRec['magic_method_codes']
                        if calculation_type!='DE-FM':
                            if units=='K': 
                                print '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_mad"]),float(PmagSpecRec["specimen_dang"]),float(PmagSpecRec["measurement_step_min"])-273,float(PmagSpecRec["measurement_step_max"])-273,float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)
                            elif units== 'T':
                                print '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_mad"]),float(PmagSpecRec["specimen_dang"]),float(PmagSpecRec["measurement_step_min"])*1e3,float(PmagSpecRec["measurement_step_max"])*1e3,float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)
                            elif 'T' in units and 'K' in units:
                                if float(PmagSpecRec['measurement_step_min'])<1.0 :
                                    min=float(PmagSpecRec['measurement_step_min'])*1e3
                                else:
                                    min=float(PmagSpecRec['measurement_step_min'])-273
                                if float(PmagSpecRec['measurement_step_max'])<1.0 :
                                    max=float(PmagSpecRec['measurement_step_max'])*1e3
                                else:
                                    max=float(PmagSpecRec['measurement_step_max'])-273
                                print '%s %i %7.1f %i %i %7.1f %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_mad"]),float(PmagSpecRec["specimen_dang"]),min,max,float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)
                            else:
                                print '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_mad"]),float(PmagSpecRec["specimen_dang"]),float(PmagSpecRec["measurement_step_min"]),float(PmagSpecRec["measurement_step_max"]),float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)
                        else:
                            if 'K' in units:
                                print '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_alpha95"]),float(PmagSpecRec["specimen_dang"]),float(PmagSpecRec["measurement_step_min"])-273,float(PmagSpecRec["measurement_step_max"])-273,float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)
                            elif 'T' in units:
                                print '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_alpha95"]),float(PmagSpecRec["specimen_dang"]),float(PmagSpecRec["measurement_step_min"])*1e3,float(PmagSpecRec["measurement_step_max"])*1e3,float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)
                            elif 'T' in units and 'K' in units:
                                if float(PmagSpecRec['measurement_step_min'])<1.0 :
                                    min=float(PmagSpecRec['measurement_step_min'])*1e3
                                else:
                                    min=float(PmagSpecRec['measurement_step_min'])-273
                                if float(PmagSpecRec['measurement_step_max'])<1.0 :
                                    max=float(PmagSpecRec['measurement_step_max'])*1e3
                                else:
                                    max=float(PmagSpecRec['measurement_step_max'])-273
                                print '%s %i %7.1f %i %i %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_alpha95"]),min,max,float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)
                            else:
                                print '%s %i %7.1f %7.1f %7.1f %7.1f %7.1f, %s \n' % (PmagSpecRec["er_specimen_name"],int(PmagSpecRec["specimen_n"]),float(PmagSpecRec["specimen_alpha95"]),float(PmagSpecRec["measurement_step_min"]),float(PmagSpecRec["measurement_step_max"]),float(PmagSpecRec["specimen_dec"]),float(PmagSpecRec["specimen_inc"]),calculation_type)
                        saveit=raw_input("Save this interpretation? [y]/n \n")
                        if saveit!="n":
                            changeS=1
#
# put in details
#
                            angle,direction_type,setangle="","",0
                            if len(CurrRecs)>0:
                                replace=raw_input(" [0] add new component, or [1] replace existing interpretation(s) [default is replace] ")
                                if replace=="1" or replace=="":
                                    CurrRecs=[]
                                    PmagSpecRec['specimen_comp_name']='A'
                                    CurrRecs.append(PmagSpecRec)
                                else:
                                    print 'These are the current component names for this specimen: '
                                    for trec in CurrRecs:print trec['specimen_comp_name']
                                    compnum=raw_input("Enter new component name: ")
                                    PmagSpecRec['specimen_comp_name']=compnum
                                    print "Adding new component: ",PmagSpecRec['specimen_comp_name']
                                    CurrRecs.append(PmagSpecRec)
                            else:
                                PmagSpecRec['specimen_comp_name']='A'
                                CurrRecs.append(PmagSpecRec)
                            k+=1 
                            ans=""
                        else:
                            ans=""
              else:  # plots=1
                  k+=1
                  files={}
                  locname.replace('/','-')
                  print PmagSpecRec
                  for key in ZED.keys():
                      files[key]="LO:_"+locname+'_SI:_'+PmagSpecRec['er_site_name']+'_SA:_'+PmagSpecRec['er_sample_name']+'_SP:_'+s+'_CO:_'+coord+'_TY:_'+key+'_.'+fmt
                  if pmagplotlib.isServer:
                      black     = '#000000'
                      purple    = '#800080'
                      titles={}
                      titles['demag']='DeMag Plot'
                      titles['zijd']='Zijderveld Plot'
                      titles['eqarea']='Equal Area Plot'
                      ZED = pmagplotlib.addBorders(ZED,titles,black,purple)
                  pmagplotlib.saveP(ZED,files)
            if len(CurrRecs)>0:
                for rec in CurrRecs: PriorRecs.append(rec)
            if changeS==1:
                if len(PriorRecs)>0:
                    save_redo(PriorRecs,inspec)
                else:
                    os.system('rm '+inspec)
            CurrRecs,beg_pca,end_pca=[],"","" # next up
            changeS=0
        else: k+=1 # skip record - not enough data
    if changeM==1:
        pmag.magic_write(meas_file,meas_data,'magic_measurements')
Ejemplo n.º 47
0
def main():
    """
    NAME
        make_magic_plots.py

    DESCRIPTION
    inspects magic directory for available plots.

    SYNTAX
        make_magic_plots.py [command line options]

    INPUT
        magic files

    OPTIONS
        -h prints help message and quits
        -f FILE specifies input file name
        -fmt [png,eps,svg,jpg,pdf] specify format, default is png
    """
    if '-h' in sys.argv:
        print(main.__doc__)
        sys.exit()
    # reset log files
    for fname in ['log.txt', 'errors.txt']:
        f = os.path.join(os.getcwd(), fname)
        if os.path.exists(f):
            os.remove(f)
    dirlist = ['./']
    dir_path = os.getcwd()
    #
    if '-fmt' in sys.argv:
        ind = sys.argv.index("-fmt")
        fmt = sys.argv[ind + 1]
    else:
        fmt = 'png'
    if '-f' in sys.argv:
        ind = sys.argv.index("-f")
        filelist = [sys.argv[ind + 1]]
    else:
        filelist = os.listdir(dir_path)
    ## initialize some variables
    samp_file = 'samples.txt'
    azimuth_key = 'azimuth'
    meas_file = 'measurements.txt'
    loc_key = 'location'
    loc_file = 'locations.txt'
    method_key = 'method_codes'
    dec_key = 'dir_dec'
    inc_key = 'dir_inc'
    tilt_corr_key = "dir_tilt_correction"
    aniso_tilt_corr_key = "aniso_tilt_correction"
    hyst_bcr_key = "hyst_bcr"
    hyst_mr_key = "hyst_mr_moment"
    hyst_ms_key = "hyst_ms_moment"
    hyst_bc_key = "hyst_bc"
    Mkeys = ['magnitude', 'magn_moment', 'magn_volume', 'magn_mass']
    results_file = 'sites.txt'
    hyst_file = 'specimens.txt'
    aniso_file = 'specimens.txt'
    # create contribution and propagate data throughout
    con = cb.Contribution()
    con.propagate_location_to_measurements()
    con.propagate_location_to_specimens()
    con.propagate_location_to_samples()
    if not con.tables:
        print('-E- No MagIC tables could be found in this directory')
        error_log("No MagIC tables found")
        return
    # check to see if propagation worked, otherwise you can't plot by location
    lowest_table = None
    for table in con.ancestry:
        if table in con.tables:
            lowest_table = table
            break

    do_full_directory = False
    # check that locations propagated down to the lowest table in the contribution
    if 'location' in con.tables[lowest_table].df.columns:
        # are there any locations in the lowest table?
        if not all(con.tables[lowest_table].df['location'].isnull()):
            locs = con.tables['locations'].df.index.unique()
            lowest_locs = con.tables[lowest_table].df['location'].unique()
            incorrect_locs = set(lowest_locs).difference(set(locs))
            # are they actual locations?
            if not incorrect_locs:
                info_log(
                    'location names propagated to {}'.format(lowest_table))
            else:
                do_full_directory = True
                error_log('location names did not propagate fully to {} table'.
                          format(lowest_table))
        else:
            do_full_directory = True
            error_log(
                'could not propagate location names down to {} table'.format(
                    lowest_table))
    else:
        do_full_directory = True
        error_log('could not propagate location names down to {} table'.format(
            lowest_table))

    all_data = {}
    all_data['measurements'] = con.tables.get('measurements', None)
    all_data['specimens'] = con.tables.get('specimens', None)
    all_data['samples'] = con.tables.get('samples', None)
    all_data['sites'] = con.tables.get('sites', None)
    all_data['locations'] = con.tables.get('locations', None)
    locations = con.tables['locations'].df.index.unique()
    dirlist = [loc for loc in locations if cb.not_null(loc) and loc != 'nan']
    if not dirlist:
        dirlist = ["./"]
    if do_full_directory:
        dirlist = ["./"]

    # plot the whole contribution as one location
    if dirlist == ["./"]:
        error_log('plotting the entire contribution as one location')
        for fname in os.listdir("."):
            if fname.endswith(".txt"):
                shutil.copy(fname, "tmp_" + fname)

    # if possible, go through all data by location
    # use tmp_*.txt files to separate out by location

    for loc in dirlist:
        print('\nworking on: ', loc)

        def get_data(dtype, loc_name):
            """
            Extract data of type dtype for location loc_name.
            Write tmp_dtype.txt files if possible.
            """
            if cb.not_null(all_data[dtype]):
                data_container = all_data[dtype]
                data_df = data_container.df[data_container.df['location'] ==
                                            loc_name]
                data = data_container.convert_to_pmag_data_list(df=data_df)
                res = data_container.write_magic_file(
                    'tmp_{}.txt'.format(dtype), df=data_df)
                if not res:
                    return []
                return data

        meas_data = get_data('measurements', loc)
        spec_data = get_data('specimens', loc)
        samp_data = get_data('samples', loc)
        site_data = get_data('sites', loc)
        location_data = get_data('locations', loc)

        if loc == "./":  # if you can't sort by location, do everything together
            try:
                meas_data = con.tables[
                    'measurements'].convert_to_pmag_data_list()
            except KeyError:
                meas_data = None
            try:
                spec_data = con.tables['specimens'].convert_to_pmag_data_list()
            except KeyError:
                spec_data = None
            try:
                samp_data = con.tables['samples'].convert_to_pmag_data_list()
            except KeyError:
                samp_data = None
            try:
                site_data = con.tables['sites'].convert_to_pmag_data_list()
            except KeyError:
                site_data = None

        crd = 's'
        if samp_file in filelist:  # find coordinate systems
            samps = samp_data
            file_type = "samples"
            # get all non blank sample orientations
            Srecs = pmag.get_dictitem(samps, azimuth_key, '', 'F')
            if len(Srecs) > 0:
                crd = 'g'
                print('using geographic coordinates')
            else:
                print('using specimen coordinates')
        else:
            if VERBOSE:
                print('-I- No sample data found')
        if meas_file in filelist:  # start with measurement data
            print('working on measurements data')
            data = meas_data
            file_type = 'measurements'
            # looking for  zeq_magic possibilities
            # get all non blank method codes
            AFZrecs = pmag.get_dictitem(data, method_key, 'LT-AF-Z', 'has')
            # get all non blank method codes
            TZrecs = pmag.get_dictitem(data, method_key, 'LT-T-Z', 'has')
            # get all non blank method codes
            MZrecs = pmag.get_dictitem(data, method_key, 'LT-M-Z', 'has')
            # get all dec measurements
            Drecs = pmag.get_dictitem(data, dec_key, '', 'F')
            # get all inc measurements
            Irecs = pmag.get_dictitem(data, inc_key, '', 'F')
            for key in Mkeys:
                Mrecs = pmag.get_dictitem(data, key, '',
                                          'F')  # get intensity data
                if len(Mrecs) > 0:
                    break
            # potential for stepwise demag curves
            if len(AFZrecs) > 0 or len(TZrecs) > 0 or len(MZrecs) > 0 and len(
                    Drecs) > 0 and len(Irecs) > 0 and len(Mrecs) > 0:
                CMD = 'zeq_magic.py -f tmp_measurements.txt -fsp tmp_specimens.txt -fsa tmp_samples.txt -fsi tmp_sites.txt -sav -fmt ' + fmt + ' -crd ' + crd
                print(CMD)
                info_log(CMD, loc)
                os.system(CMD)
            # looking for  thellier_magic possibilities
            if len(pmag.get_dictitem(data, method_key, 'LP-PI-TRM',
                                     'has')) > 0:
                CMD = 'thellier_magic.py -f tmp_measurements.txt -fsp tmp_specimens.txt -sav -fmt ' + fmt
                print(CMD)
                info_log(CMD, loc)
                os.system(CMD)
            # looking for hysteresis possibilities
            if len(pmag.get_dictitem(data, method_key, 'LP-HYS',
                                     'has')) > 0:  # find hyst experiments
                # check for reqd columns
                missing = check_for_reqd_cols(data, ['treat_temp'])
                if missing:
                    error_log(
                        'LP-HYS method code present, but required column(s) [{}] missing'
                        .format(", ".join(missing)), loc, "quick_hyst.py")
                else:
                    CMD = 'quick_hyst.py -f tmp_measurements.txt -sav -fmt ' + fmt
                    print(CMD)
                    info_log(CMD, loc)
                    os.system(CMD)
            # equal area plots of directional data
            # at measurment level (by specimen)
            if data:
                missing = check_for_reqd_cols(data, ['dir_dec', 'dir_inc'])
                if not missing:
                    CMD = "eqarea_magic.py -f tmp_measurements.txt -obj spc -sav -no-tilt -fmt " + fmt
                    print(CMD)
                    os.system(CMD)
                    info_log(CMD, loc, "eqarea_magic.py")

        else:
            if VERBOSE:
                print('-I- No measurement data found')

        # site data
        if results_file in filelist:
            print('-I- result file found', results_file)
            data = site_data
            file_type = 'sites'
            print('-I- working on site directions')
            print('number of datapoints: ', len(data), loc)
            dec_key = 'dir_dec'
            inc_key = 'dir_inc'
            int_key = 'int_abs'
            SiteDIs = pmag.get_dictitem(data, dec_key, "", 'F')  # find decs
            SiteDIs = pmag.get_dictitem(SiteDIs, inc_key, "",
                                        'F')  # find decs and incs
            dir_data_found = len(SiteDIs)
            print('{} Dec/inc pairs found'.format(dir_data_found))
            # only individual results - not poles
            # get only individual results (if result_type col is available)
            if SiteDIs:
                if 'result_type' in SiteDIs[0]:
                    SiteDIs = pmag.get_dictitem(SiteDIs, 'result_type', 'i',
                                                'has')
                # then convert tilt_corr_key to correct format
                old_SiteDIs = SiteDIs
                SiteDIs = []
                for rec in old_SiteDIs:
                    if tilt_corr_key not in rec:
                        error_log(
                            "Directional data found, but missing {}, can't plot directions"
                            .format(tilt_corr_key), loc, "eqarea_magic.py")
                        break
                    if cb.is_null(
                            rec[tilt_corr_key]) and rec[tilt_corr_key] != 0:
                        rec[tilt_corr_key] = ""
                    else:
                        try:
                            rec[tilt_corr_key] = str(
                                int(float(rec[tilt_corr_key])))
                        except ValueError:
                            rec[tilt_corr_key] = ""
                    SiteDIs.append(rec)

                print('number of individual directions: ', len(SiteDIs))
                # tilt corrected coordinates
                SiteDIs_t = pmag.get_dictitem(SiteDIs,
                                              tilt_corr_key,
                                              '100',
                                              'T',
                                              float_to_int=True)
                print('number of tilt corrected directions: ', len(SiteDIs_t))
                SiteDIs_g = pmag.get_dictitem(
                    SiteDIs, tilt_corr_key, '0', 'T',
                    float_to_int=True)  # geographic coordinates
                print('number of geographic  directions: ', len(SiteDIs_g))
                SiteDIs_s = pmag.get_dictitem(
                    SiteDIs, tilt_corr_key, '-1', 'T',
                    float_to_int=True)  # sample coordinates
                print('number of sample  directions: ', len(SiteDIs_s))
                SiteDIs_x = pmag.get_dictitem(SiteDIs, tilt_corr_key, '',
                                              'T')  # no coordinates
                print('number of no coordinates  directions: ', len(SiteDIs_x))
                if len(SiteDIs_t) > 0 or len(SiteDIs_g) > 0 or len(
                        SiteDIs_s) > 0 or len(SiteDIs_x) > 0:
                    CRD = ""
                    if len(SiteDIs_t) > 0:
                        CRD = ' -crd t'
                    elif len(SiteDIs_g) > 0:
                        CRD = ' -crd g'
                    elif len(SiteDIs_s) > 0:
                        CRD = ' -crd s'
                    CMD = 'eqarea_magic.py -f tmp_sites.txt -fsp tmp_specimens.txt -fsa tmp_samples.txt -flo tmp_locations.txt -sav -fmt ' + fmt + CRD
                    print(CMD)
                    info_log(CMD, loc)
                    os.system(CMD)
                else:
                    if dir_data_found:
                        error_log(
                            '{} dec/inc pairs found, but no equal area plots were made'
                            .format(dir_data_found), loc, "equarea_magic.py")
            #
            print('-I- working on VGP map')
            VGPs = pmag.get_dictitem(SiteDIs, 'vgp_lat', "",
                                     'F')  # are there any VGPs?
            if len(VGPs) > 0:  # YES!
                CMD = 'vgpmap_magic.py -f tmp_sites.txt -prj moll -res c -sym ro 5 -sav -fmt png'
                print(CMD)
                info_log(CMD, loc, 'vgpmap_magic.py')
                os.system(CMD)
            else:
                print('-I- No vgps found')

            print('-I- Look for intensities')
            # is there any intensity data?
            if site_data:
                if int_key in site_data[0].keys():
                    # old way, wasn't working right:
                    #CMD = 'magic_select.py  -key ' + int_key + ' 0. has -F tmp1.txt -f tmp_sites.txt'
                    Selection = pmag.get_dictkey(site_data, int_key, dtype="f")
                    with open('intensities.txt', 'w') as out:
                        for rec in Selection:
                            if rec != 0:
                                out.write(str(rec * 1e6) + "\n")

                    histfile = 'LO:_' + loc + \
                        '_TY:_intensities_histogram:_.' + fmt
                    # maybe run histplot.main here instead, so you can return an error message
                    CMD = "histplot.py -b 1 -xlab 'Intensity (uT)' -sav -f intensities.txt -F " + histfile
                    os.system(CMD)
                    info_log(CMD, loc)
                    print(CMD)
                else:
                    print('-I- No intensities found')
            else:
                print('-I- No intensities found')

        ##
        if hyst_file in filelist:
            print('working on hysteresis', hyst_file)
            data = spec_data
            file_type = 'specimens'
            hdata = pmag.get_dictitem(data, hyst_bcr_key, '', 'F')
            hdata = pmag.get_dictitem(hdata, hyst_mr_key, '', 'F')
            hdata = pmag.get_dictitem(hdata, hyst_ms_key, '', 'F')
            # there are data for a dayplot
            hdata = pmag.get_dictitem(hdata, hyst_bc_key, '', 'F')
            if len(hdata) > 0:
                CMD = 'dayplot_magic.py -f tmp_specimens.txt -sav -fmt ' + fmt
                info_log(CMD, loc)
                print(CMD)
            else:
                print('no hysteresis data found')
        if aniso_file in filelist:  # do anisotropy plots if possible
            print('working on anisotropy', aniso_file)
            data = spec_data
            file_type = 'specimens'

            # make sure there is some anisotropy data
            if not data:
                print('No anisotropy data found')
            elif 'aniso_s' not in data[0]:
                print('No anisotropy data found')
            else:
                # get specimen coordinates
                if aniso_tilt_corr_key not in data[0]:
                    sdata = data
                else:
                    sdata = pmag.get_dictitem(data,
                                              aniso_tilt_corr_key,
                                              '-1',
                                              'T',
                                              float_to_int=True)
                # get specimen coordinates
                gdata = pmag.get_dictitem(data,
                                          aniso_tilt_corr_key,
                                          '0',
                                          'T',
                                          float_to_int=True)
                # get specimen coordinates
                tdata = pmag.get_dictitem(data,
                                          aniso_tilt_corr_key,
                                          '100',
                                          'T',
                                          float_to_int=True)
                CRD = ""
                CMD = 'aniso_magic.py -x -B -sav -fmt ' + fmt
                if len(sdata) > 3:
                    CMD = CMD + ' -crd s'
                    print(CMD)
                    info_log(CMD, loc)
                    os.system(CMD)
                if len(gdata) > 3:
                    CMD = CMD + ' -crd g'
                    print(CMD)
                    info_log(CMD, loc)
                    os.system(CMD)
                if len(tdata) > 3:
                    CMD = CMD + ' -crd t'
                    print(CMD)
                    info_log(CMD, loc)
                    os.system(CMD)
        # remove temporary files
        for fname in glob.glob('tmp*.txt'):
            os.remove(fname)
        try:
            os.remove('intensities.txt')
        except FileNotFoundError:
            pass
    if loc_file in filelist:
        data, file_type = pmag.magic_read(loc_file)  # read in location data
        print('-I- working on pole map')
        poles = pmag.get_dictitem(data, 'pole_lat', "",
                                  'F')  # are there any poles?
        poles = pmag.get_dictitem(poles, 'pole_lon', "",
                                  'F')  # are there any poles?
        if len(poles) > 0:  # YES!
            CMD = 'polemap_magic.py -sav -fmt png'
            print(CMD)
            info_log(CMD, "all locations", "polemap_magic.py")
            os.system(CMD)
        else:
            print('-I- No poles found')
Ejemplo n.º 48
0
def main():
    """
    NAME
        make_magic_plots.py

    DESCRIPTION
 	inspects magic directory for available plots.

    SYNTAX
        make_magic_plots.py [command line options]

    INPUT
        magic files

    OPTIONS
        -h prints help message and quits
        -f FILE specifies input file name
        -fmt [png,eps,svg,jpg,pdf] specify format, default is png
        -DM [2,3] define data model
    """
    dirlist = ['./']
    dir_path = os.getcwd()
    names = os.listdir(dir_path)
    for n in names:
        if 'Location' in n:
            dirlist.append(n)
    if '-fmt' in sys.argv:
        ind = sys.argv.index("-fmt")
        fmt = sys.argv[ind + 1]
    else:
        fmt = 'png'
    if '-f' in sys.argv:
        ind = sys.argv.index("-f")
        filelist = [sys.argv[ind + 1]]
    else:
        filelist = os.listdir(dir_path)
    new_model = 0
    if '-DM' in sys.argv:
        ind = sys.argv.index("-DM")
        data_model = sys.argv[ind + 1]
        if data_model == '3': new_model = 1
    if new_model:
        samp_file = 'samples.txt'
        azimuth_key = 'azimuth'
        meas_file = 'measurements.txt'
        loc_key = 'location'
        method_key = 'method_codes'
        dec_key = 'dir_dec'
        inc_key = 'dir_inc'
        Mkeys = ['magnitude', 'magn_moment', 'magn_volume', 'magn_mass']
        results_file = 'sites.txt'
        tilt_key = 'direction_tilt_correction'
        hyst_file = 'specimens.txt'
        aniso_file = 'specimens.txt'
    else:
        new_model = 0
        samp_file = 'er_samples.txt'
        azimuth_key = 'sample_azimuth'
        meas_file = 'magic_measurements.txt'
        loc_key = 'er_location_name'
        method_key = 'magic_method_codes'
        dec_key = 'measurement_dec'
        inc_key = 'measurement_inc'
        Mkeys = [
            'measurement_magnitude', 'measurement_magn_moment',
            'measurement_magn_volume', 'measurement_magn_mass'
        ]
        results_file = 'pmag_results.txt'
        tilt_key = 'tilt_correction'
        hyst_file = 'rmag_hysteresis'
        aniso_file = 'rmag_anisotropy'
    if '-h' in sys.argv:
        print main.__doc__
        sys.exit()
    for loc in dirlist:
        print 'working on: ', loc
        os.chdir(loc)  # change working directories to each location
        crd = 's'
        print samp_file
        if samp_file in filelist:  # find coordinate systems
            print 'found sample file'
            samps, file_type = pmag.magic_read(samp_file)  # read in data
            Srecs = pmag.get_dictitem(
                samps, azimuth_key, '',
                'F')  # get all none blank sample orientations
            if len(Srecs) > 0:
                crd = 'g'
        if meas_file in filelist:  # start with measurement data
            print 'working on measurements data'
            data, file_type = pmag.magic_read(meas_file)  # read in data
            if loc == './':
                data = pmag.get_dictitem(
                    data, loc_key, '',
                    'T')  # get all the blank location names from data file
            # looking for  zeq_magic possibilities
            AFZrecs = pmag.get_dictitem(
                data, method_key, 'LT-AF-Z',
                'has')  # get all none blank method codes
            TZrecs = pmag.get_dictitem(
                data, method_key, 'LT-T-Z',
                'has')  # get all none blank method codes
            MZrecs = pmag.get_dictitem(
                data, method_key, 'LT-M-Z',
                'has')  # get all none blank method codes
            Drecs = pmag.get_dictitem(data, dec_key, '',
                                      'F')  # get all dec measurements
            Irecs = pmag.get_dictitem(data, inc_key, '',
                                      'F')  # get all inc measurements
            for key in Mkeys:
                Mrecs = pmag.get_dictitem(data, key, '',
                                          'F')  # get intensity data
                if len(Mrecs) > 0: break
            if len(AFZrecs) > 0 or len(TZrecs) > 0 or len(MZrecs) > 0 and len(
                    Drecs) > 0 and len(Irecs) > 0 and len(
                        Mrecs) > 0:  # potential for stepwise demag curves
                if new_model:
                    CMD = 'zeq_magic3.0.py -fsp specimens.txt -sav -fmt ' + fmt + ' -crd ' + crd
                else:
                    CMD = 'zeq_magic.py -fsp pmag_specimens.txt -sav -fmt ' + fmt + ' -crd ' + crd
                print CMD
                os.system(CMD)
            # looking for  thellier_magic possibilities
            if len(pmag.get_dictitem(data, method_key, 'LP-PI-TRM',
                                     'has')) > 0:
                if new_model:
                    CMD = 'thellier_magic3.0.py -fsp specimens.txt -sav -fmt ' + fmt
                else:
                    CMD = 'thellier_magic.py -fsp pmag_specimens.txt -sav -fmt ' + fmt
                print CMD
                os.system(CMD)
            # looking for hysteresis possibilities
            if len(pmag.get_dictitem(data, method_key, 'LP-HYS',
                                     'has')) > 0:  # find hyst experiments
                if new_model:
                    CMD = 'quick_hyst3.0.py -sav -fmt ' + fmt
                else:
                    CMD = 'quick_hyst.py -sav -fmt ' + fmt
                print CMD
                os.system(CMD)
        if results_file in filelist:  # start with measurement data
            data, file_type = pmag.magic_read(results_file)  # read in data
            print 'number of datapoints: ', len(data)
            if loc == './':
                data = pmag.get_dictitem(
                    data, loc_key, ':', 'has'
                )  # get all the concatenated location names from data file
            print 'number of datapoints: ', len(data), loc
            if new_model:
                print 'working on site directions'
                dec_key = 'dir_dec'
                inc_key = 'dir_inc'
                int_key = 'int_abs'
            else:
                print 'working on results directions'
                dec_key = 'average_dec'
                inc_key = 'average_inc'
                int_key = 'average_int'
            SiteDIs = pmag.get_dictitem(data, dec_key, "", 'F')  # find decs
            SiteDIs = pmag.get_dictitem(SiteDIs, inc_key, "",
                                        'F')  # find decs and incs
            SiteDIs = pmag.get_dictitem(
                SiteDIs, 'data_type', 'i',
                'has')  # only individual results - not poles
            print 'number of directions: ', len(SiteDIs)
            SiteDIs_t = pmag.get_dictitem(SiteDIs, tilt_key, '100',
                                          'T')  # tilt corrected coordinates
            print 'number of tilt corrected directions: ', len(SiteDIs)
            SiteDIs_g = pmag.get_dictitem(SiteDIs, tilt_key, '0',
                                          'T')  # geographic coordinates
            SiteDIs_s = pmag.get_dictitem(SiteDIs, 'tilt_correction', '-1',
                                          'T')  # sample coordinates
            SiteDIs_x = pmag.get_dictitem(SiteDIs, 'tilt_correction', '',
                                          'T')  # no coordinates
            if len(SiteDIs_t) > 0 or len(SiteDIs_g) > 0 or len(
                    SiteDIs_s) > 0 or len(SiteDIs_x) > 0:
                CRD = ""
                if len(SiteDIs_t) > 0:
                    CRD = ' -crd t'
                elif len(SiteDIs_g) > 0:
                    CRD = ' -crd g'
                elif len(SiteDIs_s) > 0:
                    CRD = ' -crd s'
                if new_model:
                    CMD = 'eqarea_magic3.0.py -sav -crd t -fmt ' + fmt + CRD
                else:
                    CMD = 'eqarea_magic.py -sav -crd t -fmt ' + fmt + CRD
                print CMD
                os.system(CMD)
            print 'working on VGP map'
            VGPs = pmag.get_dictitem(SiteDIs, 'vgp_lat', "",
                                     'F')  # are there any VGPs?
            if len(VGPs) > 0:  # YES!
                os.system(
                    'vgpmap_magic.py -prj moll -res c -sym ro 5 -sav -fmt png')
            print 'working on intensities'
            if not new_model:
                CMD = 'magic_select.py -f ' + results_file + ' -key data_type i T -F tmp.txt'
                os.system(CMD)
                infile = ' tmp.txt'
            else:
                infile = results_file
            print int_key
            CMD = 'magic_select.py  -key ' + int_key + ' 0. has -F tmp1.txt -f ' + infile
            os.system(CMD)
            CMD = "grab_magic_key.py -f tmp1.txt -key " + int_key + " | awk '{print $1*1e6}' >tmp2.txt"
            os.system(CMD)
            data, file_type = pmag.magic_read('tmp1.txt')  # read in data
            if new_model:
                locations = pmag.get_dictkey(data, loc_key, "")
            else:
                locations = pmag.get_dictkey(data, loc_key + 's', "")
            histfile = 'LO:_' + locations[0] + '_intensities_histogram:_.' + fmt
            os.system(
                "histplot.py -b 1 -xlab 'Intensity (uT)' -sav -f tmp2.txt -F "
                + histfile)
            print "histplot.py -b 1 -xlab 'Intensity (uT)' -sav -f tmp2.txt -F " + histfile
            os.system('rm tmp*.txt')
        if hyst_file in filelist:  # start with measurement data
            print 'working on hysteresis'
            data, file_type = pmag.magic_read(hyst_file)  # read in data
            if loc == './':
                data = pmag.get_dictitem(
                    data, loc_key, '',
                    'T')  # get all the blank location names from data file
            hdata = pmag.get_dictitem(data, 'hysteresis_bcr', '', 'F')
            hdata = pmag.get_dictitem(hdata, 'hysteresis_mr_moment', '', 'F')
            hdata = pmag.get_dictitem(hdata, 'hysteresis_ms_moment', '', 'F')
            hdata = pmag.get_dictitem(hdata, 'hysteresis_bc', '',
                                      'F')  # there are data for a dayplot
            if len(hdata) > 0:
                print 'dayplot_magic.py -sav -fmt ' + fmt
                os.system('dayplot_magic.py -sav -fmt ' + fmt)
        if aniso_file in filelist:  # do anisotropy plots if possible
            print 'working on anisotropy'
            data, file_type = pmag.magic_read(aniso_file)  # read in data
            if loc == './':
                data = pmag.get_dictitem(
                    data, loc_key, '',
                    'T')  # get all the blank location names from data file
            sdata = pmag.get_dictitem(data, 'anisotropy_tilt_correction', '-1',
                                      'T')  # get specimen coordinates
            gdata = pmag.get_dictitem(data, 'anisotropy_tilt_correction', '0',
                                      'T')  # get specimen coordinates
            tdata = pmag.get_dictitem(data, 'anisotropy_tilt_correction',
                                      '100', 'T')  # get specimen coordinates
            CRD = ""
            if new_model:
                CMD = 'aniso_magic3.0.py -x -B -sav -fmt ' + fmt
            else:
                CMD = 'aniso_magic.py -x -B -sav -fmt ' + fmt
            if len(sdata) > 3:
                CMD = CMD + ' -crd s'
                print CMD
                os.system(CMD)
            if len(gdata) > 3:
                CMD = CMD + ' -crd g'
                print CMD
                os.system(CMD)
            if len(tdata) > 3:
                CMD = CMD + ' -crd t'
                print CMD
                os.system(CMD)
        if loc != './':
            os.chdir('..')  # change working directories to each location
Ejemplo n.º 49
0
def main():
    """
    NAME
        quick_hyst.py

    DESCRIPTION
        makes plots of hysteresis data

    SYNTAX
        quick_hyst.py [command line options]

    OPTIONS
        -h prints help message and quits
        -usr USER:   identify user, default is ""
        -f: specify input file, default is magic_measurements.txt
        -spc SPEC: specify specimen name to plot and quit
        -sav save all plots and quit
        -fmt [png,svg,eps,jpg]
    """
    args = sys.argv
    PLT = 1
    plots = 0
    user, meas_file = "", "magic_measurements.txt"
    pltspec = ""
    dir_path = '.'
    fmt = 'png'
    verbose = pmagplotlib.verbose
    version_num = pmag.get_version()
    if '-WD' in args:
        ind = args.index('-WD')
        dir_path = args[ind+1]
    if "-h" in args:
        print(main.__doc__)
        sys.exit()
    if "-usr" in args:
        ind = args.index("-usr")
        user = args[ind+1]
    if '-f' in args:
        ind = args.index("-f")
        meas_file = args[ind+1]
    if '-sav' in args:
        verbose = 0
        plots = 1
    if '-spc' in args:
        ind = args.index("-spc")
        pltspec = args[ind+1]
        verbose = 0
        plots = 1
    if '-fmt' in args:
        ind = args.index("-fmt")
        fmt = args[ind+1]
    meas_file = dir_path+'/'+meas_file
    #
    #
    meas_data, file_type = pmag.magic_read(meas_file)
    if file_type != 'magic_measurements':
        print(main.__doc__)
        print('bad file')
        sys.exit()
    #
    # initialize some variables
    # define figure numbers for hyst,deltaM,DdeltaM curves
    HystRecs, RemRecs = [], []
    HDD = {}
    HDD['hyst'] = 1
    pmagplotlib.plot_init(HDD['hyst'], 5, 5)
    #
    # get list of unique experiment names and specimen names
    #
    experiment_names, sids = [], []
    hyst_data = pmag.get_dictitem(
        meas_data, 'magic_method_codes', 'LP-HYS', 'has')  # get all hysteresis data
    for rec in hyst_data:
        if 'er_synthetic_name' in rec.keys() and rec['er_synthetic_name'] != "":
            rec['er_specimen_name'] = rec['er_synthetic_name']
        if rec['magic_experiment_name'] not in experiment_names:
            experiment_names.append(rec['magic_experiment_name'])
        if rec['er_specimen_name'] not in sids:
            sids.append(rec['er_specimen_name'])
        if 'measurement_temp' not in rec.keys():
            # assume room T measurement unless otherwise specified
            rec['measurement_temp'] = '300'
    #
    k = 0
    if pltspec != "":
        k = sids.index(pltspec)
    intlist = ['measurement_magnitude', 'measurement_magn_moment',
               'measurement_magn_volume', 'measurement_magn_mass']
    while k < len(sids):
        locname, site, sample, synth = '', '', '', ''
        s = sids[k]
        hmeths = []
        if verbose:
            print(s, k+1, 'out of ', len(sids))
    #
    #
        B, M = [], []  # B,M for hysteresis, Bdcd,Mdcd for irm-dcd data
        # get all measurements for this specimen
        spec = pmag.get_dictitem(hyst_data, 'er_specimen_name', s, 'T')
        if 'er_location_name' in spec[0].keys():
            locname = spec[0]['er_location_name']
        if 'er_site_name' in spec[0].keys():
            site = spec[0]['er_site_name']
        if 'er_sample_name' in spec[0].keys():
            sample = spec[0]['er_sample_name']
        if 'er_synthetic_name' in spec[0].keys():
            synth = spec[0]['er_synthetic_name']
        for m in intlist:
            # get all non-blank data for this specimen
            meas_data = pmag.get_dictitem(spec, m, '', 'F')
            if len(meas_data) > 0:
                break
        c = ['k-', 'b-', 'c-', 'g-', 'm-', 'r-', 'y-']
        cnum = 0
        if len(meas_data) > 0:
            Temps = []
            xlab, ylab, title = '', '', ''
            for rec in meas_data:
                if rec['measurement_temp'] not in Temps:
                    Temps.append(rec['measurement_temp'])
            for t in Temps:
                print('working on t: ', t)
                t_data = pmag.get_dictitem(
                    meas_data, 'measurement_temp', t, 'T')
                B, M = [], []
                for rec in t_data:
                    B.append(float(rec['measurement_lab_field_dc']))
                    M.append(float(rec[m]))
    # now plot the hysteresis curve(s)
    #
                if len(B) > 0:
                    B = numpy.array(B)
                    M = numpy.array(M)
                    if t == Temps[-1]:
                        xlab = 'Field (T)'
                        ylab = m
                        title = 'Hysteresis: '+s
                    if t == Temps[0]:
                        pmagplotlib.clearFIG(HDD['hyst'])
                    pmagplotlib.plot_xy(
                        HDD['hyst'], B, M, sym=c[cnum], xlab=xlab, ylab=ylab, title=title)
                    pmagplotlib.plot_xy(HDD['hyst'], [
                                        1.1*B.min(), 1.1*B.max()], [0, 0], sym='k-', xlab=xlab, ylab=ylab, title=title)
                    pmagplotlib.plot_xy(HDD['hyst'], [0, 0], [
                                        1.1*M.min(), 1.1*M.max()], sym='k-', xlab=xlab, ylab=ylab, title=title)
                    if verbose:
                        pmagplotlib.draw_figs(HDD)
                    cnum += 1
                    if cnum == len(c):
                        cnum = 0
    #
        files = {}
        if plots:
            if pltspec != "":
                s = pltspec
            files = {}
            for key in HDD.keys():
                if pmagplotlib.isServer:  # use server plot naming convention
                    if synth == '':
                        filename = "LO:_"+locname+'_SI:_'+site + \
                            '_SA:_'+sample+'_SP:_'+s+'_TY:_'+key+'_.'+fmt
                    else:
                        filename = 'SY:_'+synth+'_TY:_'+key+'_.'+fmt
                    files[key] = filename
                else:  # use more readable plot naming convention
                    if synth == '':
                        filename = ''
                        for item in [locname, site, sample, s, key]:
                            if item:
                                item = item.replace(' ', '_')
                                filename += item + '_'
                        if filename.endswith('_'):
                            filename = filename[:-1]
                        filename += ".{}".format(fmt)
                    else:
                        filename = synth+'_'+key+'.fmt'
                    files[key] = filename

            pmagplotlib.save_plots(HDD, files)
            if pltspec != "":
                sys.exit()
        if verbose:
            pmagplotlib.draw_figs(HDD)
            ans = raw_input(
                "S[a]ve plots, [s]pecimen name, [q]uit, <return> to continue\n ")
            if ans == "a":
                files = {}
                for key in HDD.keys():
                    if pmagplotlib.isServer:
                        print('server')
                        files[key] = "LO:_"+locname+'_SI:_'+site + \
                            '_SA:_'+sample+'_SP:_'+s+'_TY:_'+key+'_.'+fmt
                    else:
                        print('not server')
                        filename = ''
                        for item in [locname, site, sample, s, key]:
                            if item:
                                item = item.replace(' ', '_')
                                filename += item + '_'
                        if filename.endswith('_'):
                            filename = filename[:-1]
                        filename += ".{}".format(fmt)
                        files[key] = filename
                print('files', files)
                pmagplotlib.save_plots(HDD, files)
            if ans == '':
                k += 1
            if ans == "p":
                del HystRecs[-1]
                k -= 1
            if ans == 'q':
                print("Good bye")
                sys.exit()
            if ans == 's':
                keepon = 1
                specimen = raw_input(
                    'Enter desired specimen name (or first part there of): ')
                while keepon == 1:
                    try:
                        k = sids.index(specimen)
                        keepon = 0
                    except:
                        tmplist = []
                        for qq in range(len(sids)):
                            if specimen in sids[qq]:
                                tmplist.append(sids[qq])
                        print(specimen, " not found, but this was: ")
                        print(tmplist)
                        specimen = raw_input('Select one or try again\n ')
                        k = sids.index(specimen)
        else:
            k += 1
        if len(B) == 0:
            if verbose:
                print('skipping this one - no hysteresis data')
            k += 1
Ejemplo n.º 50
0
def main():
    """
    NAME
        zeq_magic_redo.py
   
    DESCRIPTION
        Calculate principal components through demagnetization data using bounds and calculation type stored in "redo" file
  
    SYNTAX
        zeq_magic_redo.py [command line options]

    OPTIONS
        -h prints help message
        -usr USER:   identify user, default is ""
        -f: specify input file, default is magic_measurements.txt
        -F: specify output file, default is zeq_specimens.txt
        -fre  REDO: specify redo file, default is "zeq_redo"
        -fsa  SAMPFILE: specify er_samples format file, default is "er_samples.txt"
        -A : don't average replicate measurements, default is yes
        -crd [s,g,t] : 
             specify coordinate system [s,g,t]  [default is specimen coordinates]
                 are specimen, geographic, and tilt corrected respectively
             NB: you must have a SAMPFILE in this directory to rotate from specimen coordinates
        -leg:  attaches "Recalculated from original measurements; supercedes published results. " to comment field
    INPUTS
        zeq_redo format file is:
        specimen_name calculation_type[DE-BFL,DE-BFL-A,DE-BFL-O,DE-BFP,DE-FM]  step_min step_max component_name[A,B,C]
    """
    dir_path='.'
    INCL=["LT-NO","LT-AF-Z","LT-T-Z","LT-M-Z"] # looking for demag data
    beg,end,pole,geo,tilt,askave,save=0,0,[],0,0,0,0
    user,doave,comment= "",1,""
    geo,tilt=0,0
    version_num=pmag.get_version()
    args=sys.argv
    if '-WD' in args:
        ind=args.index('-WD')
        dir_path=args[ind+1]
    meas_file,pmag_file,mk_file= dir_path+"/"+"magic_measurements.txt",dir_path+"/"+"zeq_specimens.txt",dir_path+"/"+"zeq_redo"
    samp_file,coord=dir_path+"/"+"er_samples.txt",""
    if "-h" in args:
        print(main.__doc__)
        sys.exit()
    if "-usr" in args:
        ind=args.index("-usr")
        user=sys.argv[ind+1]
    if "-A" in args:doave=0
    if "-leg" in args: comment="Recalculated from original measurements; supercedes published results. "
    if "-f" in args:
        ind=args.index("-f")
        meas_file=dir_path+'/'+sys.argv[ind+1]
    if "-F" in args:
        ind=args.index("-F")
        pmag_file=dir_path+'/'+sys.argv[ind+1]
    if "-fre" in args:
        ind=args.index("-fre")
        mk_file=dir_path+"/"+args[ind+1]
    try:
        mk_f=open(mk_file,'r')
    except:
        print("Bad redo file")
        sys.exit()
    mkspec,skipped=[],[]
    speclist=[]
    for line in mk_f.readlines():
        tmp=line.split()
        mkspec.append(tmp)
        speclist.append(tmp[0])
    if "-fsa" in args:
        ind=args.index("-fsa")
        samp_file=dir_path+'/'+sys.argv[ind+1]
    if "-crd" in args:
        ind=args.index("-crd")
        coord=sys.argv[ind+1]
        if coord=="g":geo,tilt=1,0
        if coord=="t":geo,tilt=1,1
#
# now get down to bidness
    if geo==1:
        samp_data,file_type=pmag.magic_read(samp_file)
        if file_type != 'er_samples':
            print(file_type)
            print("This is not a valid er_samples file ") 
            sys.exit()
    #
    #
    #

    meas_data,file_type=pmag.magic_read(meas_file)
    if file_type != 'magic_measurements':
        print(file_type)
        print(file_type,"This is not a valid magic_measurements file ") 
        sys.exit()
    #
    # sort the specimen names
    #
    k = 0
    print('Processing ',len(speclist), ' specimens - please wait')
    PmagSpecs=[]
    while k < len(speclist):
        s=speclist[k]
        recnum=0
        PmagSpecRec={}
        method_codes,inst_codes=[],[]
    # find the data from the meas_data file for this sample
    #
    #  collect info for the PmagSpecRec dictionary
    #
        meas_meth=[]
        spec=pmag.get_dictitem(meas_data,'er_specimen_name',s,'T')   
        if len(spec)==0:
            print('no data found for specimen:  ',s)
            print('delete from zeq_redo input file...., then try again')
        else: 
          for rec in  spec: # copy of vital stats to PmagSpecRec from first spec record in demag block
           skip=1
           methods=rec["magic_method_codes"].split(":")
           if len(set(methods) & set(INCL))>0:
                   PmagSpecRec["er_analyst_mail_names"]=user
                   PmagSpecRec["magic_software_packages"]=version_num
                   PmagSpecRec["er_specimen_name"]=s
                   PmagSpecRec["er_sample_name"]=rec["er_sample_name"]
                   PmagSpecRec["er_site_name"]=rec["er_site_name"]
                   PmagSpecRec["er_location_name"]=rec["er_location_name"]
                   if "er_expedition_name" in list(rec.keys()):PmagSpecRec["er_expedition_name"]=rec["er_expedition_name"]
                   PmagSpecRec["er_citation_names"]="This study"
                   if "magic_experiment_name" not in list(rec.keys()): rec["magic_experiment_name"]=""
                   PmagSpecRec["magic_experiment_names"]=rec["magic_experiment_name"]
                   if "magic_instrument_codes" not in list(rec.keys()): rec["magic_instrument_codes"]=""
                   inst=rec['magic_instrument_codes'].split(":")
                   for I in inst:
                       if I not in inst_codes:  # copy over instruments
                           inst_codes.append(I)
                   meths=rec["magic_method_codes"].split(":")
                   for meth in meths:
                       if meth.strip() not in meas_meth:meas_meth.append(meth)
                   if "LP-DIR-AF" in meas_meth or "LT-AF-Z" in meas_meth: 
                       PmagSpecRec["measurement_step_unit"]="T"
                       if "LP-DIR-AF" not in method_codes:method_codes.append("LP-DIR-AF") 
                   if "LP-DIR-T" in meas_meth or "LT-T-Z" in meas_meth: 
                       PmagSpecRec["measurement_step_unit"]="K"
                       if "LP-DIR-T" not in method_codes:method_codes.append("LP-DIR-T") 
                   if "LP-DIR-M" in meas_meth or "LT-M-Z" in meas_meth: 
                       PmagSpecRec["measurement_step_unit"]="J"
                       if "LP-DIR-M" not in method_codes:method_codes.append("LP-DIR-M") 
    #
    #
        datablock,units=pmag.find_dmag_rec(s,spec) # fish out the demag data for this specimen
    #
        if len(datablock) <2 or s not in speclist : 
            k+=1
#            print 'skipping ', s,len(datablock)
        else:
        #
        # find replicate measurements at given treatment step and average them
        #
#            step_meth,avedata=pmag.vspec(data)
#
#            if len(avedata) != len(datablock):
#                if doave==1: 
#                    method_codes.append("DE-VM")
#                    datablock=avedata
        #
        # do geo or stratigraphic correction now
        #
            if geo==1 or tilt==1:
       # find top priority orientation method
                orient,az_type=pmag.get_orient(samp_data,PmagSpecRec["er_sample_name"])
                if az_type not in method_codes:method_codes.append(az_type)
        #
        #  if tilt selected,  get stratigraphic correction
        #
                tiltblock,geoblock=[],[]
                for rec in datablock:
                    if "sample_azimuth" in list(orient.keys()) and orient["sample_azimuth"]!="":
                        d_geo,i_geo=pmag.dogeo(rec[1],rec[2],float(orient["sample_azimuth"]),float(orient["sample_dip"]))
                        geoblock.append([rec[0],d_geo,i_geo,rec[3],rec[4],rec[5]])
                        if tilt==1 and "sample_bed_dip_direction" in list(orient.keys()): 
                            d_tilt,i_tilt=pmag.dotilt(d_geo,i_geo,float(orient["sample_bed_dip_direction"]),float(orient["sample_bed_dip"]))
                            tiltblock.append([rec[0],d_tilt,i_tilt,rec[3],rec[4],rec[5]])
                        elif tilt==1:
                            if PmagSpecRec["er_sample_name"] not in skipped:
                                print('no tilt correction for ', PmagSpecRec["er_sample_name"],' skipping....')
                                skipped.append(PmagSpecRec["er_sample_name"])
                    else:
                        if PmagSpecRec["er_sample_name"] not in skipped:
                            print('no geographic correction for ', PmagSpecRec["er_sample_name"],' skipping....')
                            skipped.append(PmagSpecRec["er_sample_name"])
    #
    #	get beg_pca, end_pca, pca
            if PmagSpecRec['er_sample_name'] not in skipped:
                compnum=-1
                for spec in mkspec:
                    if spec[0]==s:
                        CompRec={}
                        for key in list(PmagSpecRec.keys()):CompRec[key]=PmagSpecRec[key]
                        compnum+=1
                        calculation_type=spec[1]
                        beg=float(spec[2])
                        end=float(spec[3])
                        if len(spec)>4:
                            comp_name=spec[4]
                        else:
                            comp_name=string.uppercase[compnum]
                        CompRec['specimen_comp_name']=comp_name
                        if beg < float(datablock[0][0]):beg=float(datablock[0][0])
                        if end > float(datablock[-1][0]):end=float(datablock[-1][0])
                        for l  in range(len(datablock)):
                            if datablock[l][0]==beg:beg_pca=l
                            if datablock[l][0]==end:end_pca=l
                        if geo==1 and tilt==0:
                            mpars=pmag.domean(geoblock,beg_pca,end_pca,calculation_type)
                            if mpars["specimen_direction_type"]!="Error":
                                CompRec["specimen_dec"]='%7.1f ' %(mpars["specimen_dec"])
                                CompRec["specimen_inc"]='%7.1f ' %(mpars["specimen_inc"])
                                CompRec["specimen_tilt_correction"]='0'
                        if geo==1 and tilt==1:
                            mpars=pmag.domean(tiltblock,beg_pca,end_pca,calculation_type)
                            if mpars["specimen_direction_type"]!="Error":
                                CompRec["specimen_dec"]='%7.1f ' %(mpars["specimen_dec"])
                                CompRec["specimen_inc"]='%7.1f ' %(mpars["specimen_inc"])
                                CompRec["specimen_tilt_correction"]='100'
                        if geo==0 and tilt==0: 
                            mpars=pmag.domean(datablock,beg_pca,end_pca,calculation_type)
                            if mpars["specimen_direction_type"]!="Error":
                                CompRec["specimen_dec"]='%7.1f ' %(mpars["specimen_dec"])
                                CompRec["specimen_inc"]='%7.1f ' %(mpars["specimen_inc"])
                                CompRec["specimen_tilt_correction"]='-1'
                        if mpars["specimen_direction_type"]=="Error": 
                            pass
                        else: 
                            CompRec["measurement_step_min"]='%8.3e '%(datablock[beg_pca][0])
                            try:
                                CompRec["measurement_step_max"]='%8.3e '%(datablock[end_pca][0] )
                            except:
                                print('error in end_pca ',PmagSpecRec['er_specimen_name'])
                            CompRec["specimen_correction"]='u'
                            if calculation_type!='DE-FM':
                                CompRec["specimen_mad"]='%7.1f '%(mpars["specimen_mad"])
                                CompRec["specimen_alpha95"]=""
                            else:
                                CompRec["specimen_mad"]=""
                                CompRec["specimen_alpha95"]='%7.1f '%(mpars["specimen_alpha95"])
                            CompRec["specimen_n"]='%i '%(mpars["specimen_n"])
                            CompRec["specimen_dang"]='%7.1f '%(mpars["specimen_dang"])
                            CompMeths=[]
                            for meth in method_codes:
                                if meth not in CompMeths:CompMeths.append(meth)
                            if calculation_type not in CompMeths:CompMeths.append(calculation_type)
                            if geo==1: CompMeths.append("DA-DIR-GEO")
                            if tilt==1: CompMeths.append("DA-DIR-TILT")
                            if "DE-BFP" not in calculation_type:
                                CompRec["specimen_direction_type"]='l'
                            else:
                                CompRec["specimen_direction_type"]='p'
                            CompRec["magic_method_codes"]=""
                            if len(CompMeths) != 0:
                                methstring=""
                                for meth in CompMeths:
                                    methstring=methstring+ ":" +meth
                                CompRec["magic_method_codes"]=methstring.strip(':')
                            CompRec["specimen_description"]=comment
                            if len(inst_codes) != 0:
                                inststring=""
                                for inst in inst_codes:
                                    inststring=inststring+ ":" +inst
                                CompRec["magic_instrument_codes"]=inststring.strip(':')
                            PmagSpecs.append(CompRec)
            k+=1
    pmag.magic_write(pmag_file,PmagSpecs,'pmag_specimens')
    print("Recalculated specimen data stored in ",pmag_file)
Ejemplo n.º 51
0
def main():
    """
    NAME
        aarm_magic.py

    DESCRIPTION
        Converts AARM  data to best-fit tensor (6 elements plus sigma)
         Original program ARMcrunch written to accomodate ARM anisotropy data
          collected from 6 axial directions (+X,+Y,+Z,-X,-Y,-Z) using the
          off-axis remanence terms to construct the tensor. A better way to
          do the anisotropy of ARMs is to use 9,12 or 15 measurements in
          the Hext rotational scheme.
    
    SYNTAX 
        aarm_magic.py [-h][command line options]

    OPTIONS
        -h prints help message and quits
        -usr USER:   identify user, default is ""
        -f FILE: specify input file, default is aarm_measurements.txt
        -crd [s,g,t] specify coordinate system, requires er_samples.txt file
        -fsa  FILE: specify er_samples.txt file, default is er_samples.txt
        -Fa FILE: specify anisotropy output file, default is arm_anisotropy.txt
        -Fr FILE: specify results output file, default is aarm_results.txt

    INPUT  
        Input for the present program is a series of baseline, ARM pairs.
      The baseline should be the AF demagnetized state (3 axis demag is
      preferable) for the following ARM acquisition. The order of the
      measurements is:
    
           positions 1,2,3, 6,7,8, 11,12,13 (for 9 positions)
           positions 1,2,3,4, 6,7,8,9, 11,12,13,14 (for 12 positions)
           positions 1-15 (for 15 positions)
    """
    # initialize some parameters
    args = sys.argv
    user = ""
    meas_file = "aarm_measurements.txt"
    samp_file = "er_samples.txt"
    rmag_anis = "arm_anisotropy.txt"
    rmag_res = "aarm_results.txt"
    dir_path = '.'
    #
    # get name of file from command line
    #
    if '-WD' in args:
        ind = args.index('-WD')
        dir_path = args[ind + 1]
    if "-h" in args:
        print main.__doc__
        sys.exit()
    if "-usr" in args:
        ind = args.index("-usr")
        user = sys.argv[ind + 1]
    if "-f" in args:
        ind = args.index("-f")
        meas_file = sys.argv[ind + 1]
    coord = '-1'
    if "-crd" in sys.argv:
        ind = sys.argv.index("-crd")
        coord = sys.argv[ind + 1]
        if coord == 's': coord = '-1'
        if coord == 'g': coord = '0'
        if coord == 't': coord = '100'
        if "-fsa" in args:
            ind = args.index("-fsa")
            samp_file = sys.argv[ind + 1]
    if "-Fa" in args:
        ind = args.index("-Fa")
        rmag_anis = args[ind + 1]
    if "-Fr" in args:
        ind = args.index("-Fr")
        rmag_res = args[ind + 1]
    meas_file = dir_path + '/' + meas_file
    samp_file = dir_path + '/' + samp_file
    rmag_anis = dir_path + '/' + rmag_anis
    rmag_res = dir_path + '/' + rmag_res
    # read in data
    meas_data, file_type = pmag.magic_read(meas_file)
    meas_data = pmag.get_dictitem(meas_data, 'magic_method_codes', 'LP-AN-ARM',
                                  'has')
    if file_type != 'magic_measurements':
        print file_type
        print file_type, "This is not a valid magic_measurements file "
        sys.exit()
    if coord != '-1':  # need to read in sample data
        samp_data, file_type = pmag.magic_read(samp_file)
        if file_type != 'er_samples':
            print file_type
            print file_type, "This is not a valid er_samples file "
            print "Only specimen coordinates will be calculated"
            coord = '-1'
    #
    # sort the specimen names
    #
    ssort = []
    for rec in meas_data:
        spec = rec["er_specimen_name"]
        if spec not in ssort: ssort.append(spec)
    if len(ssort) > 1:
        sids = sorted(ssort)
    else:
        sids = ssort
    #
    # work on each specimen
    #
    specimen = 0
    RmagSpecRecs, RmagResRecs = [], []
    while specimen < len(sids):
        s = sids[specimen]
        data = []
        RmagSpecRec = {}
        RmagResRec = {}
        method_codes = []
        #
        # find the data from the meas_data file for this sample
        #
        data = pmag.get_dictitem(meas_data, 'er_specimen_name', s, 'T')
        #
        # find out the number of measurements (9, 12 or 15)
        #
        npos = len(data) / 2
        if npos == 9:
            #
            # get dec, inc, int and convert to x,y,z
            #
            B, H, tmpH = pmag.designAARM(
                npos)  # B matrix made from design matrix for positions
            X = []
            for rec in data:
                Dir = []
                Dir.append(float(rec["measurement_dec"]))
                Dir.append(float(rec["measurement_inc"]))
                Dir.append(float(rec["measurement_magn_moment"]))
                X.append(pmag.dir2cart(Dir))
        #
        # subtract baseline and put in a work array
        #
            work = numpy.zeros((npos, 3), 'f')
            for i in range(npos):
                for j in range(3):
                    work[i][j] = X[2 * i + 1][j] - X[2 * i][j]
        #
        # calculate tensor elements
        # first put ARM components in w vector
        #
            w = numpy.zeros((npos * 3), 'f')
            index = 0
            for i in range(npos):
                for j in range(3):
                    w[index] = work[i][j]
                    index += 1
            s = numpy.zeros((6), 'f')  # initialize the s matrix
            for i in range(6):
                for j in range(len(w)):
                    s[i] += B[i][j] * w[j]
            trace = s[0] + s[1] + s[2]  # normalize by the trace
            for i in range(6):
                s[i] = s[i] / trace
            a = pmag.s2a(s)
            #------------------------------------------------------------
            #  Calculating dels is different than in the Kappabridge
            #  routine. Use trace normalized tensor (a) and the applied
            #  unit field directions (tmpH) to generate model X,Y,Z
            #  components. Then compare these with the measured values.
            #------------------------------------------------------------
            S = 0.
            comp = numpy.zeros((npos * 3), 'f')
            for i in range(npos):
                for j in range(3):
                    index = i * 3 + j
                    compare = a[j][0] * tmpH[i][0] + a[j][1] * tmpH[i][1] + a[
                        j][2] * tmpH[i][2]
                    comp[index] = compare
            for i in range(npos * 3):
                d = w[i] / trace - comp[i]  # del values
                S += d * d
            nf = float(npos * 3 - 6)  # number of degrees of freedom
            if S > 0:
                sigma = numpy.sqrt(S / nf)
            else:
                sigma = 0
            RmagSpecRec["rmag_anisotropy_name"] = data[0]["er_specimen_name"]
            RmagSpecRec["er_location_name"] = data[0]["er_location_name"]
            RmagSpecRec["er_specimen_name"] = data[0]["er_specimen_name"]
            RmagSpecRec["er_sample_name"] = data[0]["er_sample_name"]
            RmagSpecRec["er_site_name"] = data[0]["er_site_name"]
            RmagSpecRec["magic_experiment_names"] = RmagSpecRec[
                "rmag_anisotropy_name"] + ":AARM"
            RmagSpecRec["er_citation_names"] = "This study"
            RmagResRec[
                "rmag_result_name"] = data[0]["er_specimen_name"] + ":AARM"
            RmagResRec["er_location_names"] = data[0]["er_location_name"]
            RmagResRec["er_specimen_names"] = data[0]["er_specimen_name"]
            RmagResRec["er_sample_names"] = data[0]["er_sample_name"]
            RmagResRec["er_site_names"] = data[0]["er_site_name"]
            RmagResRec["magic_experiment_names"] = RmagSpecRec[
                "rmag_anisotropy_name"] + ":AARM"
            RmagResRec["er_citation_names"] = "This study"
            if "magic_instrument_codes" in data[0].keys():
                RmagSpecRec["magic_instrument_codes"] = data[0][
                    "magic_instrument_codes"]
            else:
                RmagSpecRec["magic_instrument_codes"] = ""
            RmagSpecRec["anisotropy_type"] = "AARM"
            RmagSpecRec[
                "anisotropy_description"] = "Hext statistics adapted to AARM"
            if coord != '-1':  # need to rotate s
                # set orientation priorities
                SO_methods = []
                for rec in samp_data:
                    if "magic_method_codes" not in rec:
                        rec['magic_method_codes'] = 'SO-NO'
                    if "magic_method_codes" in rec:
                        methlist = rec["magic_method_codes"]
                        for meth in methlist.split(":"):
                            if "SO" in meth and "SO-POM" not in meth.strip():
                                if meth.strip() not in SO_methods:
                                    SO_methods.append(meth.strip())
                SO_priorities = pmag.set_priorities(SO_methods, 0)
                # continue here
                redo, p = 1, 0
                if len(SO_methods) <= 1:
                    az_type = SO_methods[0]
                    orient = pmag.find_samp_rec(RmagSpecRec["er_sample_name"],
                                                samp_data, az_type)
                    if orient["sample_azimuth"] != "":
                        method_codes.append(az_type)
                    redo = 0
                while redo == 1:
                    if p >= len(SO_priorities):
                        print "no orientation data for ", s
                        orient["sample_azimuth"] = ""
                        orient["sample_dip"] = ""
                        method_codes.append("SO-NO")
                        redo = 0
                    else:
                        az_type = SO_methods[SO_methods.index(
                            SO_priorities[p])]
                        orient = pmag.find_samp_rec(
                            PmagSpecRec["er_sample_name"], samp_data, az_type)
                        if orient["sample_azimuth"] != "":
                            method_codes.append(az_type)
                            redo = 0
                    p += 1
                az, pl = orient['sample_azimuth'], orient['sample_dip']
                s = pmag.dosgeo(s, az, pl)  # rotate to geographic coordinates
                if coord == '100':
                    sampe_bed_dir, sample_bed_dip = orient[
                        'sample_bed_dip_direction'], orient['sample_bed_dip']
                    s = pmag.dostilt(
                        s, bed_dir,
                        bed_dip)  # rotate to geographic coordinates
            hpars = pmag.dohext(nf, sigma, s)
            #
            # prepare for output
            #
            RmagSpecRec["anisotropy_s1"] = '%8.6f' % (s[0])
            RmagSpecRec["anisotropy_s2"] = '%8.6f' % (s[1])
            RmagSpecRec["anisotropy_s3"] = '%8.6f' % (s[2])
            RmagSpecRec["anisotropy_s4"] = '%8.6f' % (s[3])
            RmagSpecRec["anisotropy_s5"] = '%8.6f' % (s[4])
            RmagSpecRec["anisotropy_s6"] = '%8.6f' % (s[5])
            RmagSpecRec["anisotropy_mean"] = '%8.3e' % (trace / 3)
            RmagSpecRec["anisotropy_sigma"] = '%8.6f' % (sigma)
            RmagSpecRec["anisotropy_unit"] = "Am^2"
            RmagSpecRec["anisotropy_n"] = '%i' % (npos)
            RmagSpecRec["anisotropy_tilt_correction"] = coord
            RmagSpecRec["anisotropy_F"] = '%7.1f ' % (
                hpars["F"]
            )  # used by thellier_gui - must be taken out for uploading
            RmagSpecRec["anisotropy_F_crit"] = hpars[
                "F_crit"]  # used by thellier_gui - must be taken out for uploading
            RmagResRec["anisotropy_t1"] = '%8.6f ' % (hpars["t1"])
            RmagResRec["anisotropy_t2"] = '%8.6f ' % (hpars["t2"])
            RmagResRec["anisotropy_t3"] = '%8.6f ' % (hpars["t3"])
            RmagResRec["anisotropy_v1_dec"] = '%7.1f ' % (hpars["v1_dec"])
            RmagResRec["anisotropy_v2_dec"] = '%7.1f ' % (hpars["v2_dec"])
            RmagResRec["anisotropy_v3_dec"] = '%7.1f ' % (hpars["v3_dec"])
            RmagResRec["anisotropy_v1_inc"] = '%7.1f ' % (hpars["v1_inc"])
            RmagResRec["anisotropy_v2_inc"] = '%7.1f ' % (hpars["v2_inc"])
            RmagResRec["anisotropy_v3_inc"] = '%7.1f ' % (hpars["v3_inc"])
            RmagResRec["anisotropy_ftest"] = '%7.1f ' % (hpars["F"])
            RmagResRec["anisotropy_ftest12"] = '%7.1f ' % (hpars["F12"])
            RmagResRec["anisotropy_ftest23"] = '%7.1f ' % (hpars["F23"])
            RmagResRec["result_description"] = 'Critical F: ' + hpars[
                "F_crit"] + ';Critical F12/F13: ' + hpars["F12_crit"]
            if hpars["e12"] > hpars["e13"]:
                RmagResRec["anisotropy_v1_zeta_semi_angle"] = '%7.1f ' % (
                    hpars['e12'])
                RmagResRec["anisotropy_v1_zeta_dec"] = '%7.1f ' % (
                    hpars['v2_dec'])
                RmagResRec["anisotropy_v1_zeta_inc"] = '%7.1f ' % (
                    hpars['v2_inc'])
                RmagResRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f ' % (
                    hpars['e12'])
                RmagResRec["anisotropy_v2_zeta_dec"] = '%7.1f ' % (
                    hpars['v1_dec'])
                RmagResRec["anisotropy_v2_zeta_inc"] = '%7.1f ' % (
                    hpars['v1_inc'])
                RmagResRec["anisotropy_v1_eta_semi_angle"] = '%7.1f ' % (
                    hpars['e13'])
                RmagResRec["anisotropy_v1_eta_dec"] = '%7.1f ' % (
                    hpars['v3_dec'])
                RmagResRec["anisotropy_v1_eta_inc"] = '%7.1f ' % (
                    hpars['v3_inc'])
                RmagResRec["anisotropy_v3_eta_semi_angle"] = '%7.1f ' % (
                    hpars['e13'])
                RmagResRec["anisotropy_v3_eta_dec"] = '%7.1f ' % (
                    hpars['v1_dec'])
                RmagResRec["anisotropy_v3_eta_inc"] = '%7.1f ' % (
                    hpars['v1_inc'])
            else:
                RmagResRec["anisotropy_v1_zeta_semi_angle"] = '%7.1f ' % (
                    hpars['e13'])
                RmagResRec["anisotropy_v1_zeta_dec"] = '%7.1f ' % (
                    hpars['v3_dec'])
                RmagResRec["anisotropy_v1_zeta_inc"] = '%7.1f ' % (
                    hpars['v3_inc'])
                RmagResRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f ' % (
                    hpars['e13'])
                RmagResRec["anisotropy_v3_zeta_dec"] = '%7.1f ' % (
                    hpars['v1_dec'])
                RmagResRec["anisotropy_v3_zeta_inc"] = '%7.1f ' % (
                    hpars['v1_inc'])
                RmagResRec["anisotropy_v1_eta_semi_angle"] = '%7.1f ' % (
                    hpars['e12'])
                RmagResRec["anisotropy_v1_eta_dec"] = '%7.1f ' % (
                    hpars['v2_dec'])
                RmagResRec["anisotropy_v1_eta_inc"] = '%7.1f ' % (
                    hpars['v2_inc'])
                RmagResRec["anisotropy_v2_eta_semi_angle"] = '%7.1f ' % (
                    hpars['e12'])
                RmagResRec["anisotropy_v2_eta_dec"] = '%7.1f ' % (
                    hpars['v1_dec'])
                RmagResRec["anisotropy_v2_eta_inc"] = '%7.1f ' % (
                    hpars['v1_inc'])
            if hpars["e23"] > hpars['e12']:
                RmagResRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f ' % (
                    hpars['e23'])
                RmagResRec["anisotropy_v2_zeta_dec"] = '%7.1f ' % (
                    hpars['v3_dec'])
                RmagResRec["anisotropy_v2_zeta_inc"] = '%7.1f ' % (
                    hpars['v3_inc'])
                RmagResRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f ' % (
                    hpars['e23'])
                RmagResRec["anisotropy_v3_zeta_dec"] = '%7.1f ' % (
                    hpars['v2_dec'])
                RmagResRec["anisotropy_v3_zeta_inc"] = '%7.1f ' % (
                    hpars['v2_inc'])
                RmagResRec["anisotropy_v3_eta_semi_angle"] = '%7.1f ' % (
                    hpars['e13'])
                RmagResRec["anisotropy_v3_eta_dec"] = '%7.1f ' % (
                    hpars['v1_dec'])
                RmagResRec["anisotropy_v3_eta_inc"] = '%7.1f ' % (
                    hpars['v1_inc'])
                RmagResRec["anisotropy_v2_eta_semi_angle"] = '%7.1f ' % (
                    hpars['e12'])
                RmagResRec["anisotropy_v2_eta_dec"] = '%7.1f ' % (
                    hpars['v1_dec'])
                RmagResRec["anisotropy_v2_eta_inc"] = '%7.1f ' % (
                    hpars['v1_inc'])
            else:
                RmagResRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f ' % (
                    hpars['e12'])
                RmagResRec["anisotropy_v2_zeta_dec"] = '%7.1f ' % (
                    hpars['v1_dec'])
                RmagResRec["anisotropy_v2_zeta_inc"] = '%7.1f ' % (
                    hpars['v1_inc'])
                RmagResRec["anisotropy_v3_eta_semi_angle"] = '%7.1f ' % (
                    hpars['e23'])
                RmagResRec["anisotropy_v3_eta_dec"] = '%7.1f ' % (
                    hpars['v2_dec'])
                RmagResRec["anisotropy_v3_eta_inc"] = '%7.1f ' % (
                    hpars['v2_inc'])
                RmagResRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f ' % (
                    hpars['e13'])
                RmagResRec["anisotropy_v3_zeta_dec"] = '%7.1f ' % (
                    hpars['v1_dec'])
                RmagResRec["anisotropy_v3_zeta_inc"] = '%7.1f ' % (
                    hpars['v1_inc'])
                RmagResRec["anisotropy_v2_eta_semi_angle"] = '%7.1f ' % (
                    hpars['e23'])
                RmagResRec["anisotropy_v2_eta_dec"] = '%7.1f ' % (
                    hpars['v3_dec'])
                RmagResRec["anisotropy_v2_eta_inc"] = '%7.1f ' % (
                    hpars['v3_inc'])
            RmagResRec["tilt_correction"] = '-1'
            RmagResRec["anisotropy_type"] = 'AARM'
            RmagResRec["magic_method_codes"] = 'LP-AN-ARM:AE-H'
            RmagSpecRec["magic_method_codes"] = 'LP-AN-ARM:AE-H'
            RmagResRec["magic_software_packages"] = pmag.get_version()
            RmagSpecRec["magic_software_packages"] = pmag.get_version()
            specimen += 1
            RmagSpecRecs.append(RmagSpecRec)
            RmagResRecs.append(RmagResRec)
        else:
            print 'skipping specimen ', s, ' only 9 positions supported', '; this has ', npos
            specimen += 1
    if rmag_anis == "": rmag_anis = "rmag_anisotropy.txt"
    pmag.magic_write(rmag_anis, RmagSpecRecs, 'rmag_anisotropy')
    print "specimen tensor elements stored in ", rmag_anis
    if rmag_res == "": rmag_res = "rmag_results.txt"
    pmag.magic_write(rmag_res, RmagResRecs, 'rmag_results')
    print "specimen statistics and eigenparameters stored in ", rmag_res
Ejemplo n.º 52
0
def main(command_line=True, **kwargs):
    """
    NAME
        sio_magic.py

    DESCRIPTION
        converts SIO .mag format files to magic_measurements format files

    SYNTAX
        sio_magic.py [command line options]

    OPTIONS
        -h: prints the help message and quits.
        -usr USER:   identify user, default is ""
        -f FILE: specify .mag format input file, required
        -fsa SAMPFILE : specify er_samples.txt file relating samples, site and locations names,default is none -- values in SAMPFILE will override selections for -loc (location), -spc (designate specimen), and -ncn (sample-site naming convention)
        -F FILE: specify output file, default is magic_measurements.txt
        -Fsy: specify er_synthetics file, default is er_sythetics.txt
        -LP [colon delimited list of protocols, include all that apply]
            AF:  af demag
            T: thermal including thellier but not trm acquisition
            S: Shaw method
            I: IRM (acquisition)
            I3d: 3D IRM experiment
            N: NRM only
            TRM: trm acquisition
            ANI: anisotropy experiment
            D: double AF demag
            G: triple AF demag (GRM protocol)
            CR: cooling rate experiment.
                The treatment coding of the measurement file should be: XXX.00,XXX.10, XXX.20 ...XX.70 etc. (XXX.00 is optional)
                where XXX in the temperature and .10,.20... are running numbers of the cooling rates steps.
                XXX.00 is optional zerofield baseline. XXX.70 is alteration check.
                syntax in sio_magic is: -LP CR xxx,yyy,zzz,..... xxx -A
                where xxx, yyy, zzz...xxx  are cooling time in [K/minutes], seperated by comma, ordered at the same order as XXX.10,XXX.20 ...XX.70
                if you use a zerofield step then no need to specify the cooling rate for the zerofield
                It is important to add to the command line the -A option so the measurements will not be averaged.
                But users need to make sure that there are no duplicate measurements in the file
        -V [1,2,3] units of IRM field in volts using ASC coil #1,2 or 3
        -spc NUM : specify number of characters to designate a  specimen, default = 0
        -loc LOCNAME : specify location/study name, must have either LOCNAME or SAMPFILE or be a synthetic
        -syn INST TYPE:  sets these specimens as synthetics created at institution INST and of type TYPE
        -ins INST : specify which demag instrument was used (e.g, SIO-Suzy or SIO-Odette),default is ""
        -dc B PHI THETA: dc lab field (in micro tesla) and phi,theta, default is none
              NB: use PHI, THETA = -1 -1 to signal that it changes, i.e. in anisotropy experiment
        -ac B : peak AF field (in mT) for ARM acquisition, default is none
        -ncn NCON:  specify naming convention: default is #1 below
        -A: don't average replicate measurements
       Sample naming convention:
            [1] XXXXY: where XXXX is an arbitrary length site designation and Y
                is the single character sample designation.  e.g., TG001a is the
                first sample from site TG001.    [default]
            [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length)
            [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length)
            [4-Z] XXXX[YYY]:  YYY is sample designation with Z characters from site XXX
            [5] site name same as sample
            [6] site is entered under a separate column NOT CURRENTLY SUPPORTED
            [7-Z] [XXXX]YYY:  XXXX is site designation with Z characters with sample name XXXXYYYY
            NB: all others you will have to customize your self
                 or e-mail [email protected] for help.

            [8] synthetic - has no site name
            [9] ODP naming convention
    INPUT
        Best to put separate experiments (all AF, thermal, thellier, trm aquisition, Shaw, etc.) in
           seperate .mag files (eg. af.mag, thermal.mag, etc.)

        Format of SIO .mag files:
        Spec Treat CSD Intensity Declination Inclination [optional metadata string]


        Spec: specimen name
        Treat:  treatment step
            XXX T in Centigrade
            XXX AF in mT
            for special experiments:
              Thellier:
                XXX.0  first zero field step
                XXX.1  first in field step [XXX.0 and XXX.1 can be done in any order]
                XXX.2  second in-field step at lower temperature (pTRM check)
                XXX.3  second zero-field step after infield (pTRM check step)
                       XXX.3 MUST be done in this order [XXX.0, XXX.1 [optional XXX.2] XXX.3]
              AARM:
                X.00  baseline step (AF in zero bias field - high peak field)
                X.1   ARM step (in field step)  where
                   X is the step number in the 15 position scheme
                      (see Appendix to Lecture 13 - http://magician.ucsd.edu/Essentials_2)
              ATRM:
                X.00 optional baseline
                X.1 ATRM step (+X)
                X.2 ATRM step (+Y)
                X.3 ATRM step (+Z)
                X.4 ATRM step (-X)
                X.5 ATRM step (-Y)
                X.6 ATRM step (-Z)
                X.7 optional alteration check (+X)

              TRM:
                XXX.YYY  XXX is temperature step of total TRM
                         YYY is dc field in microtesla


         Intensity assumed to be total moment in 10^3 Am^2 (emu)
         Declination:  Declination in specimen coordinate system
         Inclination:  Declination in specimen coordinate system

         Optional metatdata string:  mm/dd/yy;hh:mm;[dC,mT];xx.xx;UNITS;USER;INST;NMEAS
             hh in 24 hours.
             dC or mT units of treatment XXX (see Treat above) for thermal or AF respectively
             xx.xxx   DC field
             UNITS of DC field (microT, mT)
             INST:  instrument code, number of axes, number of positions (e.g., G34 is 2G, three axes,
                    measured in four positions)
             NMEAS: number of measurements in a single position (1,3,200...)


    """
    # initialize some stuff
    mag_file = None
    codelist = None
    infile_type="mag"
    noave=0
    methcode,inst="LP-NO",""
    phi,theta,peakfield,labfield=0,0,0,0
    pTRM,MD,samp_con,Z=0,0,'1',1
    dec=[315,225,180,135,45,90,270,270,270,90,180,180,0,0,0]
    inc=[0,0,0,0,0,-45,-45,0,45,45,45,-45,-90,-45,45]
    tdec=[0,90,0,180,270,0,0,90,0]
    tinc=[0,0,90,0,0,-90,0,0,90]
    missing=1
    demag="N"
    er_location_name=""
    citation='This study'
    args=sys.argv
    fmt='old'
    syn=0
    synfile='er_synthetics.txt'
    samp_infile,Samps='',[]
    trm=0
    irm=0
    specnum=0
    coil=""
    mag_file=""
#
# get command line arguments
#
    meas_file="magic_measurements.txt"
    user=""
    if not command_line:
        user = kwargs.get('user', '')
        meas_file = kwargs.get('meas_file', '')
        syn_file = kwargs.get('syn_file', '')
        mag_file = kwargs.get('mag_file', '')
        labfield = kwargs.get('labfield', '')
        if labfield:
            labfield = float(labfield) *1e-6
        else:
            labfield = 0
        phi = kwargs.get('phi', 0)
        if phi:
            phi = float(phi)
        else:
            phi = 0
        theta = kwargs.get('theta', 0)
        if theta:
            theta=float(theta)
        else:
            theta = 0
        peakfield = kwargs.get('peakfield', 0)
        if peakfield:
            peakfield=float(peakfield) *1e-3
        else:
            peakfield = 0
        specnum = kwargs.get('specnum', 0)
        samp_con = kwargs.get('samp_con', '1')
        er_location_name = kwargs.get('er_location_name', '')
        samp_infile = kwargs.get('samp_infile', '')
        syn = kwargs.get('syn', 0)
        institution = kwargs.get('institution', '')
        syntype = kwargs.get('syntype', '')
        inst = kwargs.get('inst', '')
        noave = kwargs.get('noave', 0)
        codelist = kwargs.get('codelist', '')
        coil = kwargs.get('coil', '')
        cooling_rates = kwargs.get('cooling_rates', '')
    if command_line:
        if "-h" in args:
            print(main.__doc__)
            return False
        if "-usr" in args:
            ind=args.index("-usr")
            user=args[ind+1]
        if '-F' in args:
            ind=args.index("-F")
            meas_file=args[ind+1]
        if '-Fsy' in args:
            ind=args.index("-Fsy")
            synfile=args[ind+1]
        if '-f' in args:
            ind=args.index("-f")
            mag_file=args[ind+1]
        if "-dc" in args:
            ind=args.index("-dc")
            labfield=float(args[ind+1])*1e-6
            phi=float(args[ind+2])
            theta=float(args[ind+3])
        if "-ac" in args:
            ind=args.index("-ac")
            peakfield=float(args[ind+1])*1e-3
        if "-spc" in args:
            ind=args.index("-spc")
            specnum=int(args[ind+1])
        if "-loc" in args:
            ind=args.index("-loc")
            er_location_name=args[ind+1]
        if "-fsa" in args:
            ind=args.index("-fsa")
            samp_infile = args[ind+1]
        if '-syn' in args:
            syn=1
            ind=args.index("-syn")
            institution=args[ind+1]
            syntype=args[ind+2]
            if '-fsy' in args:
                ind=args.index("-fsy")
                synfile=args[ind+1]
        if "-ins" in args:
            ind=args.index("-ins")
            inst=args[ind+1]
        if "-A" in args: noave=1
        if "-ncn" in args:
            ind=args.index("-ncn")
            samp_con=sys.argv[ind+1]
        if '-LP' in args:
            ind=args.index("-LP")
            codelist=args[ind+1]

        if "-V" in args:
            ind=args.index("-V")
            coil=args[ind+1]


    # make sure all initial values are correctly set up (whether they come from the command line or a GUI)
    if samp_infile:
        Samps, file_type = pmag.magic_read(samp_infile)
    if coil:
        coil = str(coil)
        methcode="LP-IRM"
        irmunits = "V"
        if coil not in ["1","2","3"]:
            print(main.__doc__)
            print('not a valid coil specification')
            return False, '{} is not a valid coil specification'.format(coil)
    if mag_file:
        try:
            #with open(mag_file,'r') as finput:
            #    lines = finput.readlines()
            lines=pmag.open_file(mag_file)
        except:
            print("bad mag file name")
            return False, "bad mag file name"
    if not mag_file:
        print(main.__doc__)
        print("mag_file field is required option")
        return False, "mag_file field is required option"
    if specnum!=0:
        specnum=-specnum
    #print 'samp_con:', samp_con
    if samp_con:
        if "4" == samp_con[0]:
            if "-" not in samp_con:
                print("naming convention option [4] must be in form 4-Z where Z is an integer")
                print('---------------')
                return False, "naming convention option [4] must be in form 4-Z where Z is an integer"
            else:
                Z=samp_con.split("-")[1]
                samp_con="4"
        if "7" == samp_con[0]:
            if "-" not in samp_con:
                print("option [7] must be in form 7-Z where Z is an integer")
                return False, "option [7] must be in form 7-Z where Z is an integer"
            else:
                Z=samp_con.split("-")[1]
                samp_con="7"

    if codelist:
        codes=codelist.split(':')
        if "AF" in codes:
            demag='AF'
            if'-dc' not in args: methcode="LT-AF-Z"
            if'-dc' in args: methcode="LT-AF-I"
        if "T" in codes:
            demag="T"
            if '-dc' not in args: methcode="LT-T-Z"
            if '-dc' in args: methcode="LT-T-I"
        if "I" in codes:
            methcode="LP-IRM"
            irmunits="mT"
        if "I3d" in codes:
            methcode="LT-T-Z:LP-IRM-3D"
        if "S" in codes:
            demag="S"
            methcode="LP-PI-TRM:LP-PI-ALT-AFARM"
            trm_labfield=labfield
            ans=input("DC lab field for ARM step: [50uT] ")
            if ans=="":
                arm_labfield=50e-6
            else:
                arm_labfield=float(ans)*1e-6
            ans=input("temperature for total trm step: [600 C] ")
            if ans=="":
                trm_peakT=600+273 # convert to kelvin
            else:
                trm_peakT=float(ans)+273 # convert to kelvin
        if "G" in codes: methcode="LT-AF-G"
        if "D" in codes: methcode="LT-AF-D"
        if "TRM" in codes:
            demag="T"
            trm=1
        if "CR" in     codes:
            demag="T"
            cooling_rate_experiment=1
            if command_line:
                ind=args.index("CR")
                cooling_rates=args[ind+1]
                cooling_rates_list=cooling_rates.split(',')
            else:
                cooling_rates_list=str(cooling_rates).split(',')
    if demag=="T" and "ANI" in codes:
        methcode="LP-AN-TRM"
    if demag=="T" and "CR" in codes:
        methcode="LP-CR-TRM"
    if demag=="AF" and "ANI" in codes:
        methcode="LP-AN-ARM"
        if labfield==0: labfield=50e-6
        if peakfield==0: peakfield=.180
    SynRecs,MagRecs=[],[]
    version_num=pmag.get_version()


    ##################################

    if 1:
    #if infile_type=="SIO format":
        for line in lines:
            instcode=""
            if len(line)>2:
                SynRec={}
                MagRec={}
                MagRec['er_location_name']=er_location_name
                MagRec['magic_software_packages']=version_num
                MagRec["treatment_temp"]='%8.3e' % (273) # room temp in kelvin
                MagRec["measurement_temp"]='%8.3e' % (273) # room temp in kelvin
                MagRec["treatment_ac_field"]='0'
                MagRec["treatment_dc_field"]='0'
                MagRec["treatment_dc_field_phi"]='0'
                MagRec["treatment_dc_field_theta"]='0'
                meas_type="LT-NO"
                rec=line.split()
                if rec[1]==".00":rec[1]="0.00"
                treat=rec[1].split('.')
                if methcode=="LP-IRM":
                    if irmunits=='mT':
                        labfield=float(treat[0])*1e-3
                    else:
                        labfield=pmag.getfield(irmunits,coil,treat[0])
                    if rec[1][0]!="-":
                        phi,theta=0.,90.
                    else:
                        phi,theta=0.,-90.
                    meas_type="LT-IRM"
                    MagRec["treatment_dc_field"]='%8.3e'%(labfield)
                    MagRec["treatment_dc_field_phi"]='%7.1f'%(phi)
                    MagRec["treatment_dc_field_theta"]='%7.1f'%(theta)
                if len(rec)>6:
                  code1=rec[6].split(';') # break e.g., 10/15/02;7:45 indo date and time
                  if len(code1)==2: # old format with AM/PM
                    missing=0
                    code2=code1[0].split('/') # break date into mon/day/year
                    code3=rec[7].split(';') # break e.g., AM;C34;200  into time;instr/axes/measuring pos;number of measurements
                    yy=int(code2[2])
                    if yy <90:
                        yyyy=str(2000+yy)
                    else: yyyy=str(1900+yy)
                    mm=int(code2[0])
                    if mm<10:
                        mm="0"+str(mm)
                    else: mm=str(mm)
                    dd=int(code2[1])
                    if dd<10:
                        dd="0"+str(dd)
                    else: dd=str(dd)
                    time=code1[1].split(':')
                    hh=int(time[0])
                    if code3[0]=="PM":hh=hh+12
                    if hh<10:
                        hh="0"+str(hh)
                    else: hh=str(hh)
                    min=int(time[1])
                    if min<10:
                       min= "0"+str(min)
                    else: min=str(min)
                    MagRec["measurement_date"]=yyyy+":"+mm+":"+dd+":"+hh+":"+min+":00.00"
                    MagRec["measurement_time_zone"]='SAN'
                    if inst=="":
                        if code3[1][0]=='C':instcode='SIO-bubba'
                        if code3[1][0]=='G':instcode='SIO-flo'
                    else:
                        instcode=''
                    MagRec["measurement_positions"]=code3[1][2]
                  elif len(code1)>2: # newest format (cryo7 or later)
                    if "LP-AN-ARM" not in methcode:labfield=0
                    fmt='new'
                    date=code1[0].split('/') # break date into mon/day/year
                    yy=int(date[2])
                    if yy <90:
                        yyyy=str(2000+yy)
                    else: yyyy=str(1900+yy)
                    mm=int(date[0])
                    if mm<10:
                        mm="0"+str(mm)
                    else: mm=str(mm)
                    dd=int(date[1])
                    if dd<10:
                        dd="0"+str(dd)
                    else: dd=str(dd)
                    time=code1[1].split(':')
                    hh=int(time[0])
                    if hh<10:
                        hh="0"+str(hh)
                    else: hh=str(hh)
                    min=int(time[1])
                    if min<10:
                       min= "0"+str(min)
                    else:
                        min=str(min)
                    MagRec["measurement_date"]=yyyy+":"+mm+":"+dd+":"+hh+":"+min+":00.00"
                    MagRec["measurement_time_zone"]='SAN'
                    if inst=="":
                        if code1[6][0]=='C':
                            instcode='SIO-bubba'
                        if code1[6][0]=='G':
                            instcode='SIO-flo'
                    else:
                        instcode=''
                    if len(code1)>1:
                        MagRec["measurement_positions"]=code1[6][2]
                    else:
                        MagRec["measurement_positions"]=code1[7]   # takes care of awkward format with bubba and flo being different
                    if user=="":user=code1[5]
                    if code1[2][-1]=='C':
                        demag="T"
                        if code1[4]=='microT' and float(code1[3])!=0. and "LP-AN-ARM" not in methcode: labfield=float(code1[3])*1e-6
                    if code1[2]=='mT' and methcode!="LP-IRM":
                        demag="AF"
                        if code1[4]=='microT' and float(code1[3])!=0.: labfield=float(code1[3])*1e-6
                    if code1[4]=='microT' and labfield!=0. and meas_type!="LT-IRM":
                        phi,theta=0.,-90.
                        if demag=="T": meas_type="LT-T-I"
                        if demag=="AF": meas_type="LT-AF-I"
                        MagRec["treatment_dc_field"]='%8.3e'%(labfield)
                        MagRec["treatment_dc_field_phi"]='%7.1f'%(phi)
                        MagRec["treatment_dc_field_theta"]='%7.1f'%(theta)
                    if code1[4]=='' or labfield==0. and meas_type!="LT-IRM":
                        if demag=='T':meas_type="LT-T-Z"
                        if demag=="AF":meas_type="LT-AF-Z"
                        MagRec["treatment_dc_field"]='0'
                if syn==0:
                    MagRec["er_specimen_name"]=rec[0]
                    MagRec["er_synthetic_name"]=""
                    MagRec["er_site_name"]=""
                    if specnum!=0:
                        MagRec["er_sample_name"]=rec[0][:specnum]
                    else:
                        MagRec["er_sample_name"]=rec[0]
                    if samp_infile and Samps: # if samp_infile was provided AND yielded sample data
                        samp=pmag.get_dictitem(Samps,'er_sample_name',MagRec['er_sample_name'],'T')
                        if len(samp)>0:
                            MagRec["er_location_name"]=samp[0]["er_location_name"]
                            MagRec["er_site_name"]=samp[0]["er_site_name"]
                        else:
                            MagRec['er_location_name']=''
                            MagRec["er_site_name"]=''
                    elif int(samp_con)!=6:
                        site=pmag.parse_site(MagRec['er_sample_name'],samp_con,Z)
                        MagRec["er_site_name"]=site
                    if MagRec['er_site_name']=="":
                        print('No site name found for: ',MagRec['er_specimen_name'],MagRec['er_sample_name'])
                    if MagRec["er_location_name"]=="":
                        print('no location name for: ',MagRec["er_specimen_name"])
                else:
                    MagRec["er_specimen_name"]=rec[0]
                    if specnum!=0:
                        MagRec["er_sample_name"]=rec[0][:specnum]
                    else:
                        MagRec["er_sample_name"]=rec[0]
                    MagRec["er_site_name"]=""
                    MagRec["er_synthetic_name"]=MagRec["er_specimen_name"]
                    SynRec["er_synthetic_name"]=MagRec["er_specimen_name"]
                    site=pmag.parse_site(MagRec['er_sample_name'],samp_con,Z)
                    SynRec["synthetic_parent_sample"]=site
                    SynRec["er_citation_names"]="This study"
                    SynRec["synthetic_institution"]=institution
                    SynRec["synthetic_type"]=syntype
                    SynRecs.append(SynRec)
                if float(rec[1])==0:
                    pass
                elif demag=="AF":
                    if methcode != "LP-AN-ARM":
                        MagRec["treatment_ac_field"]='%8.3e' %(float(rec[1])*1e-3) # peak field in tesla
                        if meas_type=="LT-AF-Z": MagRec["treatment_dc_field"]='0'
                    else: # AARM experiment
                        if treat[1][0]=='0':
                            meas_type="LT-AF-Z:LP-AN-ARM:"
                            MagRec["treatment_ac_field"]='%8.3e' %(peakfield) # peak field in tesla
                            MagRec["treatment_dc_field"]='%8.3e'%(0)
                            if labfield!=0 and methcode!="LP-AN-ARM": print("Warning - inconsistency in mag file with lab field - overriding file with 0")
                        else:
                            meas_type="LT-AF-I:LP-AN-ARM"
                            ipos=int(treat[0])-1
                            MagRec["treatment_dc_field_phi"]='%7.1f' %(dec[ipos])
                            MagRec["treatment_dc_field_theta"]='%7.1f'% (inc[ipos])
                            MagRec["treatment_dc_field"]='%8.3e'%(labfield)
                            MagRec["treatment_ac_field"]='%8.3e' %(peakfield) # peak field in tesla
                elif demag=="T" and methcode == "LP-AN-TRM":
                    MagRec["treatment_temp"]='%8.3e' % (float(treat[0])+273.) # temp in kelvin
                    if treat[1][0]=='0':
                        meas_type="LT-T-Z:LP-AN-TRM"
                        MagRec["treatment_dc_field"]='%8.3e'%(0)
                        MagRec["treatment_dc_field_phi"]='0'
                        MagRec["treatment_dc_field_theta"]='0'
                    else:
                        MagRec["treatment_dc_field"]='%8.3e'%(labfield)
                        if treat[1][0]=='7': # alteration check as final measurement
                                meas_type="LT-PTRM-I:LP-AN-TRM"
                        else:
                                meas_type="LT-T-I:LP-AN-TRM"

                        # find the direction of the lab field in two ways:
                        # (1) using the treatment coding (XX.1=+x, XX.2=+y, XX.3=+z, XX.4=-x, XX.5=-y, XX.6=-z)
                        ipos_code=int(treat[1][0])-1
                        # (2) using the magnetization
                        DEC=float(rec[4])
                        INC=float(rec[5])
                        if INC < 45 and INC > -45:
                            if DEC>315  or DEC<45: ipos_guess=0
                            if DEC>45 and DEC<135: ipos_guess=1
                            if DEC>135 and DEC<225: ipos_guess=3
                            if DEC>225 and DEC<315: ipos_guess=4
                        else:
                            if INC >45: ipos_guess=2
                            if INC <-45: ipos_guess=5
                        # prefer the guess over the code
                        ipos=ipos_guess
                        MagRec["treatment_dc_field_phi"]='%7.1f' %(tdec[ipos])
                        MagRec["treatment_dc_field_theta"]='%7.1f'% (tinc[ipos])
                        # check it
                        if ipos_guess!=ipos_code and treat[1][0]!='7':
                            print("-E- ERROR: check specimen %s step %s, ATRM measurements, coding does not match the direction of the lab field!"%(rec[0],".".join(list(treat))))


                elif demag=="S": # Shaw experiment
                    if treat[1][1]=='0':
                        if  int(treat[0])!=0:
                            MagRec["treatment_ac_field"]='%8.3e' % (float(treat[0])*1e-3) # AF field in tesla
                            MagRec["treatment_dc_field"]='0'
                            meas_type="LT-AF-Z" # first AF
                        else:
                            meas_type="LT-NO"
                            MagRec["treatment_ac_field"]='0'
                            MagRec["treatment_dc_field"]='0'
                    elif treat[1][1]=='1':
                        if int(treat[0])==0:
                            MagRec["treatment_ac_field"]='%8.3e' %(peakfield) # peak field in tesla
                            MagRec["treatment_dc_field"]='%8.3e'%(arm_labfield)
                            MagRec["treatment_dc_field_phi"]='%7.1f'%(phi)
                            MagRec["treatment_dc_field_theta"]='%7.1f'%(theta)
                            meas_type="LT-AF-I"
                        else:
                            MagRec["treatment_ac_field"]='%8.3e' % ( float(treat[0])*1e-3) # AF field in tesla
                            MagRec["treatment_dc_field"]='0'
                            meas_type="LT-AF-Z"
                    elif treat[1][1]=='2':
                        if int(treat[0])==0:
                            MagRec["treatment_ac_field"]='0'
                            MagRec["treatment_dc_field"]='%8.3e'%(trm_labfield)
                            MagRec["treatment_dc_field_phi"]='%7.1f'%(phi)
                            MagRec["treatment_dc_field_theta"]='%7.1f'%(theta)
                            MagRec["treatment_temp"]='%8.3e' % (trm_peakT)
                            meas_type="LT-T-I"
                        else:
                            MagRec["treatment_ac_field"]='%8.3e' % ( float(treat[0])*1e-3) # AF field in tesla
                            MagRec["treatment_dc_field"]='0'
                            meas_type="LT-AF-Z"
                    elif treat[1][1]=='3':
                        if int(treat[0])==0:
                            MagRec["treatment_ac_field"]='%8.3e' %(peakfield) # peak field in tesla
                            MagRec["treatment_dc_field"]='%8.3e'%(arm_labfield)
                            MagRec["treatment_dc_field_phi"]='%7.1f'%(phi)
                            MagRec["treatment_dc_field_theta"]='%7.1f'%(theta)
                            meas_type="LT-AF-I"
                        else:
                            MagRec["treatment_ac_field"]='%8.3e' % ( float(treat[0])*1e-3) # AF field in tesla
                            MagRec["treatment_dc_field"]='0'
                            meas_type="LT-AF-Z"


                # Cooling rate experient # added by rshaar
                elif demag=="T" and methcode == "LP-CR-TRM":

                    MagRec["treatment_temp"]='%8.3e' % (float(treat[0])+273.) # temp in kelvin
                    if treat[1][0]=='0':
                        meas_type="LT-T-Z:LP-CR-TRM"
                        MagRec["treatment_dc_field"]='%8.3e'%(0)
                        MagRec["treatment_dc_field_phi"]='0'
                        MagRec["treatment_dc_field_theta"]='0'
                    else:
                        MagRec["treatment_dc_field"]='%8.3e'%(labfield)
                        if treat[1][0]=='7': # alteration check as final measurement
                                meas_type="LT-PTRM-I:LP-CR-TRM"
                        else:
                                meas_type="LT-T-I:LP-CR-TRM"
                        MagRec["treatment_dc_field_phi"]='%7.1f' % (phi) # labfield phi
                        MagRec["treatment_dc_field_theta"]='%7.1f' % (theta) # labfield theta

                        indx=int(treat[1][0])-1
                        # alteration check matjed as 0.7 in the measurement file
                        if indx==6:
                           cooling_time= cooling_rates_list[-1]
                        else:
                           cooling_time=cooling_rates_list[indx]
                        MagRec["measurement_description"]="cooling_rate"+":"+cooling_time+":"+"K/min"


                elif demag!='N':
                  if len(treat)==1:treat.append('0')
                  MagRec["treatment_temp"]='%8.3e' % (float(treat[0])+273.) # temp in kelvin
                  if trm==0:  # demag=T and not trmaq
                    if treat[1][0]=='0':
                        meas_type="LT-T-Z"
                    else:
                        MagRec["treatment_dc_field"]='%8.3e' % (labfield) # labfield in tesla (convert from microT)
                        MagRec["treatment_dc_field_phi"]='%7.1f' % (phi) # labfield phi
                        MagRec["treatment_dc_field_theta"]='%7.1f' % (theta) # labfield theta
                        if treat[1][0]=='1':meas_type="LT-T-I" # in-field thermal step
                        if treat[1][0]=='2':
                            meas_type="LT-PTRM-I" # pTRM check
                            pTRM=1
                        if treat[1][0]=='3':
                            MagRec["treatment_dc_field"]='0'  # this is a zero field step
                            meas_type="LT-PTRM-MD" # pTRM tail check
                  else:
                    labfield=float(treat[1])*1e-6
                    MagRec["treatment_dc_field"]='%8.3e' % (labfield) # labfield in tesla (convert from microT)
                    MagRec["treatment_dc_field_phi"]='%7.1f' % (phi) # labfield phi
                    MagRec["treatment_dc_field_theta"]='%7.1f' % (theta) # labfield theta
                    meas_type="LT-T-I:LP-TRM" # trm acquisition experiment



                MagRec["measurement_csd"]=rec[2]
                MagRec["measurement_magn_moment"]='%10.3e'% (float(rec[3])*1e-3) # moment in Am^2 (from emu)
                MagRec["measurement_dec"]=rec[4]
                MagRec["measurement_inc"]=rec[5]
                MagRec["magic_instrument_codes"]=instcode
                MagRec["er_analyst_mail_names"]=user
                MagRec["er_citation_names"]=citation
                if "LP-IRM-3D" in methcode : meas_type=methcode
                #MagRec["magic_method_codes"]=methcode.strip(':')
                MagRec["magic_method_codes"]=meas_type
                MagRec["measurement_flag"]='g'
                MagRec["er_specimen_name"]=rec[0]
                if 'std' in rec[0]:
                    MagRec["measurement_standard"]='s'
                else:
                    MagRec["measurement_standard"]='u'
                MagRec["measurement_number"]='1'
                #print MagRec['treatment_temp']
                MagRecs.append(MagRec)
    MagOuts=pmag.measurements_methods(MagRecs,noave)
    pmag.magic_write(meas_file,MagOuts,'magic_measurements')
    print("results put in ",meas_file)
    if len(SynRecs)>0:
        pmag.magic_write(synfile,SynRecs,'er_synthetics')
        print("synthetics put in ",synfile)
    return True, meas_file
Ejemplo n.º 53
0
def main():
    """
    NAME
        dmag_magic.py

    DESCRIPTION
       plots intensity decay curves for demagnetization experiments

    SYNTAX
        dmag_magic -h [command line options]

    INPUT 
       takes magic formatted magic_measurements.txt files

    OPTIONS
        -h prints help message and quits
        -f FILE: specify input file, default is: magic_measurements.txt
        -obj OBJ: specify  object  [loc, sit, sam, spc] for plot, default is by location
        -LT [AF,T,M]: specify lab treatment type, default AF
        -XLP [PI]: exclude specific  lab protocols (for example, method codes like LP-PI)
        -N do not normalize by NRM magnetization
        -sav save plots silently and quit
        -fmt [svg,jpg,png,pdf] set figure format [default is svg]
    NOTE
        loc: location (study); sit: site; sam: sample; spc: specimen
    """
    FIG={} # plot dictionary
    FIG['demag']=1 # demag is figure 1
    in_file,plot_key,LT='magic_measurements.txt','er_location_name',"LT-AF-Z"
    XLP=""
    norm=1
    LT='LT-AF-Z'
    units,dmag_key='T','treatment_ac_field'
    plot=0
    fmt='svg'
    if len(sys.argv)>1:
        if '-h' in sys.argv:
            print main.__doc__
            sys.exit()
        if '-N' in sys.argv: norm=0
        if '-sav' in sys.argv: 
            plot=1
        if '-f' in sys.argv:
            ind=sys.argv.index("-f")
            in_file=sys.argv[ind+1]
        if '-fmt' in sys.argv:
            ind=sys.argv.index("-fmt")
            fmt=sys.argv[ind+1]
        if '-obj' in sys.argv:
            ind=sys.argv.index('-obj')
            plot_by=sys.argv[ind+1]
            if plot_by=='sit':plot_key='er_site_name'
            if plot_by=='sam':plot_key='er_sample_name'
            if plot_by=='spc':plot_key='er_specimen_name'
        if '-XLP' in sys.argv:
            ind=sys.argv.index("-XLP")
            XLP=sys.argv[ind+1] # get lab protocol for excluding
        if '-LT' in sys.argv:
            ind=sys.argv.index("-LT")
            LT='LT-'+sys.argv[ind+1]+'-Z' # get lab treatment for plotting
            if  LT=='LT-T-Z':
                units,dmag_key='K','treatment_temp'
            elif  LT=='LT-AF-Z':
                units,dmag_key='T','treatment_ac_field'
            elif  LT=='LT-M-Z':
                units,dmag_key='J','treatment_mw_energy'
            else:
                units='U'
    data,file_type=pmag.magic_read(in_file)
    sids=pmag.get_specs(data)
    pmagplotlib.plot_init(FIG['demag'],5,5)
    print len(data),' records read from ',in_file
    #
    #
    # find desired intensity data
    #
    #
    plotlist,intlist=[],['measurement_magnitude','measurement_magn_moment','measurement_magn_volume','measurement_magn_mass']
    IntMeths=[]
    FixData=[]
    for  rec in data:
        meths=[]
        methcodes=rec['magic_method_codes'].split(':')
        for meth in methcodes:meths.append(meth.strip())
        for key in rec.keys():
            if key in intlist and rec[key]!="":
                if key not in IntMeths:IntMeths.append(key)
                if rec[plot_key] not in plotlist and LT in meths: plotlist.append(rec[plot_key])
                if 'measurement_flag' not in rec.keys():rec['measurement_flag']='g'
                FixData.append(rec)
        plotlist.sort()
    if len(IntMeths)==0:
        print 'No intensity information found'
        sys.exit()
    data=FixData
    int_key=IntMeths[0] # plot first intensity method found - normalized to initial value anyway - doesn't matter which used
    for plt in plotlist:
        if plot==0: print plt,'plotting by: ',plot_key
        PLTblock=pmag.get_dictitem(data,plot_key,plt,'T') # fish out all the data for this type of plot
        PLTblock=pmag.get_dictitem(PLTblock,'magic_method_codes',LT,'has') # fish out all the dmag for this experiment type
        PLTblock=pmag.get_dictitem(PLTblock,int_key,'','F') # get all with this intensity key non-blank
        if XLP!="":PLTblock=pmag.get_dictitem(PLTblock,'magic_method_codes',XLP,'not') # reject data with XLP in method_code
        if len(PLTblock)>2:
            title=PLTblock[0][plot_key]
            spcs=[]
            for rec in PLTblock:
                if rec['er_specimen_name'] not in spcs:spcs.append(rec['er_specimen_name'])
            for spc in spcs:
                SPCblock=pmag.get_dictitem(PLTblock,'er_specimen_name',spc,'T') # plot specimen by specimen
                INTblock=[]
                for rec in SPCblock:
                    INTblock.append([float(rec[dmag_key]),0,0,float(rec[int_key]),1,rec['measurement_flag']])
                if len(INTblock)>2:
                    pmagplotlib.plotMT(FIG['demag'],INTblock,title,0,units,norm)
            if plot==1:
                files={}
                for key in FIG.keys():
                    files[key]=title+'_'+LT+'.'+fmt
                pmagplotlib.saveP(FIG,files) 
                sys.exit()
            else:
                pmagplotlib.drawFIGS(FIG)
                ans=raw_input(" S[a]ve to save plot, [q]uit,  Return to continue:  ")
                if ans=='q':sys.exit()
                if ans=="a": 
                    files={}
                    for key in FIG.keys():
                        files[key]=title+'_'+LT+'.svg' 
                    pmagplotlib.saveP(FIG,files) 
            pmagplotlib.clearFIG(FIG['demag'])
Ejemplo n.º 54
0
def main():
    """
    NAME
        site_edit_magic.py

    DESCRIPTION
       makes equal area projections site by site
         from pmag_specimens.txt file with
         Fisher confidence ellipse using McFadden and McElhinny (1988)
         technique for combining lines and planes
         allows testing and reject specimens for bad orientations

    SYNTAX
        site_edit_magic.py [command line options]

    OPTIONS
       -h: prints help and quits
       -f: specify pmag_specimen format file, default is pmag_specimens.txt
       -fsa: specify er_samples.txt file
       -exc: use existing pmag_criteria.txt file
       -N: reset all sample flags to good
    
    OUPUT
       edited er_samples.txt file

    """
    dir_path = '.'
    FIG = {}  # plot dictionary
    FIG['eqarea'] = 1  # eqarea is figure 1
    in_file = 'pmag_specimens.txt'
    sampfile = 'er_samples.txt'
    out_file = ""
    fmt, plot = 'svg', 1
    Crits = ""
    M, N = 180., 1
    repeat = ''
    renew = 0
    if '-h' in sys.argv:
        print(main.__doc__)
        sys.exit()
    if '-WD' in sys.argv:
        ind = sys.argv.index('-WD')
        dir_path = sys.argv[ind + 1]
    if '-f' in sys.argv:
        ind = sys.argv.index("-f")
        in_file = sys.argv[ind + 1]
    if '-fsa' in sys.argv:
        ind = sys.argv.index("-fsa")
        sampfile = sys.argv[ind + 1]
    if '-exc' in sys.argv:
        Crits, file_type = pmag.magic_read(dir_path + '/pmag_criteria.txt')
        for crit in Crits:
            if crit['pmag_criteria_code'] == 'DE-SPEC':
                M = float(crit['specimen_mad'])
                N = float(crit['specimen_n'])
    if '-fmt' in sys.argv:
        ind = sys.argv.index("-fmt")
        fmt = sys.argv[ind + 1]
    if '-N' in sys.argv: renew = 1
    #
    if in_file[0] != "/": in_file = dir_path + '/' + in_file
    if sampfile[0] != "/": sampfile = dir_path + '/' + sampfile
    crd = 's'
    Specs, file_type = pmag.magic_read(in_file)
    if file_type != 'pmag_specimens':
        print(' bad pmag_specimen input file')
        sys.exit()
    Samps, file_type = pmag.magic_read(sampfile)
    if file_type != 'er_samples':
        print(' bad er_samples input file')
        sys.exit()
    SO_methods = []
    for rec in Samps:
        if 'sample_orientation_flag' not in list(rec.keys()):
            rec['sample_orientation_flag'] = 'g'
        if 'sample_description' not in list(rec.keys()):
            rec['sample_description'] = ''
        if renew == 1:
            rec['sample_orientation_flag'] = 'g'
            description = rec['sample_description']
            if '#' in description:
                newdesc = ""
                c = 0
                while description[c] != '#' and c < len(
                        description) - 1:  # look for first pound sign
                    newdesc = newdesc + description[c]
                    c += 1
                while description[c] == '#':
                    c += 1  # skip first set of pound signs
                while description[c] != '#':
                    c += 1  # find second set of pound signs
                while description[c] == '#' and c < len(description) - 1:
                    c += 1  # skip second set of pound signs
                while c < len(description) - 1:  # look for first pound sign
                    newdesc = newdesc + description[c]
                    c += 1
                rec['sample_description'] = newdesc  # edit out old comment about orientations
        if "magic_method_codes" in rec:
            methlist = rec["magic_method_codes"]
            for meth in methlist.split(":"):
                if "SO" in meth.strip() and "SO-POM" not in meth.strip():
                    if meth.strip() not in SO_methods:
                        SO_methods.append(meth.strip())
    pmag.magic_write(sampfile, Samps, 'er_samples')
    SO_priorities = pmag.set_priorities(SO_methods, 0)
    sitelist = []
    for rec in Specs:
        if rec['er_site_name'] not in sitelist:
            sitelist.append(rec['er_site_name'])
    sitelist.sort()
    EQ = {}
    EQ['eqarea'] = 1
    pmagplotlib.plot_init(EQ['eqarea'], 5, 5)
    k = 0
    while k < len(sitelist):
        site = sitelist[k]
        print(site)
        data = []
        ThisSiteSpecs = pmag.get_dictitem(Specs, 'er_site_name', site, 'T')
        ThisSiteSpecs = pmag.get_dictitem(ThisSiteSpecs,
                                          'specimen_tilt_correction', '-1',
                                          'T')  # get all the unoriented data
        for spec in ThisSiteSpecs:
            if spec['specimen_mad'] != "" and spec[
                    'specimen_n'] != "" and float(
                        spec['specimen_mad']) <= M and float(
                            spec['specimen_n']) >= N:
                # good spec, now get orientation....
                redo, p = 1, 0
                if len(SO_methods) <= 1:
                    az_type = SO_methods[0]
                    orient = pmag.find_samp_rec(spec["er_sample_name"], Samps,
                                                az_type)
                    redo = 0
                while redo == 1:
                    if p >= len(SO_priorities):
                        print("no orientation data for ",
                              spec['er_sample_name'])
                        orient["sample_azimuth"] = ""
                        orient["sample_dip"] = ""
                        redo = 0
                    else:
                        az_type = SO_methods[SO_methods.index(
                            SO_priorities[p])]
                        orient = pmag.find_samp_rec(spec["er_sample_name"],
                                                    Samps, az_type)
                        if orient["sample_azimuth"] != "":
                            redo = 0
                    p += 1
                if orient['sample_azimuth'] != "":
                    rec = {}
                    for key in list(spec.keys()):
                        rec[key] = spec[key]
                    rec['dec'], rec['inc'] = pmag.dogeo(
                        float(spec['specimen_dec']),
                        float(spec['specimen_inc']),
                        float(orient['sample_azimuth']),
                        float(orient['sample_dip']))
                    rec["tilt_correction"] = '1'
                    crd = 'g'
                    rec['sample_azimuth'] = orient['sample_azimuth']
                    rec['sample_dip'] = orient['sample_dip']
                    data.append(rec)
        if len(data) > 2:
            print('specimen, dec, inc, n_meas/MAD,| method codes ')
            for i in range(len(data)):
                print('%s: %7.1f %7.1f %s / %s | %s' %
                      (data[i]['er_specimen_name'], data[i]['dec'],
                       data[i]['inc'], data[i]['specimen_n'],
                       data[i]['specimen_mad'], data[i]['magic_method_codes']))

            fpars = pmag.dolnp(data, 'specimen_direction_type')
            print("\n Site lines planes  kappa   a95   dec   inc")
            print(site, fpars["n_lines"], fpars["n_planes"], fpars["K"],
                  fpars["alpha95"], fpars["dec"], fpars["inc"], fpars["R"])
            if out_file != "":
                if float(fpars["alpha95"]) <= acutoff and float(
                        fpars["K"]) >= kcutoff:
                    out.write('%s %s %s\n' %
                              (fpars["dec"], fpars['inc'], fpars['alpha95']))
            pmagplotlib.plot_lnp(EQ['eqarea'], site, data, fpars,
                                 'specimen_direction_type')
            pmagplotlib.draw_figs(EQ)
            if k != 0 and repeat != 'y':
                ans = input(
                    "s[a]ve plot, [q]uit, [e]dit specimens, [p]revious site, <return> to continue:\n "
                )
            elif k == 0 and repeat != 'y':
                ans = input(
                    "s[a]ve plot, [q]uit, [e]dit specimens, <return> to continue:\n "
                )
            if ans == "p": k -= 2
            if ans == "a":
                files = {}
                files['eqarea'] = site + '_' + crd + '_eqarea' + '.' + fmt
                pmagplotlib.save_plots(EQ, files)
            if ans == "q": sys.exit()
            if ans == "e" and Samps == []:
                print("can't edit samples without orientation file, sorry")
            elif ans == "e":
                #                k-=1
                testspec = input("Enter name of specimen to check: ")
                for spec in data:
                    if spec['er_specimen_name'] == testspec:
                        # first test wrong direction of drill arrows (flip drill direction in opposite direction and re-calculate d,i
                        d, i = pmag.dogeo(float(spec['specimen_dec']),
                                          float(spec['specimen_inc']),
                                          float(spec['sample_azimuth']) - 180.,
                                          -float(spec['sample_dip']))
                        XY = pmag.dimap(d, i)
                        pmagplotlib.plot_xy(EQ['eqarea'], [XY[0]], [XY[1]],
                                            sym='g^')
                        # first test wrong end of compass (take az-180.)
                        d, i = pmag.dogeo(float(spec['specimen_dec']),
                                          float(spec['specimen_inc']),
                                          float(spec['sample_azimuth']) - 180.,
                                          float(spec['sample_dip']))
                        XY = pmag.dimap(d, i)
                        pmagplotlib.plot_xy(EQ['eqarea'], [XY[0]], [XY[1]],
                                            sym='kv')
                        # did the sample spin in the hole?
                        # now spin around specimen's z
                        X_up, Y_up, X_d, Y_d = [], [], [], []
                        for incr in range(0, 360, 5):
                            d, i = pmag.dogeo(
                                float(spec['specimen_dec']) + incr,
                                float(spec['specimen_inc']),
                                float(spec['sample_azimuth']),
                                float(spec['sample_dip']))
                            XY = pmag.dimap(d, i)
                            if i >= 0:
                                X_d.append(XY[0])
                                Y_d.append(XY[1])
                            else:
                                X_up.append(XY[0])
                                Y_up.append(XY[1])
                        pmagplotlib.plot_xy(EQ['eqarea'], X_d, Y_d, sym='b.')
                        pmagplotlib.plot_xy(EQ['eqarea'], X_up, Y_up, sym='c.')
                        pmagplotlib.draw_figs(EQ)
                        break
                print("Triangle: wrong arrow for drill direction.")
                print("Delta: wrong end of compass.")
                print(
                    "Small circle:  wrong mark on sample. [cyan upper hemisphere]"
                )
                deleteme = input("Mark this sample as bad? y/[n]  ")
                if deleteme == 'y':
                    reason = input(
                        "Reason: [1] broke, [2] wrong drill direction, [3] wrong compass direction, [4] bad mark, [5] displaced block [6] other "
                    )
                    if reason == '1':
                        description = ' sample broke while drilling'
                    if reason == '2':
                        description = ' wrong drill direction '
                    if reason == '3':
                        description = ' wrong compass direction '
                    if reason == '4':
                        description = ' bad mark in field'
                    if reason == '5':
                        description = ' displaced block'
                    if reason == '6':
                        description = input(
                            'Enter brief reason for deletion:   ')
                    for samp in Samps:
                        if samp['er_sample_name'] == spec['er_sample_name']:
                            samp['sample_orientation_flag'] = 'b'
                            samp['sample_description'] = samp[
                                'sample_description'] + ' ## direction deleted because: ' + description + '##'  # mark description
                    pmag.magic_write(sampfile, Samps, 'er_samples')
                repeat = input("Mark another sample, this site? y/[n]  ")
                if repeat == 'y': k -= 1
        else:
            print(
                'skipping site - not enough data with specified coordinate system'
            )
        k += 1
    print("sample flags stored in ", sampfile)
Ejemplo n.º 55
0
def main():
    """
    NAME
        site_edit_magic.py

    DESCRIPTION
       makes equal area projections site by site
         from pmag_specimens.txt file with
         Fisher confidence ellipse using McFadden and McElhinny (1988)
         technique for combining lines and planes
         allows testing and reject specimens for bad orientations

    SYNTAX
        site_edit_magic.py [command line options]

    OPTIONS
       -h: prints help and quits
       -f: specify pmag_specimen format file, default is pmag_specimens.txt
       -fsa: specify er_samples.txt file
       -exc: use existing pmag_criteria.txt file
       -N: reset all sample flags to good
    
    OUPUT
       edited er_samples.txt file

    """
    dir_path='.'
    FIG={} # plot dictionary
    FIG['eqarea']=1 # eqarea is figure 1
    in_file='pmag_specimens.txt'
    sampfile='er_samples.txt'
    out_file=""
    fmt,plot='svg',1
    Crits=""
    M,N=180.,1
    repeat=''
    renew=0
    if '-h' in sys.argv:
        print main.__doc__
        sys.exit()
    if '-WD' in sys.argv:
        ind=sys.argv.index('-WD')
        dir_path=sys.argv[ind+1]
    if '-f' in sys.argv:
        ind=sys.argv.index("-f")
        in_file=sys.argv[ind+1]
    if '-fsa' in sys.argv:
        ind=sys.argv.index("-fsa")
        sampfile=sys.argv[ind+1]
    if '-exc' in sys.argv:
        Crits,file_type=pmag.magic_read(dir_path+'/pmag_criteria.txt')
        for crit in Crits:
            if crit['pmag_criteria_code']=='DE-SPEC':
                M=float(crit['specimen_mad'])
                N=float(crit['specimen_n'])
    if '-fmt' in sys.argv:
        ind=sys.argv.index("-fmt")
        fmt=sys.argv[ind+1]
    if '-N' in sys.argv: renew=1
# 
    if in_file[0]!="/":in_file=dir_path+'/'+in_file
    if sampfile[0]!="/":sampfile=dir_path+'/'+sampfile
    crd='s'
    Specs,file_type=pmag.magic_read(in_file)
    if file_type!='pmag_specimens':
        print ' bad pmag_specimen input file'
        sys.exit()
    Samps,file_type=pmag.magic_read(sampfile)
    if file_type!='er_samples':
        print ' bad er_samples input file'
        sys.exit()
    SO_methods=[]
    for rec in Samps:
       if 'sample_orientation_flag' not in rec.keys(): rec['sample_orientation_flag']='g'
       if 'sample_description' not in rec.keys(): rec['sample_description']=''
       if renew==1:
          rec['sample_orientation_flag']='g'
          description=rec['sample_description']
          if '#' in description:
               newdesc=""
               c=0
               while description[c]!='#' and c<len(description)-1: # look for first pound sign
                   newdesc=newdesc+description[c]
                   c+=1
               while description[c]=='#': 
                   c+=1# skip first set of pound signs
               while description[c]!='#':c+=1 # find second set of pound signs
               while description[c]=='#' and c<len(description)-1:c+=1 # skip second set of pound signs
               while c<len(description)-1: # look for first pound sign
                   newdesc=newdesc+description[c]
                   c+=1
               rec['sample_description']=newdesc # edit out old comment about orientations
       if "magic_method_codes" in rec:
           methlist=rec["magic_method_codes"]
           for meth in methlist.split(":"):
               if "SO" in meth.strip() and "SO-POM" not in meth.strip():
                   if meth.strip() not in SO_methods: SO_methods.append(meth.strip())
    pmag.magic_write(sampfile,Samps,'er_samples')
    SO_priorities=pmag.set_priorities(SO_methods,0)
    sitelist=[]
    for rec in Specs:
        if rec['er_site_name'] not in sitelist: sitelist.append(rec['er_site_name'])
    sitelist.sort()
    EQ={} 
    EQ['eqarea']=1
    pmagplotlib.plot_init(EQ['eqarea'],5,5)
    k=0
    while k<len(sitelist):
        site=sitelist[k]
        print site
        data=[]
        ThisSiteSpecs=pmag.get_dictitem(Specs,'er_site_name',site,'T')
        ThisSiteSpecs=pmag.get_dictitem(ThisSiteSpecs,'specimen_tilt_correction','-1','T') # get all the unoriented data
        for spec in ThisSiteSpecs:
                if spec['specimen_mad']!="" and spec['specimen_n']!="" and float(spec['specimen_mad'])<=M and float(spec['specimen_n'])>=N: 
# good spec, now get orientation....
                    redo,p=1,0
                    if len(SO_methods)<=1:
                        az_type=SO_methods[0]
                        orient=pmag.find_samp_rec(spec["er_sample_name"],Samps,az_type)
                        redo=0
                    while redo==1:
                        if p>=len(SO_priorities):
                            print "no orientation data for ",spec['er_sample_name']
                            orient["sample_azimuth"]=""
                            orient["sample_dip"]=""
                            redo=0
                        else:
                            az_type=SO_methods[SO_methods.index(SO_priorities[p])]
                            orient=pmag.find_samp_rec(spec["er_sample_name"],Samps,az_type)
                            if orient["sample_azimuth"]  !="":
                                redo=0
                        p+=1
                    if orient['sample_azimuth']!="":
                        rec={}
                        for key in spec.keys():rec[key]=spec[key]
                        rec['dec'],rec['inc']=pmag.dogeo(float(spec['specimen_dec']),float(spec['specimen_inc']),float(orient['sample_azimuth']),float(orient['sample_dip']))
                        rec["tilt_correction"]='1'
                        crd='g'
                        rec['sample_azimuth']=orient['sample_azimuth']
                        rec['sample_dip']=orient['sample_dip']
                        data.append(rec)
        if len(data)>2:
            print 'specimen, dec, inc, n_meas/MAD,| method codes '
            for i  in range(len(data)):
                print '%s: %7.1f %7.1f %s / %s | %s' % (data[i]['er_specimen_name'], data[i]['dec'], data[i]['inc'], data[i]['specimen_n'], data[i]['specimen_mad'], data[i]['magic_method_codes'])

            fpars=pmag.dolnp(data,'specimen_direction_type')
            print "\n Site lines planes  kappa   a95   dec   inc"
            print site, fpars["n_lines"], fpars["n_planes"], fpars["K"], fpars["alpha95"], fpars["dec"], fpars["inc"], fpars["R"]
            if out_file!="":
                if float(fpars["alpha95"])<=acutoff and float(fpars["K"])>=kcutoff:
                    out.write('%s %s %s\n'%(fpars["dec"],fpars['inc'],fpars['alpha95']))
            pmagplotlib.plotLNP(EQ['eqarea'],site,data,fpars,'specimen_direction_type')
            pmagplotlib.drawFIGS(EQ)
            if k!=0 and repeat!='y':
                ans=raw_input("s[a]ve plot, [q]uit, [e]dit specimens, [p]revious site, <return> to continue:\n ")
            elif k==0 and repeat!='y':
                ans=raw_input("s[a]ve plot, [q]uit, [e]dit specimens, <return> to continue:\n ")
            if ans=="p": k-=2
            if ans=="a":
                files={}
                files['eqarea']=site+'_'+crd+'_eqarea'+'.'+fmt
                pmagplotlib.saveP(EQ,files)
            if ans=="q": sys.exit()
            if ans=="e" and Samps==[]:
                print "can't edit samples without orientation file, sorry"
            elif ans=="e": 
#                k-=1
                testspec=raw_input("Enter name of specimen to check: ")
                for spec in data:
                    if spec['er_specimen_name']==testspec:
# first test wrong direction of drill arrows (flip drill direction in opposite direction and re-calculate d,i
                        d,i=pmag.dogeo(float(spec['specimen_dec']),float(spec['specimen_inc']),float(spec['sample_azimuth'])-180.,-float(spec['sample_dip']))
                        XY=pmag.dimap(d,i)
                        pmagplotlib.plotXY(EQ['eqarea'],[XY[0]],[XY[1]],sym='g^')
# first test wrong end of compass (take az-180.)
                        d,i=pmag.dogeo(float(spec['specimen_dec']),float(spec['specimen_inc']),float(spec['sample_azimuth'])-180.,float(spec['sample_dip']))
                        XY=pmag.dimap(d,i)
                        pmagplotlib.plotXY(EQ['eqarea'],[XY[0]],[XY[1]],sym='kv')
# did the sample spin in the hole?  
# now spin around specimen's z
                        X_up,Y_up,X_d,Y_d=[],[],[],[]
                        for incr in range(0,360,5):
                            d,i=pmag.dogeo(float(spec['specimen_dec'])+incr,float(spec['specimen_inc']),float(spec['sample_azimuth']),float(spec['sample_dip']))
                            XY=pmag.dimap(d,i)
                            if i>=0:
                                X_d.append(XY[0])
                                Y_d.append(XY[1])
                            else:
                                X_up.append(XY[0])
                                Y_up.append(XY[1])
                        pmagplotlib.plotXY(EQ['eqarea'],X_d,Y_d,sym='b.')
                        pmagplotlib.plotXY(EQ['eqarea'],X_up,Y_up,sym='c.')
                        pmagplotlib.drawFIGS(EQ)
                        break
                print "Triangle: wrong arrow for drill direction."
                print "Delta: wrong end of compass."
                print "Small circle:  wrong mark on sample. [cyan upper hemisphere]"
                deleteme=raw_input("Mark this sample as bad? y/[n]  ")
                if deleteme=='y':
                    reason=raw_input("Reason: [1] broke, [2] wrong drill direction, [3] wrong compass direction, [4] bad mark, [5] displaced block [6] other ")
                    if reason=='1':
                       description=' sample broke while drilling'
                    if reason=='2':
                       description=' wrong drill direction '
                    if reason=='3':
                       description=' wrong compass direction '
                    if reason=='4':
                       description=' bad mark in field'
                    if reason=='5':
                       description=' displaced block'
                    if reason=='6':
                       description=raw_input('Enter brief reason for deletion:   ')
                    for samp in Samps:
                        if samp['er_sample_name']==spec['er_sample_name']:
                            samp['sample_orientation_flag']='b'
                            samp['sample_description']=samp['sample_description']+' ## direction deleted because: '+description+'##' # mark description
                    pmag.magic_write(sampfile,Samps,'er_samples')
                repeat=raw_input("Mark another sample, this site? y/[n]  ")
                if repeat=='y': k-=1
        else:
            print 'skipping site - not enough data with specified coordinate system'
        k+=1 
    print "sample flags stored in ",sampfile
Ejemplo n.º 56
0
def main():
    """
    NAME
        dmag_magic.py

    DESCRIPTION
       plots intensity decay curves for demagnetization experiments

    SYNTAX
        dmag_magic -h [command line options]

    INPUT
       takes magic formatted magic_measurements.txt files

    OPTIONS
        -h prints help message and quits
        -f FILE: specify input file, default is: magic_measurements.txt
        -obj OBJ: specify  object  [loc, sit, sam, spc] for plot, default is by location
        -LT [AF,T,M]: specify lab treatment type, default AF
        -XLP [PI]: exclude specific  lab protocols (for example, method codes like LP-PI)
        -N do not normalize by NRM magnetization
        -sav save plots silently and quit
        -fmt [svg,jpg,png,pdf] set figure format [default is svg]
    NOTE
        loc: location (study); sit: site; sam: sample; spc: specimen
    """
    FIG = {}  # plot dictionary
    FIG['demag'] = 1  # demag is figure 1
    in_file, plot_key, LT = 'magic_measurements.txt', 'er_location_name', "LT-AF-Z"
    XLP = ""
    norm = 1
    LT = 'LT-AF-Z'
    units, dmag_key = 'T', 'treatment_ac_field'
    plot = 0
    fmt = 'svg'
    if len(sys.argv) > 1:
        if '-h' in sys.argv:
            print(main.__doc__)
            sys.exit()
        if '-N' in sys.argv: norm = 0
        if '-sav' in sys.argv:
            plot = 1
        if '-f' in sys.argv:
            ind = sys.argv.index("-f")
            in_file = sys.argv[ind + 1]
        if '-fmt' in sys.argv:
            ind = sys.argv.index("-fmt")
            fmt = sys.argv[ind + 1]
        if '-obj' in sys.argv:
            ind = sys.argv.index('-obj')
            plot_by = sys.argv[ind + 1]
            if plot_by == 'sit': plot_key = 'er_site_name'
            if plot_by == 'sam': plot_key = 'er_sample_name'
            if plot_by == 'spc': plot_key = 'er_specimen_name'
        if '-XLP' in sys.argv:
            ind = sys.argv.index("-XLP")
            XLP = sys.argv[ind + 1]  # get lab protocol for excluding
        if '-LT' in sys.argv:
            ind = sys.argv.index("-LT")
            LT = 'LT-' + sys.argv[ind +
                                  1] + '-Z'  # get lab treatment for plotting
            if LT == 'LT-T-Z':
                units, dmag_key = 'K', 'treatment_temp'
            elif LT == 'LT-AF-Z':
                units, dmag_key = 'T', 'treatment_ac_field'
            elif LT == 'LT-M-Z':
                units, dmag_key = 'J', 'treatment_mw_energy'
            else:
                units = 'U'
    data, file_type = pmag.magic_read(in_file)
    sids = pmag.get_specs(data)
    pmagplotlib.plot_init(FIG['demag'], 5, 5)
    print(len(data), ' records read from ', in_file)
    #
    #
    # find desired intensity data
    #
    #
    plotlist, intlist = [], [
        'measurement_magnitude', 'measurement_magn_moment',
        'measurement_magn_volume', 'measurement_magn_mass'
    ]
    IntMeths = []
    FixData = []
    for rec in data:
        meths = []
        methcodes = rec['magic_method_codes'].split(':')
        for meth in methcodes:
            meths.append(meth.strip())
        for key in rec.keys():
            if key in intlist and rec[key] != "":
                if key not in IntMeths: IntMeths.append(key)
                if rec[plot_key] not in plotlist and LT in meths:
                    plotlist.append(rec[plot_key])
                if 'measurement_flag' not in rec.keys():
                    rec['measurement_flag'] = 'g'
                FixData.append(rec)
        plotlist.sort()
    if len(IntMeths) == 0:
        print('No intensity information found')
        sys.exit()
    data = FixData
    int_key = IntMeths[
        0]  # plot first intensity method found - normalized to initial value anyway - doesn't matter which used
    for plt in plotlist:
        if plot == 0: print(plt, 'plotting by: ', plot_key)
        PLTblock = pmag.get_dictitem(
            data, plot_key, plt,
            'T')  # fish out all the data for this type of plot
        PLTblock = pmag.get_dictitem(
            PLTblock, 'magic_method_codes', LT,
            'has')  # fish out all the dmag for this experiment type
        PLTblock = pmag.get_dictitem(
            PLTblock, int_key, '',
            'F')  # get all with this intensity key non-blank
        if XLP != "":
            PLTblock = pmag.get_dictitem(
                PLTblock, 'magic_method_codes', XLP,
                'not')  # reject data with XLP in method_code
        if len(PLTblock) > 2:
            title = PLTblock[0][plot_key]
            spcs = []
            for rec in PLTblock:
                if rec['er_specimen_name'] not in spcs:
                    spcs.append(rec['er_specimen_name'])
            for spc in spcs:
                SPCblock = pmag.get_dictitem(PLTblock, 'er_specimen_name', spc,
                                             'T')  # plot specimen by specimen
                INTblock = []
                for rec in SPCblock:
                    INTblock.append([
                        float(rec[dmag_key]), 0, 0,
                        float(rec[int_key]), 1, rec['measurement_flag']
                    ])
                if len(INTblock) > 2:
                    pmagplotlib.plotMT(FIG['demag'], INTblock, title, 0, units,
                                       norm)
            if plot == 1:
                files = {}
                for key in FIG.keys():
                    files[key] = title + '_' + LT + '.' + fmt
                pmagplotlib.saveP(FIG, files)
                sys.exit()
            else:
                pmagplotlib.drawFIGS(FIG)
                ans = raw_input(
                    " S[a]ve to save plot, [q]uit,  Return to continue:  ")
                if ans == 'q': sys.exit()
                if ans == "a":
                    files = {}
                    for key in FIG.keys():
                        files[key] = title + '_' + LT + '.' + fmt
                    pmagplotlib.saveP(FIG, files)
            pmagplotlib.clearFIG(FIG['demag'])