def main(): """ NAME aniso_magic.py DESCRIPTION plots anisotropy data with either bootstrap or hext ellipses SYNTAX aniso_magic.py [-h] [command line options] OPTIONS -h plots help message and quits -usr USER: set the user name -f AFILE, specify rmag_anisotropy formatted file for input -F RFILE, specify rmag_results formatted file for output -x Hext [1963] and bootstrap -B DON'T do bootstrap, do Hext -par Tauxe [1998] parametric bootstrap -v plot bootstrap eigenvectors instead of ellipses -sit plot by site instead of entire file -crd [s,g,t] coordinate system, default is specimen (g=geographic, t=tilt corrected) -P don't make any plots - just make rmag_results table -sav don't make the rmag_results table - just save all the plots -fmt [svg, jpg, eps] format for output images, pdf default -gtc DEC INC dec,inc of pole to great circle [down(up) in green (cyan) -d Vi DEC INC; Vi (1,2,3) to compare to direction DEC INC -nb N; specifies the number of bootstraps - default is 1000 DEFAULTS AFILE: rmag_anisotropy.txt RFILE: rmag_results.txt plot bootstrap ellipses of Constable & Tauxe [1987] NOTES minor axis: circles major axis: triangles principal axis: squares directions are plotted on the lower hemisphere for bootstrapped eigenvector components: Xs: blue, Ys: red, Zs: black """ # dir_path = "." version_num = pmag.get_version() verbose = pmagplotlib.verbose args = sys.argv ipar, ihext, ivec, iboot, imeas, isite, iplot, vec = 0, 0, 0, 1, 1, 0, 1, 0 hpars, bpars, PDir = [], [], [] CS, crd = '-1', 's' nb = 1000 fmt = 'pdf' ResRecs = [] orlist = [] outfile, comp, Dir, gtcirc, PDir = 'rmag_results.txt', 0, [], 0, [] infile = 'rmag_anisotropy.txt' if "-h" in args: print(main.__doc__) sys.exit() if '-WD' in args: ind = args.index('-WD') dir_path = args[ind + 1] if '-nb' in args: ind = args.index('-nb') nb = int(args[ind + 1]) if '-usr' in args: ind = args.index('-usr') user = args[ind + 1] else: user = "" if '-B' in args: iboot, ihext = 0, 1 if '-par' in args: ipar = 1 if '-x' in args: ihext = 1 if '-v' in args: ivec = 1 if '-sit' in args: isite = 1 if '-P' in args: iplot = 0 if '-f' in args: ind = args.index('-f') infile = args[ind + 1] if '-F' in args: ind = args.index('-F') outfile = args[ind + 1] if '-crd' in sys.argv: ind = sys.argv.index('-crd') crd = sys.argv[ind + 1] if crd == 'g': CS = '0' if crd == 't': CS = '100' if '-fmt' in args: ind = args.index('-fmt') fmt = args[ind + 1] if '-sav' in args: plots = 1 verbose = 0 else: plots = 0 if '-gtc' in args: ind = args.index('-gtc') d, i = float(args[ind + 1]), float(args[ind + 2]) PDir.append(d) PDir.append(i) if '-d' in args: comp = 1 ind = args.index('-d') vec = int(args[ind + 1]) - 1 Dir = [float(args[ind + 2]), float(args[ind + 3])] # # set up plots # if infile[0] != '/': infile = dir_path + '/' + infile if outfile[0] != '/': outfile = dir_path + '/' + outfile ANIS = {} initcdf, inittcdf = 0, 0 ANIS['data'], ANIS['conf'] = 1, 2 if iboot == 1: ANIS['tcdf'] = 3 if iplot == 1: inittcdf = 1 pmagplotlib.plot_init(ANIS['tcdf'], 5, 5) if comp == 1 and iplot == 1: initcdf = 1 ANIS['vxcdf'], ANIS['vycdf'], ANIS['vzcdf'] = 4, 5, 6 pmagplotlib.plot_init(ANIS['vxcdf'], 5, 5) pmagplotlib.plot_init(ANIS['vycdf'], 5, 5) pmagplotlib.plot_init(ANIS['vzcdf'], 5, 5) if iplot == 1: pmagplotlib.plot_init(ANIS['conf'], 5, 5) pmagplotlib.plot_init(ANIS['data'], 5, 5) # read in the data data, ifiletype = pmag.magic_read(infile) for rec in data: # find all the orientation systems if 'anisotropy_tilt_correction' not in rec.keys(): rec['anisotropy_tilt_correction'] = '-1' if rec['anisotropy_tilt_correction'] not in orlist: orlist.append(rec['anisotropy_tilt_correction']) if CS not in orlist: if len(orlist) > 0: CS = orlist[0] else: CS = '-1' if CS == '-1': crd = 's' if CS == '0': crd = 'g' if CS == '100': crd = 't' if verbose: print("desired coordinate system not available, using available: ", crd) if isite == 1: sitelist = [] for rec in data: if rec['er_site_name'] not in sitelist: sitelist.append(rec['er_site_name']) sitelist.sort() plt = len(sitelist) else: plt = 1 k = 0 while k < plt: site = "" sdata, Ss = [], [] # list of S format data Locs, Sites, Samples, Specimens, Cits = [], [], [], [], [] if isite == 0: sdata = data else: site = sitelist[k] for rec in data: if rec['er_site_name'] == site: sdata.append(rec) anitypes = [] csrecs = pmag.get_dictitem(sdata, 'anisotropy_tilt_correction', CS, 'T') for rec in csrecs: if rec['anisotropy_type'] not in anitypes: anitypes.append(rec['anisotropy_type']) if rec['er_location_name'] not in Locs: Locs.append(rec['er_location_name']) if rec['er_site_name'] not in Sites: Sites.append(rec['er_site_name']) if rec['er_sample_name'] not in Samples: Samples.append(rec['er_sample_name']) if rec['er_specimen_name'] not in Specimens: Specimens.append(rec['er_specimen_name']) if rec['er_citation_names'] not in Cits: Cits.append(rec['er_citation_names']) s = [] s.append(float(rec["anisotropy_s1"])) s.append(float(rec["anisotropy_s2"])) s.append(float(rec["anisotropy_s3"])) s.append(float(rec["anisotropy_s4"])) s.append(float(rec["anisotropy_s5"])) s.append(float(rec["anisotropy_s6"])) if s[0] <= 1.0: Ss.append(s) # protect against crap #tau,Vdirs=pmag.doseigs(s) ResRec = {} ResRec['er_location_names'] = rec['er_location_name'] ResRec['er_citation_names'] = rec['er_citation_names'] ResRec['er_site_names'] = rec['er_site_name'] ResRec['er_sample_names'] = rec['er_sample_name'] ResRec['er_specimen_names'] = rec['er_specimen_name'] ResRec['rmag_result_name'] = rec['er_specimen_name'] + ":" + rec[ 'anisotropy_type'] ResRec["er_analyst_mail_names"] = user ResRec["tilt_correction"] = CS ResRec["anisotropy_type"] = rec['anisotropy_type'] if "anisotropy_n" not in rec.keys(): rec["anisotropy_n"] = "6" if "anisotropy_sigma" not in rec.keys(): rec["anisotropy_sigma"] = "0" fpars = pmag.dohext( int(rec["anisotropy_n"]) - 6, float(rec["anisotropy_sigma"]), s) ResRec["anisotropy_v1_dec"] = '%7.1f' % (fpars['v1_dec']) ResRec["anisotropy_v2_dec"] = '%7.1f' % (fpars['v2_dec']) ResRec["anisotropy_v3_dec"] = '%7.1f' % (fpars['v3_dec']) ResRec["anisotropy_v1_inc"] = '%7.1f' % (fpars['v1_inc']) ResRec["anisotropy_v2_inc"] = '%7.1f' % (fpars['v2_inc']) ResRec["anisotropy_v3_inc"] = '%7.1f' % (fpars['v3_inc']) ResRec["anisotropy_t1"] = '%10.8f' % (fpars['t1']) ResRec["anisotropy_t2"] = '%10.8f' % (fpars['t2']) ResRec["anisotropy_t3"] = '%10.8f' % (fpars['t3']) ResRec["anisotropy_ftest"] = '%10.3f' % (fpars['F']) ResRec["anisotropy_ftest12"] = '%10.3f' % (fpars['F12']) ResRec["anisotropy_ftest23"] = '%10.3f' % (fpars['F23']) ResRec["result_description"] = 'F_crit: ' + fpars[ 'F_crit'] + '; F12,F23_crit: ' + fpars['F12_crit'] ResRec['anisotropy_type'] = pmag.makelist(anitypes) ResRecs.append(ResRec) if len(Ss) > 1: if pmagplotlib.isServer: title = "LO:_" + ResRec[ 'er_location_names'] + '_SI:_' + site + '_SA:__SP:__CO:_' + crd else: title = ResRec['er_location_names'] if site: title += "_{}".format(site) title += '_{}'.format(crd) ResRec['er_location_names'] = pmag.makelist(Locs) bpars, hpars = pmagplotlib.plotANIS(ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp, vec, Dir, nb) if len(PDir) > 0: pmagplotlib.plotC(ANIS['data'], PDir, 90., 'g') pmagplotlib.plotC(ANIS['conf'], PDir, 90., 'g') if verbose and plots == 0: pmagplotlib.drawFIGS(ANIS) ResRec['er_location_names'] = pmag.makelist(Locs) if plots == 1: save(ANIS, fmt, title) ResRec = {} ResRec['er_citation_names'] = pmag.makelist(Cits) ResRec['er_location_names'] = pmag.makelist(Locs) ResRec['er_site_names'] = pmag.makelist(Sites) ResRec['er_sample_names'] = pmag.makelist(Samples) ResRec['er_specimen_names'] = pmag.makelist(Specimens) ResRec['rmag_result_name'] = pmag.makelist( Sites) + ":" + pmag.makelist(anitypes) ResRec['anisotropy_type'] = pmag.makelist(anitypes) ResRec["er_analyst_mail_names"] = user ResRec["tilt_correction"] = CS if isite == "0": ResRec[ 'result_description'] = "Study average using coordinate system: " + CS if isite == "1": ResRec[ 'result_description'] = "Site average using coordinate system: " + CS if hpars != [] and ihext == 1: HextRec = {} for key in ResRec.keys(): HextRec[key] = ResRec[key] # copy over stuff HextRec["anisotropy_v1_dec"] = '%7.1f' % (hpars["v1_dec"]) HextRec["anisotropy_v2_dec"] = '%7.1f' % (hpars["v2_dec"]) HextRec["anisotropy_v3_dec"] = '%7.1f' % (hpars["v3_dec"]) HextRec["anisotropy_v1_inc"] = '%7.1f' % (hpars["v1_inc"]) HextRec["anisotropy_v2_inc"] = '%7.1f' % (hpars["v2_inc"]) HextRec["anisotropy_v3_inc"] = '%7.1f' % (hpars["v3_inc"]) HextRec["anisotropy_t1"] = '%10.8f' % (hpars["t1"]) HextRec["anisotropy_t2"] = '%10.8f' % (hpars["t2"]) HextRec["anisotropy_t3"] = '%10.8f' % (hpars["t3"]) HextRec["anisotropy_hext_F"] = '%7.1f ' % (hpars["F"]) HextRec["anisotropy_hext_F12"] = '%7.1f ' % (hpars["F12"]) HextRec["anisotropy_hext_F23"] = '%7.1f ' % (hpars["F23"]) HextRec["anisotropy_v1_eta_semi_angle"] = '%7.1f ' % ( hpars["e12"]) HextRec["anisotropy_v1_eta_dec"] = '%7.1f ' % (hpars["v2_dec"]) HextRec["anisotropy_v1_eta_inc"] = '%7.1f ' % (hpars["v2_inc"]) HextRec["anisotropy_v1_zeta_semi_angle"] = '%7.1f ' % ( hpars["e13"]) HextRec["anisotropy_v1_zeta_dec"] = '%7.1f ' % ( hpars["v3_dec"]) HextRec["anisotropy_v1_zeta_inc"] = '%7.1f ' % ( hpars["v3_inc"]) HextRec["anisotropy_v2_eta_semi_angle"] = '%7.1f ' % ( hpars["e12"]) HextRec["anisotropy_v2_eta_dec"] = '%7.1f ' % (hpars["v1_dec"]) HextRec["anisotropy_v2_eta_inc"] = '%7.1f ' % (hpars["v1_inc"]) HextRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f ' % ( hpars["e23"]) HextRec["anisotropy_v2_zeta_dec"] = '%7.1f ' % ( hpars["v3_dec"]) HextRec["anisotropy_v2_zeta_inc"] = '%7.1f ' % ( hpars["v3_inc"]) HextRec["anisotropy_v3_eta_semi_angle"] = '%7.1f ' % ( hpars["e12"]) HextRec["anisotropy_v3_eta_dec"] = '%7.1f ' % (hpars["v1_dec"]) HextRec["anisotropy_v3_eta_inc"] = '%7.1f ' % (hpars["v1_inc"]) HextRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f ' % ( hpars["e23"]) HextRec["anisotropy_v3_zeta_dec"] = '%7.1f ' % ( hpars["v2_dec"]) HextRec["anisotropy_v3_zeta_inc"] = '%7.1f ' % ( hpars["v2_inc"]) HextRec["magic_method_codes"] = 'LP-AN:AE-H' if verbose: print("Hext Statistics: ") print( " tau_i, V_i_D, V_i_I, V_i_zeta, V_i_zeta_D, V_i_zeta_I, V_i_eta, V_i_eta_D, V_i_eta_I" ) print(HextRec["anisotropy_t1"], HextRec["anisotropy_v1_dec"], HextRec["anisotropy_v1_inc"], HextRec["anisotropy_v1_eta_semi_angle"], HextRec["anisotropy_v1_eta_dec"], HextRec["anisotropy_v1_eta_inc"], HextRec["anisotropy_v1_zeta_semi_angle"], HextRec["anisotropy_v1_zeta_dec"], HextRec["anisotropy_v1_zeta_inc"]) print(HextRec["anisotropy_t2"], HextRec["anisotropy_v2_dec"], HextRec["anisotropy_v2_inc"], HextRec["anisotropy_v2_eta_semi_angle"], HextRec["anisotropy_v2_eta_dec"], HextRec["anisotropy_v2_eta_inc"], HextRec["anisotropy_v2_zeta_semi_angle"], HextRec["anisotropy_v2_zeta_dec"], HextRec["anisotropy_v2_zeta_inc"]) print(HextRec["anisotropy_t3"], HextRec["anisotropy_v3_dec"], HextRec["anisotropy_v3_inc"], HextRec["anisotropy_v3_eta_semi_angle"], HextRec["anisotropy_v3_eta_dec"], HextRec["anisotropy_v3_eta_inc"], HextRec["anisotropy_v3_zeta_semi_angle"], HextRec["anisotropy_v3_zeta_dec"], HextRec["anisotropy_v3_zeta_inc"]) HextRec['magic_software_packages'] = version_num ResRecs.append(HextRec) if bpars != []: BootRec = {} for key in ResRec.keys(): BootRec[key] = ResRec[key] # copy over stuff BootRec["anisotropy_v1_dec"] = '%7.1f' % (bpars["v1_dec"]) BootRec["anisotropy_v2_dec"] = '%7.1f' % (bpars["v2_dec"]) BootRec["anisotropy_v3_dec"] = '%7.1f' % (bpars["v3_dec"]) BootRec["anisotropy_v1_inc"] = '%7.1f' % (bpars["v1_inc"]) BootRec["anisotropy_v2_inc"] = '%7.1f' % (bpars["v2_inc"]) BootRec["anisotropy_v3_inc"] = '%7.1f' % (bpars["v3_inc"]) BootRec["anisotropy_t1"] = '%10.8f' % (bpars["t1"]) BootRec["anisotropy_t2"] = '%10.8f' % (bpars["t2"]) BootRec["anisotropy_t3"] = '%10.8f' % (bpars["t3"]) BootRec["anisotropy_v1_eta_inc"] = '%7.1f ' % ( bpars["v1_eta_inc"]) BootRec["anisotropy_v1_eta_dec"] = '%7.1f ' % ( bpars["v1_eta_dec"]) BootRec["anisotropy_v1_eta_semi_angle"] = '%7.1f ' % ( bpars["v1_eta"]) BootRec["anisotropy_v1_zeta_inc"] = '%7.1f ' % ( bpars["v1_zeta_inc"]) BootRec["anisotropy_v1_zeta_dec"] = '%7.1f ' % ( bpars["v1_zeta_dec"]) BootRec["anisotropy_v1_zeta_semi_angle"] = '%7.1f ' % ( bpars["v1_zeta"]) BootRec["anisotropy_v2_eta_inc"] = '%7.1f ' % ( bpars["v2_eta_inc"]) BootRec["anisotropy_v2_eta_dec"] = '%7.1f ' % ( bpars["v2_eta_dec"]) BootRec["anisotropy_v2_eta_semi_angle"] = '%7.1f ' % ( bpars["v2_eta"]) BootRec["anisotropy_v2_zeta_inc"] = '%7.1f ' % ( bpars["v2_zeta_inc"]) BootRec["anisotropy_v2_zeta_dec"] = '%7.1f ' % ( bpars["v2_zeta_dec"]) BootRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f ' % ( bpars["v2_zeta"]) BootRec["anisotropy_v3_eta_inc"] = '%7.1f ' % ( bpars["v3_eta_inc"]) BootRec["anisotropy_v3_eta_dec"] = '%7.1f ' % ( bpars["v3_eta_dec"]) BootRec["anisotropy_v3_eta_semi_angle"] = '%7.1f ' % ( bpars["v3_eta"]) BootRec["anisotropy_v3_zeta_inc"] = '%7.1f ' % ( bpars["v3_zeta_inc"]) BootRec["anisotropy_v3_zeta_dec"] = '%7.1f ' % ( bpars["v3_zeta_dec"]) BootRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f ' % ( bpars["v3_zeta"]) BootRec["anisotropy_hext_F"] = '' BootRec["anisotropy_hext_F12"] = '' BootRec["anisotropy_hext_F23"] = '' BootRec[ "magic_method_codes"] = 'LP-AN:AE-H:AE-BS' # regular bootstrap if ipar == 1: BootRec[ "magic_method_codes"] = 'LP-AN:AE-H:AE-BS-P' # parametric bootstrap if verbose: print("Boostrap Statistics: ") print( " tau_i, V_i_D, V_i_I, V_i_zeta, V_i_zeta_D, V_i_zeta_I, V_i_eta, V_i_eta_D, V_i_eta_I" ) print(BootRec["anisotropy_t1"], BootRec["anisotropy_v1_dec"], BootRec["anisotropy_v1_inc"], BootRec["anisotropy_v1_eta_semi_angle"], BootRec["anisotropy_v1_eta_dec"], BootRec["anisotropy_v1_eta_inc"], BootRec["anisotropy_v1_zeta_semi_angle"], BootRec["anisotropy_v1_zeta_dec"], BootRec["anisotropy_v1_zeta_inc"]) print(BootRec["anisotropy_t2"], BootRec["anisotropy_v2_dec"], BootRec["anisotropy_v2_inc"], BootRec["anisotropy_v2_eta_semi_angle"], BootRec["anisotropy_v2_eta_dec"], BootRec["anisotropy_v2_eta_inc"], BootRec["anisotropy_v2_zeta_semi_angle"], BootRec["anisotropy_v2_zeta_dec"], BootRec["anisotropy_v2_zeta_inc"]) print(BootRec["anisotropy_t3"], BootRec["anisotropy_v3_dec"], BootRec["anisotropy_v3_inc"], BootRec["anisotropy_v3_eta_semi_angle"], BootRec["anisotropy_v3_eta_dec"], BootRec["anisotropy_v3_eta_inc"], BootRec["anisotropy_v3_zeta_semi_angle"], BootRec["anisotropy_v3_zeta_dec"], BootRec["anisotropy_v3_zeta_inc"]) BootRec['magic_software_packages'] = version_num ResRecs.append(BootRec) k += 1 goon = 1 while goon == 1 and iplot == 1 and verbose: if iboot == 1: print("compare with [d]irection ") print( " plot [g]reat circle, change [c]oord. system, change [e]llipse calculation, s[a]ve plots, [q]uit " ) if isite == 1: print(" [p]revious, [s]ite, [q]uit, <return> for next ") ans = input("") if ans == "q": sys.exit() if ans == "e": iboot, ipar, ihext, ivec = 1, 0, 0, 0 e = input("Do Hext Statistics 1/[0]: ") if e == "1": ihext = 1 e = input("Suppress bootstrap 1/[0]: ") if e == "1": iboot = 0 if iboot == 1: e = input("Parametric bootstrap 1/[0]: ") if e == "1": ipar = 1 e = input("Plot bootstrap eigenvectors: 1/[0]: ") if e == "1": ivec = 1 if iplot == 1: if inittcdf == 0: ANIS['tcdf'] = 3 pmagplotlib.plot_init(ANIS['tcdf'], 5, 5) inittcdf = 1 bpars, hpars = pmagplotlib.plotANIS( ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp, vec, Dir, nb) if verbose and plots == 0: pmagplotlib.drawFIGS(ANIS) if ans == "c": print("Current Coordinate system is: ") if CS == '-1': print(" Specimen") if CS == '0': print(" Geographic") if CS == '100': print(" Tilt corrected") key = input( " Enter desired coordinate system: [s]pecimen, [g]eographic, [t]ilt corrected " ) if key == 's': CS = '-1' if key == 'g': CS = '0' if key == 't': CS = '100' if CS not in orlist: if len(orlist) > 0: CS = orlist[0] else: CS = '-1' if CS == '-1': crd = 's' if CS == '0': crd = 'g' if CS == '100': crd = 't' print( "desired coordinate system not available, using available: ", crd) k -= 1 goon = 0 if ans == "": if isite == 1: goon = 0 else: print("Good bye ") sys.exit() if ans == 'd': if initcdf == 0: initcdf = 1 ANIS['vxcdf'], ANIS['vycdf'], ANIS['vzcdf'] = 4, 5, 6 pmagplotlib.plot_init(ANIS['vxcdf'], 5, 5) pmagplotlib.plot_init(ANIS['vycdf'], 5, 5) pmagplotlib.plot_init(ANIS['vzcdf'], 5, 5) Dir, comp = [], 1 print(""" Input: Vi D I to compare eigenvector Vi with direction D/I where Vi=1: principal Vi=2: major Vi=3: minor D= declination of comparison direction I= inclination of comparison direction""") con = 1 while con == 1: try: vdi = input("Vi D I: ").split() vec = int(vdi[0]) - 1 Dir = [float(vdi[1]), float(vdi[2])] con = 0 except IndexError: print(" Incorrect entry, try again ") bpars, hpars = pmagplotlib.plotANIS( ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp, vec, Dir, nb) Dir, comp = [], 0 if ans == 'g': con, cnt = 1, 0 while con == 1: try: print( " Input: input pole to great circle ( D I) to plot a great circle: " ) di = input(" D I: ").split() PDir.append(float(di[0])) PDir.append(float(di[1])) con = 0 except: cnt += 1 if cnt < 10: print( " enter the dec and inc of the pole on one line " ) else: print( "ummm - you are doing something wrong - i give up" ) sys.exit() pmagplotlib.plotC(ANIS['data'], PDir, 90., 'g') pmagplotlib.plotC(ANIS['conf'], PDir, 90., 'g') if verbose and plots == 0: pmagplotlib.drawFIGS(ANIS) if ans == "p": k -= 2 goon = 0 if ans == "q": k = plt goon = 0 if ans == "s": keepon = 1 site = input(" print site or part of site desired: ") while keepon == 1: try: k = sitelist.index(site) keepon = 0 except: tmplist = [] for qq in range(len(sitelist)): if site in sitelist[qq]: tmplist.append(sitelist[qq]) print(site, " not found, but this was: ") print(tmplist) site = input('Select one or try again\n ') k = sitelist.index(site) goon, ans = 0, "" if ans == "a": locs = pmag.makelist(Locs) if pmagplotlib.isServer: # use server plot naming convention title = "LO:_" + locs + '_SI:__' + '_SA:__SP:__CO:_' + crd else: # use more readable plot naming convention title = "{}_{}".format(locs, crd) save(ANIS, fmt, title) goon = 0 else: if verbose: print('skipping plot - not enough data points') k += 1 # put rmag_results stuff here if len(ResRecs) > 0: ResOut, keylist = pmag.fillkeys(ResRecs) pmag.magic_write(outfile, ResOut, 'rmag_results') if verbose: print(" Good bye ")
def main(): """ NAME aniso_magic.py DESCRIPTION plots anisotropy data with either bootstrap or hext ellipses SYNTAX aniso_magic.py [-h] [command line options] OPTIONS -h plots help message and quits -usr USER: set the user name -f AFILE, specify specimens.txt formatted file for input -fsa SAMPFILE, specify samples.txt file (required to plot by site) -fsi SITEFILE, specify site file (required to include location information) -x Hext [1963] and bootstrap -B DON'T do bootstrap, do Hext -par Tauxe [1998] parametric bootstrap -v plot bootstrap eigenvectors instead of ellipses -sit plot by site instead of entire file -crd [s,g,t] coordinate system, default is specimen (g=geographic, t=tilt corrected) -P don't make any plots - just fill in the specimens, samples, sites tables -sav don't make the tables - just save all the plots -fmt [svg, jpg, eps] format for output images, pdf default -gtc DEC INC dec,inc of pole to great circle [down(up) in green (cyan) -d Vi DEC INC; Vi (1,2,3) to compare to direction DEC INC -nb N; specifies the number of bootstraps - default is 1000 DEFAULTS AFILE: specimens.txt plot bootstrap ellipses of Constable & Tauxe [1987] NOTES minor axis: circles major axis: triangles principal axis: squares directions are plotted on the lower hemisphere for bootstrapped eigenvector components: Xs: blue, Ys: red, Zs: black """ args = sys.argv if "-h" in args: print(main.__doc__) sys.exit() #version_num = pmag.get_version() verbose = pmagplotlib.verbose dir_path = pmag.get_named_arg_from_sys("-WD", ".") num_bootstraps = pmag.get_named_arg_from_sys("-nb", 1000) #user = pmag.get_named_arg_from_sys("-usr", "") ipar = pmag.get_flag_arg_from_sys("-par", true=1, false=0) ihext = pmag.get_flag_arg_from_sys("-x", true=1, false=0) ivec = pmag.get_flag_arg_from_sys("-v", true=1, false=0) iplot = pmag.get_flag_arg_from_sys("-P", true=0, false=1) isite = pmag.get_flag_arg_from_sys("-sit", true=1, false=0) iboot, vec = 1, 0 infile = pmag.get_named_arg_from_sys('-f', 'specimens.txt') samp_file = pmag.get_named_arg_from_sys('-fsa', 'samples.txt') site_file = pmag.get_named_arg_from_sys('-fsi', 'sites.txt') #outfile = pmag.get_named_arg_from_sys("-F", "rmag_results.txt") fmt = pmag.get_named_arg_from_sys("-fmt", "pdf") hpars, bpars = [], [] CS, crd = -1, 's' ResRecs = [] comp, Dir, PDir = 0, [], [] if '-B' in args: iboot, ihext = 0, 1 if '-crd' in sys.argv: ind = sys.argv.index('-crd') crd = sys.argv[ind + 1] if crd == 'g': CS = 0 if crd == 't': CS = 100 if '-sav' in args: plots = 1 verbose = 0 else: plots = 0 if '-gtc' in args: ind = args.index('-gtc') d, i = float(args[ind + 1]), float(args[ind + 2]) PDir.append(d) PDir.append(i) if '-d' in args: comp = 1 ind = args.index('-d') vec = int(args[ind + 1]) - 1 Dir = [float(args[ind + 2]), float(args[ind + 3])] # # set up plots # ANIS = {} initcdf, inittcdf = 0, 0 ANIS['data'], ANIS['conf'] = 1, 2 if iboot == 1: ANIS['tcdf'] = 3 if iplot == 1: inittcdf = 1 pmagplotlib.plot_init(ANIS['tcdf'], 5, 5) if comp == 1 and iplot == 1: initcdf = 1 ANIS['vxcdf'], ANIS['vycdf'], ANIS['vzcdf'] = 4, 5, 6 pmagplotlib.plot_init(ANIS['vxcdf'], 5, 5) pmagplotlib.plot_init(ANIS['vycdf'], 5, 5) pmagplotlib.plot_init(ANIS['vzcdf'], 5, 5) if iplot == 1: pmagplotlib.plot_init(ANIS['conf'], 5, 5) pmagplotlib.plot_init(ANIS['data'], 5, 5) # read in the data fnames = {'specimens': infile, 'samples': samp_file, 'sites': site_file} con = nb.Contribution(dir_path, read_tables=['specimens', 'samples', 'sites'], custom_filenames=fnames) con.propagate_location_to_specimens() spec_container = con.tables['specimens'] # get only anisotropy records spec_df = spec_container.get_records_for_code('AE-', strict_match=False) if 'aniso_tilt_correction' not in spec_df.columns: spec_df['aniso_tilt_correction'] = None orlist = spec_df['aniso_tilt_correction'].dropna().unique() if CS not in orlist: if len(orlist) > 0: CS = orlist[0] else: CS = -1 if CS == -1: crd = 's' if CS == 0: crd = 'g' if CS == 100: crd = 't' if verbose: print("desired coordinate system not available, using available: ", crd) if isite == 1: sitelist = spec_df['site'].unique() sitelist.sort() plt = len(sitelist) else: plt = 1 k = 0 while k < plt: site = "" loc_name = "" sdata, Ss = [], [] # list of S format data if isite == 0: sdata = spec_df if 'location' in sdata.columns: loc_name = ':'.join(sdata['location'].unique()) else: site = sitelist[k] sdata = spec_df[spec_df['site'] == site] if 'location' in sdata.columns: loc_name = sdata['location'][0] csrecs = sdata[sdata['aniso_tilt_correction'] == CS] #anitypes = csrecs['aniso_type'].unique() for name in ['citations', 'location', 'site', 'sample']: if name not in csrecs: csrecs[name] = "" Locs = csrecs['location'].unique() #Sites = csrecs['site'].unique() #Samples = csrecs['sample'].unique() #Specimens = csrecs['specimen'].unique() #Cits = csrecs['citations'].unique() for ind, rec in csrecs.iterrows(): s = [float(i.strip()) for i in rec['aniso_s'].split(':')] if s[0] <= 1.0: Ss.append(s) # protect against crap # tau,Vdirs=pmag.doseigs(s) # do we need fpars somewhere??? # fpars = pmag.dohext(int(rec["aniso_s_n_measurements"]) -6, float(rec["aniso_s_sigma"]), s) # fill in ResRecs (ignoring this for now, grab it from aniso_magic if needed) if len(Ss) > 1: if pmagplotlib.isServer: # use server plot naming convention title = "LO:_" + loc_name + '_SI:_' + site + '_SA:__SP:__CO:_' + crd else: # use more readable plot naming convention title = "{}_{}_{}".format(loc_name, site, crd) bpars, hpars = pmagplotlib.plotANIS(ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp, vec, Dir, num_bootstraps) if len(PDir) > 0: pmagplotlib.plotC(ANIS['data'], PDir, 90., 'g') pmagplotlib.plotC(ANIS['conf'], PDir, 90., 'g') if verbose and plots == 0: pmagplotlib.drawFIGS(ANIS) if plots == 1: save(ANIS, fmt, title) if hpars != [] and ihext == 1: HextRec = {} #for key in ResRec.keys():HextRec[key]=ResRec[key] # copy over stuff HextRec["anisotropy_v1_dec"] = '%7.1f' % (hpars["v1_dec"]) HextRec["anisotropy_v2_dec"] = '%7.1f' % (hpars["v2_dec"]) HextRec["anisotropy_v3_dec"] = '%7.1f' % (hpars["v3_dec"]) HextRec["anisotropy_v1_inc"] = '%7.1f' % (hpars["v1_inc"]) HextRec["anisotropy_v2_inc"] = '%7.1f' % (hpars["v2_inc"]) HextRec["anisotropy_v3_inc"] = '%7.1f' % (hpars["v3_inc"]) HextRec["anisotropy_t1"] = '%10.8f' % (hpars["t1"]) HextRec["anisotropy_t2"] = '%10.8f' % (hpars["t2"]) HextRec["anisotropy_t3"] = '%10.8f' % (hpars["t3"]) HextRec["anisotropy_hext_F"] = '%7.1f ' % (hpars["F"]) HextRec["anisotropy_hext_F12"] = '%7.1f ' % (hpars["F12"]) HextRec["anisotropy_hext_F23"] = '%7.1f ' % (hpars["F23"]) HextRec["anisotropy_v1_eta_semi_angle"] = '%7.1f ' % ( hpars["e12"]) HextRec["anisotropy_v1_eta_dec"] = '%7.1f ' % (hpars["v2_dec"]) HextRec["anisotropy_v1_eta_inc"] = '%7.1f ' % (hpars["v2_inc"]) HextRec["anisotropy_v1_zeta_semi_angle"] = '%7.1f ' % ( hpars["e13"]) HextRec["anisotropy_v1_zeta_dec"] = '%7.1f ' % ( hpars["v3_dec"]) HextRec["anisotropy_v1_zeta_inc"] = '%7.1f ' % ( hpars["v3_inc"]) HextRec["anisotropy_v2_eta_semi_angle"] = '%7.1f ' % ( hpars["e12"]) HextRec["anisotropy_v2_eta_dec"] = '%7.1f ' % (hpars["v1_dec"]) HextRec["anisotropy_v2_eta_inc"] = '%7.1f ' % (hpars["v1_inc"]) HextRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f ' % ( hpars["e23"]) HextRec["anisotropy_v2_zeta_dec"] = '%7.1f ' % ( hpars["v3_dec"]) HextRec["anisotropy_v2_zeta_inc"] = '%7.1f ' % ( hpars["v3_inc"]) HextRec["anisotropy_v3_eta_semi_angle"] = '%7.1f ' % ( hpars["e12"]) HextRec["anisotropy_v3_eta_dec"] = '%7.1f ' % (hpars["v1_dec"]) HextRec["anisotropy_v3_eta_inc"] = '%7.1f ' % (hpars["v1_inc"]) HextRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f ' % ( hpars["e23"]) HextRec["anisotropy_v3_zeta_dec"] = '%7.1f ' % ( hpars["v2_dec"]) HextRec["anisotropy_v3_zeta_inc"] = '%7.1f ' % ( hpars["v2_inc"]) HextRec["magic_method_codes"] = 'LP-AN:AE-H' if verbose: print("Hext Statistics: ") print( " tau_i, V_i_D, V_i_I, V_i_zeta, V_i_zeta_D, V_i_zeta_I, V_i_eta, V_i_eta_D, V_i_eta_I" ) print(HextRec["anisotropy_t1"], HextRec["anisotropy_v1_dec"], end=' ') print(HextRec["anisotropy_v1_inc"], HextRec["anisotropy_v1_eta_semi_angle"], end=' ') print(HextRec["anisotropy_v1_eta_dec"], HextRec["anisotropy_v1_eta_inc"], end=' ') print(HextRec["anisotropy_v1_zeta_semi_angle"], HextRec["anisotropy_v1_zeta_dec"], end=' ') print(HextRec["anisotropy_v1_zeta_inc"]) # print(HextRec["anisotropy_t2"], HextRec["anisotropy_v2_dec"], end=' ') print(HextRec["anisotropy_v2_inc"], HextRec["anisotropy_v2_eta_semi_angle"], end=' ') print(HextRec["anisotropy_v2_eta_dec"], HextRec["anisotropy_v2_eta_inc"], end=' ') print(HextRec["anisotropy_v2_zeta_semi_angle"], HextRec["anisotropy_v2_zeta_dec"], end=' ') print(HextRec["anisotropy_v2_zeta_inc"]) # print(HextRec["anisotropy_t3"], HextRec["anisotropy_v3_dec"], end=' ') print(HextRec["anisotropy_v3_inc"], HextRec["anisotropy_v3_eta_semi_angle"], end=' ') print(HextRec["anisotropy_v3_eta_dec"], HextRec["anisotropy_v3_eta_inc"], end=' ') print(HextRec["anisotropy_v3_zeta_semi_angle"], HextRec["anisotropy_v3_zeta_dec"], end=' ') print(HextRec["anisotropy_v3_zeta_inc"]) #HextRec['magic_software_packages']=version_num #ResRecs.append(HextRec) if bpars != []: BootRec = {} #for key in ResRec.keys():BootRec[key]=ResRec[key] # copy over stuff BootRec["anisotropy_v1_dec"] = '%7.1f' % (bpars["v1_dec"]) BootRec["anisotropy_v2_dec"] = '%7.1f' % (bpars["v2_dec"]) BootRec["anisotropy_v3_dec"] = '%7.1f' % (bpars["v3_dec"]) BootRec["anisotropy_v1_inc"] = '%7.1f' % (bpars["v1_inc"]) BootRec["anisotropy_v2_inc"] = '%7.1f' % (bpars["v2_inc"]) BootRec["anisotropy_v3_inc"] = '%7.1f' % (bpars["v3_inc"]) BootRec["anisotropy_t1"] = '%10.8f' % (bpars["t1"]) BootRec["anisotropy_t2"] = '%10.8f' % (bpars["t2"]) BootRec["anisotropy_t3"] = '%10.8f' % (bpars["t3"]) BootRec["anisotropy_v1_eta_inc"] = '%7.1f ' % ( bpars["v1_eta_inc"]) BootRec["anisotropy_v1_eta_dec"] = '%7.1f ' % ( bpars["v1_eta_dec"]) BootRec["anisotropy_v1_eta_semi_angle"] = '%7.1f ' % ( bpars["v1_eta"]) BootRec["anisotropy_v1_zeta_inc"] = '%7.1f ' % ( bpars["v1_zeta_inc"]) BootRec["anisotropy_v1_zeta_dec"] = '%7.1f ' % ( bpars["v1_zeta_dec"]) BootRec["anisotropy_v1_zeta_semi_angle"] = '%7.1f ' % ( bpars["v1_zeta"]) BootRec["anisotropy_v2_eta_inc"] = '%7.1f ' % ( bpars["v2_eta_inc"]) BootRec["anisotropy_v2_eta_dec"] = '%7.1f ' % ( bpars["v2_eta_dec"]) BootRec["anisotropy_v2_eta_semi_angle"] = '%7.1f ' % ( bpars["v2_eta"]) BootRec["anisotropy_v2_zeta_inc"] = '%7.1f ' % ( bpars["v2_zeta_inc"]) BootRec["anisotropy_v2_zeta_dec"] = '%7.1f ' % ( bpars["v2_zeta_dec"]) BootRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f ' % ( bpars["v2_zeta"]) BootRec["anisotropy_v3_eta_inc"] = '%7.1f ' % ( bpars["v3_eta_inc"]) BootRec["anisotropy_v3_eta_dec"] = '%7.1f ' % ( bpars["v3_eta_dec"]) BootRec["anisotropy_v3_eta_semi_angle"] = '%7.1f ' % ( bpars["v3_eta"]) BootRec["anisotropy_v3_zeta_inc"] = '%7.1f ' % ( bpars["v3_zeta_inc"]) BootRec["anisotropy_v3_zeta_dec"] = '%7.1f ' % ( bpars["v3_zeta_dec"]) BootRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f ' % ( bpars["v3_zeta"]) BootRec["anisotropy_hext_F"] = '' BootRec["anisotropy_hext_F12"] = '' BootRec["anisotropy_hext_F23"] = '' BootRec[ "magic_method_codes"] = 'LP-AN:AE-H:AE-BS' # regular bootstrap if ipar == 1: BootRec[ "magic_method_codes"] = 'LP-AN:AE-H:AE-BS-P' # parametric bootstrap if verbose: print("Boostrap Statistics: ") print( " tau_i, V_i_D, V_i_I, V_i_zeta, V_i_zeta_D, V_i_zeta_I, V_i_eta, V_i_eta_D, V_i_eta_I" ) print(BootRec["anisotropy_t1"], BootRec["anisotropy_v1_dec"], end=' ') print(BootRec["anisotropy_v1_inc"], BootRec["anisotropy_v1_eta_semi_angle"], end=' ') print(BootRec["anisotropy_v1_eta_dec"], BootRec["anisotropy_v1_eta_inc"], end=' ') print(BootRec["anisotropy_v1_zeta_semi_angle"], BootRec["anisotropy_v1_zeta_dec"], end=' ') print(BootRec["anisotropy_v1_zeta_inc"]) # print(BootRec["anisotropy_t2"], BootRec["anisotropy_v2_dec"], BootRec["anisotropy_v2_inc"], end=' ') print(BootRec["anisotropy_v2_eta_semi_angle"], BootRec["anisotropy_v2_eta_dec"], end=' ') print(BootRec["anisotropy_v2_eta_inc"], BootRec["anisotropy_v2_zeta_semi_angle"], end=' ') print(BootRec["anisotropy_v2_zeta_dec"], BootRec["anisotropy_v2_zeta_inc"]) # print(BootRec["anisotropy_t3"], BootRec["anisotropy_v3_dec"], BootRec["anisotropy_v3_inc"], end=' ') print(BootRec["anisotropy_v3_eta_semi_angle"], BootRec["anisotropy_v3_eta_dec"], end=' ') print(BootRec["anisotropy_v3_eta_inc"], BootRec["anisotropy_v3_zeta_semi_angle"], end=' ') print(BootRec["anisotropy_v3_zeta_dec"], BootRec["anisotropy_v3_zeta_inc"]) #BootRec['magic_software_packages'] = version_num ResRecs.append(BootRec) k += 1 goon = 1 while goon == 1 and iplot == 1 and verbose: if iboot == 1: print("compare with [d]irection ") print( " plot [g]reat circle, change [c]oord. system, change [e]llipse calculation, s[a]ve plots, [q]uit " ) if isite == 1: print(" [p]revious, [s]ite, [q]uit, <return> for next ") ans = input("") if ans == "q": sys.exit() if ans == "e": iboot, ipar, ihext, ivec = 1, 0, 0, 0 e = input("Do Hext Statistics 1/[0]: ") if e == "1": ihext = 1 e = input("Suppress bootstrap 1/[0]: ") if e == "1": iboot = 0 if iboot == 1: e = input("Parametric bootstrap 1/[0]: ") if e == "1": ipar = 1 e = input("Plot bootstrap eigenvectors: 1/[0]: ") if e == "1": ivec = 1 if iplot == 1: if inittcdf == 0: ANIS['tcdf'] = 3 pmagplotlib.plot_init(ANIS['tcdf'], 5, 5) inittcdf = 1 bpars, hpars = pmagplotlib.plotANIS( ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp, vec, Dir, num_bootstraps) if verbose and plots == 0: pmagplotlib.drawFIGS(ANIS) if ans == "c": print("Current Coordinate system is: ") if CS == -1: print(" Specimen") if CS == 0: print(" Geographic") if CS == 100: print(" Tilt corrected") key = input( " Enter desired coordinate system: [s]pecimen, [g]eographic, [t]ilt corrected " ) if key == 's': CS = -1 if key == 'g': CS = 0 if key == 't': CS = 100 if CS not in orlist: if len(orlist) > 0: CS = orlist[0] else: CS = -1 if CS == -1: crd = 's' if CS == 0: crd = 'g' if CS == 100: crd = 't' print( "desired coordinate system not available, using available: ", crd) k -= 1 goon = 0 if ans == "": if isite == 1: goon = 0 else: print("Good bye ") sys.exit() if ans == 'd': if initcdf == 0: initcdf = 1 ANIS['vxcdf'], ANIS['vycdf'], ANIS['vzcdf'] = 4, 5, 6 pmagplotlib.plot_init(ANIS['vxcdf'], 5, 5) pmagplotlib.plot_init(ANIS['vycdf'], 5, 5) pmagplotlib.plot_init(ANIS['vzcdf'], 5, 5) Dir, comp = [], 1 print(""" Input: Vi D I to compare eigenvector Vi with direction D/I where Vi=1: principal Vi=2: major Vi=3: minor D= declination of comparison direction I= inclination of comparison direction""") con = 1 while con == 1: try: vdi = input("Vi D I: ").split() vec = int(vdi[0]) - 1 Dir = [float(vdi[1]), float(vdi[2])] con = 0 except IndexError: print(" Incorrect entry, try again ") bpars, hpars = pmagplotlib.plotANIS( ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp, vec, Dir, num_bootstraps) Dir, comp = [], 0 if ans == 'g': con, cnt = 1, 0 while con == 1: try: print( " Input: input pole to great circle ( D I) to plot a great circle: " ) di = input(" D I: ").split() PDir.append(float(di[0])) PDir.append(float(di[1])) con = 0 except: cnt += 1 if cnt < 10: print( " enter the dec and inc of the pole on one line " ) else: print( "ummm - you are doing something wrong - i give up" ) sys.exit() pmagplotlib.plotC(ANIS['data'], PDir, 90., 'g') pmagplotlib.plotC(ANIS['conf'], PDir, 90., 'g') if verbose and plots == 0: pmagplotlib.drawFIGS(ANIS) if ans == "p": k -= 2 goon = 0 if ans == "q": k = plt goon = 0 if ans == "s": keepon = 1 site = input(" print site or part of site desired: ") while keepon == 1: try: k = sitelist.index(site) keepon = 0 except: tmplist = [] for qq in range(len(sitelist)): if site in sitelist[qq]: tmplist.append(sitelist[qq]) print(site, " not found, but this was: ") print(tmplist) site = input('Select one or try again\n ') k = sitelist.index(site) goon, ans = 0, "" if ans == "a": locs = pmag.makelist(Locs) site_name = "_" if isite: site_name = site if pmagplotlib.isServer: # use server plot naming convention title = "LO:_" + locs + '_SI:_' + site_name + '_SA:__SP:__CO:_' + crd else: # use more readable plot naming convention title = "{}_{}_{}".format(locs, site_name, crd) save(ANIS, fmt, title) goon = 0 else: if verbose: print('skipping plot - not enough data points') k += 1 # put rmag_results stuff here #if len(ResRecs)>0: # ResOut,keylist=pmag.fillkeys(ResRecs) # pmag.magic_write(outfile,ResOut,'rmag_results') if verbose: print(" Good bye ")
def main(): """ NAME aniso_magic.py DESCRIPTION plots anisotropy data with either bootstrap or hext ellipses SYNTAX aniso_magic.py [-h] [command line options] OPTIONS -h plots help message and quits -usr USER: set the user name -f AFILE, specify rmag_anisotropy formatted file for input -F RFILE, specify rmag_results formatted file for output -x Hext [1963] and bootstrap -B DON'T do bootstrap, do Hext -par Tauxe [1998] parametric bootstrap -v plot bootstrap eigenvectors instead of ellipses -sit plot by site instead of entire file -crd [s,g,t] coordinate system, default is specimen (g=geographic, t=tilt corrected) -P don't make any plots - just make rmag_results table -sav don't make the rmag_results table - just save all the plots -fmt [svg, jpg, eps] format for output images, pdf default -gtc DEC INC dec,inc of pole to great circle [down(up) in green (cyan) -d Vi DEC INC; Vi (1,2,3) to compare to direction DEC INC -n N; specifies the number of bootstraps - default is 1000 DEFAULTS AFILE: rmag_anisotropy.txt RFILE: rmag_results.txt plot bootstrap ellipses of Constable & Tauxe [1987] NOTES minor axis: circles major axis: triangles principal axis: squares directions are plotted on the lower hemisphere for bootstrapped eigenvector components: Xs: blue, Ys: red, Zs: black """ # dir_path = "." version_num = pmag.get_version() verbose = pmagplotlib.verbose args = sys.argv ipar, ihext, ivec, iboot, imeas, isite, iplot, vec = 0, 0, 0, 1, 1, 0, 1, 0 hpars, bpars, PDir = [], [], [] CS, crd = '-1', 's' nb = 1000 fmt = 'pdf' ResRecs = [] orlist = [] outfile, comp, Dir, gtcirc, PDir = 'rmag_results.txt', 0, [], 0, [] infile = 'rmag_anisotropy.txt' if "-h" in args: print(main.__doc__) sys.exit() if '-WD' in args: ind = args.index('-WD') dir_path = args[ind+1] if '-n' in args: ind = args.index('-n') nb = int(args[ind+1]) if '-usr' in args: ind = args.index('-usr') user = args[ind+1] else: user = "" if '-B' in args: iboot, ihext = 0, 1 if '-par' in args: ipar = 1 if '-x' in args: ihext = 1 if '-v' in args: ivec = 1 if '-sit' in args: isite = 1 if '-P' in args: iplot = 0 if '-f' in args: ind = args.index('-f') infile = args[ind+1] if '-F' in args: ind = args.index('-F') outfile = args[ind+1] if '-crd' in sys.argv: ind = sys.argv.index('-crd') crd = sys.argv[ind+1] if crd == 'g': CS = '0' if crd == 't': CS = '100' if '-fmt' in args: ind = args.index('-fmt') fmt = args[ind+1] if '-sav' in args: plots = 1 verbose = 0 else: plots = 0 if '-gtc' in args: ind = args.index('-gtc') d, i = float(args[ind+1]), float(args[ind+2]) PDir.append(d) PDir.append(i) if '-d' in args: comp = 1 ind = args.index('-d') vec = int(args[ind+1])-1 Dir = [float(args[ind+2]), float(args[ind+3])] # # set up plots # if infile[0] != '/': infile = dir_path+'/'+infile if outfile[0] != '/': outfile = dir_path+'/'+outfile ANIS = {} initcdf, inittcdf = 0, 0 ANIS['data'], ANIS['conf'] = 1, 2 if iboot == 1: ANIS['tcdf'] = 3 if iplot == 1: inittcdf = 1 pmagplotlib.plot_init(ANIS['tcdf'], 5, 5) if comp == 1 and iplot == 1: initcdf = 1 ANIS['vxcdf'], ANIS['vycdf'], ANIS['vzcdf'] = 4, 5, 6 pmagplotlib.plot_init(ANIS['vxcdf'], 5, 5) pmagplotlib.plot_init(ANIS['vycdf'], 5, 5) pmagplotlib.plot_init(ANIS['vzcdf'], 5, 5) if iplot == 1: pmagplotlib.plot_init(ANIS['conf'], 5, 5) pmagplotlib.plot_init(ANIS['data'], 5, 5) # read in the data data, ifiletype = pmag.magic_read(infile) for rec in data: # find all the orientation systems if 'anisotropy_tilt_correction' not in rec.keys(): rec['anisotropy_tilt_correction'] = '-1' if rec['anisotropy_tilt_correction'] not in orlist: orlist.append(rec['anisotropy_tilt_correction']) if CS not in orlist: if len(orlist) > 0: CS = orlist[0] else: CS = '-1' if CS == '-1': crd = 's' if CS == '0': crd = 'g' if CS == '100': crd = 't' if verbose: print("desired coordinate system not available, using available: ", crd) if isite == 1: sitelist = [] for rec in data: if rec['er_site_name'] not in sitelist: sitelist.append(rec['er_site_name']) sitelist.sort() plt = len(sitelist) else: plt = 1 k = 0 while k < plt: site = "" sdata, Ss = [], [] # list of S format data Locs, Sites, Samples, Specimens, Cits = [], [], [], [], [] if isite == 0: sdata = data else: site = sitelist[k] for rec in data: if rec['er_site_name'] == site: sdata.append(rec) anitypes = [] csrecs = pmag.get_dictitem( sdata, 'anisotropy_tilt_correction', CS, 'T') for rec in csrecs: if rec['anisotropy_type'] not in anitypes: anitypes.append(rec['anisotropy_type']) if rec['er_location_name'] not in Locs: Locs.append(rec['er_location_name']) if rec['er_site_name'] not in Sites: Sites.append(rec['er_site_name']) if rec['er_sample_name'] not in Samples: Samples.append(rec['er_sample_name']) if rec['er_specimen_name'] not in Specimens: Specimens.append(rec['er_specimen_name']) if rec['er_citation_names'] not in Cits: Cits.append(rec['er_citation_names']) s = [] s.append(float(rec["anisotropy_s1"])) s.append(float(rec["anisotropy_s2"])) s.append(float(rec["anisotropy_s3"])) s.append(float(rec["anisotropy_s4"])) s.append(float(rec["anisotropy_s5"])) s.append(float(rec["anisotropy_s6"])) if s[0] <= 1.0: Ss.append(s) # protect against crap # tau,Vdirs=pmag.doseigs(s) ResRec = {} ResRec['er_location_names'] = rec['er_location_name'] ResRec['er_citation_names'] = rec['er_citation_names'] ResRec['er_site_names'] = rec['er_site_name'] ResRec['er_sample_names'] = rec['er_sample_name'] ResRec['er_specimen_names'] = rec['er_specimen_name'] ResRec['rmag_result_name'] = rec['er_specimen_name'] + \ ":"+rec['anisotropy_type'] ResRec["er_analyst_mail_names"] = user ResRec["tilt_correction"] = CS ResRec["anisotropy_type"] = rec['anisotropy_type'] if "anisotropy_n" not in rec.keys(): rec["anisotropy_n"] = "6" if "anisotropy_sigma" not in rec.keys(): rec["anisotropy_sigma"] = "0" fpars = pmag.dohext( int(rec["anisotropy_n"])-6, float(rec["anisotropy_sigma"]), s) ResRec["anisotropy_v1_dec"] = '%7.1f' % (fpars['v1_dec']) ResRec["anisotropy_v2_dec"] = '%7.1f' % (fpars['v2_dec']) ResRec["anisotropy_v3_dec"] = '%7.1f' % (fpars['v3_dec']) ResRec["anisotropy_v1_inc"] = '%7.1f' % (fpars['v1_inc']) ResRec["anisotropy_v2_inc"] = '%7.1f' % (fpars['v2_inc']) ResRec["anisotropy_v3_inc"] = '%7.1f' % (fpars['v3_inc']) ResRec["anisotropy_t1"] = '%10.8f' % (fpars['t1']) ResRec["anisotropy_t2"] = '%10.8f' % (fpars['t2']) ResRec["anisotropy_t3"] = '%10.8f' % (fpars['t3']) ResRec["anisotropy_ftest"] = '%10.3f' % (fpars['F']) ResRec["anisotropy_ftest12"] = '%10.3f' % (fpars['F12']) ResRec["anisotropy_ftest23"] = '%10.3f' % (fpars['F23']) ResRec["result_description"] = 'F_crit: ' + \ fpars['F_crit']+'; F12,F23_crit: '+fpars['F12_crit'] ResRec['anisotropy_type'] = pmag.makelist(anitypes) ResRecs.append(ResRec) if len(Ss) > 1: if pmagplotlib.isServer: title = "LO:_"+ResRec['er_location_names'] + \ '_SI:_'+site+'_SA:__SP:__CO:_'+crd else: title = ResRec['er_location_names'] if site: title += "_{}".format(site) title += '_{}'.format(crd) ResRec['er_location_names'] = pmag.makelist(Locs) bpars, hpars = pmagplotlib.plot_anis( ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp, vec, Dir, nb) if len(PDir) > 0: pmagplotlib.plot_circ(ANIS['data'], PDir, 90., 'g') pmagplotlib.plot_circ(ANIS['conf'], PDir, 90., 'g') if verbose and plots == 0: pmagplotlib.draw_figs(ANIS) ResRec['er_location_names'] = pmag.makelist(Locs) if plots == 1: save(ANIS, fmt, title) ResRec = {} ResRec['er_citation_names'] = pmag.makelist(Cits) ResRec['er_location_names'] = pmag.makelist(Locs) ResRec['er_site_names'] = pmag.makelist(Sites) ResRec['er_sample_names'] = pmag.makelist(Samples) ResRec['er_specimen_names'] = pmag.makelist(Specimens) ResRec['rmag_result_name'] = pmag.makelist( Sites)+":"+pmag.makelist(anitypes) ResRec['anisotropy_type'] = pmag.makelist(anitypes) ResRec["er_analyst_mail_names"] = user ResRec["tilt_correction"] = CS if isite == "0": ResRec['result_description'] = "Study average using coordinate system: " + CS if isite == "1": ResRec['result_description'] = "Site average using coordinate system: " + CS if hpars != [] and ihext == 1: HextRec = {} for key in ResRec.keys(): HextRec[key] = ResRec[key] # copy over stuff HextRec["anisotropy_v1_dec"] = '%7.1f' % (hpars["v1_dec"]) HextRec["anisotropy_v2_dec"] = '%7.1f' % (hpars["v2_dec"]) HextRec["anisotropy_v3_dec"] = '%7.1f' % (hpars["v3_dec"]) HextRec["anisotropy_v1_inc"] = '%7.1f' % (hpars["v1_inc"]) HextRec["anisotropy_v2_inc"] = '%7.1f' % (hpars["v2_inc"]) HextRec["anisotropy_v3_inc"] = '%7.1f' % (hpars["v3_inc"]) HextRec["anisotropy_t1"] = '%10.8f' % (hpars["t1"]) HextRec["anisotropy_t2"] = '%10.8f' % (hpars["t2"]) HextRec["anisotropy_t3"] = '%10.8f' % (hpars["t3"]) HextRec["anisotropy_hext_F"] = '%7.1f ' % (hpars["F"]) HextRec["anisotropy_hext_F12"] = '%7.1f ' % (hpars["F12"]) HextRec["anisotropy_hext_F23"] = '%7.1f ' % (hpars["F23"]) HextRec["anisotropy_v1_eta_semi_angle"] = '%7.1f ' % ( hpars["e12"]) HextRec["anisotropy_v1_eta_dec"] = '%7.1f ' % (hpars["v2_dec"]) HextRec["anisotropy_v1_eta_inc"] = '%7.1f ' % (hpars["v2_inc"]) HextRec["anisotropy_v1_zeta_semi_angle"] = '%7.1f ' % ( hpars["e13"]) HextRec["anisotropy_v1_zeta_dec"] = '%7.1f ' % ( hpars["v3_dec"]) HextRec["anisotropy_v1_zeta_inc"] = '%7.1f ' % ( hpars["v3_inc"]) HextRec["anisotropy_v2_eta_semi_angle"] = '%7.1f ' % ( hpars["e12"]) HextRec["anisotropy_v2_eta_dec"] = '%7.1f ' % (hpars["v1_dec"]) HextRec["anisotropy_v2_eta_inc"] = '%7.1f ' % (hpars["v1_inc"]) HextRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f ' % ( hpars["e23"]) HextRec["anisotropy_v2_zeta_dec"] = '%7.1f ' % ( hpars["v3_dec"]) HextRec["anisotropy_v2_zeta_inc"] = '%7.1f ' % ( hpars["v3_inc"]) HextRec["anisotropy_v3_eta_semi_angle"] = '%7.1f ' % ( hpars["e12"]) HextRec["anisotropy_v3_eta_dec"] = '%7.1f ' % (hpars["v1_dec"]) HextRec["anisotropy_v3_eta_inc"] = '%7.1f ' % (hpars["v1_inc"]) HextRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f ' % ( hpars["e23"]) HextRec["anisotropy_v3_zeta_dec"] = '%7.1f ' % ( hpars["v2_dec"]) HextRec["anisotropy_v3_zeta_inc"] = '%7.1f ' % ( hpars["v2_inc"]) HextRec["magic_method_codes"] = 'LP-AN:AE-H' if verbose: print("Hext Statistics: ") print( " tau_i, V_i_D, V_i_I, V_i_zeta, V_i_zeta_D, V_i_zeta_I, V_i_eta, V_i_eta_D, V_i_eta_I") print(HextRec["anisotropy_t1"], HextRec["anisotropy_v1_dec"], HextRec["anisotropy_v1_inc"], HextRec["anisotropy_v1_eta_semi_angle"], HextRec["anisotropy_v1_eta_dec"], HextRec["anisotropy_v1_eta_inc"], HextRec["anisotropy_v1_zeta_semi_angle"], HextRec["anisotropy_v1_zeta_dec"], HextRec["anisotropy_v1_zeta_inc"]) print(HextRec["anisotropy_t2"], HextRec["anisotropy_v2_dec"], HextRec["anisotropy_v2_inc"], HextRec["anisotropy_v2_eta_semi_angle"], HextRec["anisotropy_v2_eta_dec"], HextRec["anisotropy_v2_eta_inc"], HextRec["anisotropy_v2_zeta_semi_angle"], HextRec["anisotropy_v2_zeta_dec"], HextRec["anisotropy_v2_zeta_inc"]) print(HextRec["anisotropy_t3"], HextRec["anisotropy_v3_dec"], HextRec["anisotropy_v3_inc"], HextRec["anisotropy_v3_eta_semi_angle"], HextRec["anisotropy_v3_eta_dec"], HextRec["anisotropy_v3_eta_inc"], HextRec["anisotropy_v3_zeta_semi_angle"], HextRec["anisotropy_v3_zeta_dec"], HextRec["anisotropy_v3_zeta_inc"]) HextRec['magic_software_packages'] = version_num ResRecs.append(HextRec) if bpars != []: BootRec = {} for key in ResRec.keys(): BootRec[key] = ResRec[key] # copy over stuff BootRec["anisotropy_v1_dec"] = '%7.1f' % (bpars["v1_dec"]) BootRec["anisotropy_v2_dec"] = '%7.1f' % (bpars["v2_dec"]) BootRec["anisotropy_v3_dec"] = '%7.1f' % (bpars["v3_dec"]) BootRec["anisotropy_v1_inc"] = '%7.1f' % (bpars["v1_inc"]) BootRec["anisotropy_v2_inc"] = '%7.1f' % (bpars["v2_inc"]) BootRec["anisotropy_v3_inc"] = '%7.1f' % (bpars["v3_inc"]) BootRec["anisotropy_t1"] = '%10.8f' % (bpars["t1"]) BootRec["anisotropy_t2"] = '%10.8f' % (bpars["t2"]) BootRec["anisotropy_t3"] = '%10.8f' % (bpars["t3"]) BootRec["anisotropy_v1_eta_inc"] = '%7.1f ' % ( bpars["v1_eta_inc"]) BootRec["anisotropy_v1_eta_dec"] = '%7.1f ' % ( bpars["v1_eta_dec"]) BootRec["anisotropy_v1_eta_semi_angle"] = '%7.1f ' % ( bpars["v1_eta"]) BootRec["anisotropy_v1_zeta_inc"] = '%7.1f ' % ( bpars["v1_zeta_inc"]) BootRec["anisotropy_v1_zeta_dec"] = '%7.1f ' % ( bpars["v1_zeta_dec"]) BootRec["anisotropy_v1_zeta_semi_angle"] = '%7.1f ' % ( bpars["v1_zeta"]) BootRec["anisotropy_v2_eta_inc"] = '%7.1f ' % ( bpars["v2_eta_inc"]) BootRec["anisotropy_v2_eta_dec"] = '%7.1f ' % ( bpars["v2_eta_dec"]) BootRec["anisotropy_v2_eta_semi_angle"] = '%7.1f ' % ( bpars["v2_eta"]) BootRec["anisotropy_v2_zeta_inc"] = '%7.1f ' % ( bpars["v2_zeta_inc"]) BootRec["anisotropy_v2_zeta_dec"] = '%7.1f ' % ( bpars["v2_zeta_dec"]) BootRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f ' % ( bpars["v2_zeta"]) BootRec["anisotropy_v3_eta_inc"] = '%7.1f ' % ( bpars["v3_eta_inc"]) BootRec["anisotropy_v3_eta_dec"] = '%7.1f ' % ( bpars["v3_eta_dec"]) BootRec["anisotropy_v3_eta_semi_angle"] = '%7.1f ' % ( bpars["v3_eta"]) BootRec["anisotropy_v3_zeta_inc"] = '%7.1f ' % ( bpars["v3_zeta_inc"]) BootRec["anisotropy_v3_zeta_dec"] = '%7.1f ' % ( bpars["v3_zeta_dec"]) BootRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f ' % ( bpars["v3_zeta"]) BootRec["anisotropy_hext_F"] = '' BootRec["anisotropy_hext_F12"] = '' BootRec["anisotropy_hext_F23"] = '' # regular bootstrap BootRec["magic_method_codes"] = 'LP-AN:AE-H:AE-BS' if ipar == 1: # parametric bootstrap BootRec["magic_method_codes"] = 'LP-AN:AE-H:AE-BS-P' if verbose: print("Boostrap Statistics: ") print( " tau_i, V_i_D, V_i_I, V_i_zeta, V_i_zeta_D, V_i_zeta_I, V_i_eta, V_i_eta_D, V_i_eta_I") print(BootRec["anisotropy_t1"], BootRec["anisotropy_v1_dec"], BootRec["anisotropy_v1_inc"], BootRec["anisotropy_v1_eta_semi_angle"], BootRec["anisotropy_v1_eta_dec"], BootRec["anisotropy_v1_eta_inc"], BootRec["anisotropy_v1_zeta_semi_angle"], BootRec["anisotropy_v1_zeta_dec"], BootRec["anisotropy_v1_zeta_inc"]) print(BootRec["anisotropy_t2"], BootRec["anisotropy_v2_dec"], BootRec["anisotropy_v2_inc"], BootRec["anisotropy_v2_eta_semi_angle"], BootRec["anisotropy_v2_eta_dec"], BootRec["anisotropy_v2_eta_inc"], BootRec["anisotropy_v2_zeta_semi_angle"], BootRec["anisotropy_v2_zeta_dec"], BootRec["anisotropy_v2_zeta_inc"]) print(BootRec["anisotropy_t3"], BootRec["anisotropy_v3_dec"], BootRec["anisotropy_v3_inc"], BootRec["anisotropy_v3_eta_semi_angle"], BootRec["anisotropy_v3_eta_dec"], BootRec["anisotropy_v3_eta_inc"], BootRec["anisotropy_v3_zeta_semi_angle"], BootRec["anisotropy_v3_zeta_dec"], BootRec["anisotropy_v3_zeta_inc"]) BootRec['magic_software_packages'] = version_num ResRecs.append(BootRec) k += 1 goon = 1 while goon == 1 and iplot == 1 and verbose: if iboot == 1: print("compare with [d]irection ") print( " plot [g]reat circle, change [c]oord. system, change [e]llipse calculation, s[a]ve plots, [q]uit ") if isite == 1: print(" [p]revious, [s]ite, [q]uit, <return> for next ") ans = input("") if ans == "q": sys.exit() if ans == "e": iboot, ipar, ihext, ivec = 1, 0, 0, 0 e = input("Do Hext Statistics 1/[0]: ") if e == "1": ihext = 1 e = input("Suppress bootstrap 1/[0]: ") if e == "1": iboot = 0 if iboot == 1: e = input("Parametric bootstrap 1/[0]: ") if e == "1": ipar = 1 e = input("Plot bootstrap eigenvectors: 1/[0]: ") if e == "1": ivec = 1 if iplot == 1: if inittcdf == 0: ANIS['tcdf'] = 3 pmagplotlib.plot_init(ANIS['tcdf'], 5, 5) inittcdf = 1 bpars, hpars = pmagplotlib.plot_anis( ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp, vec, Dir, nb) if verbose and plots == 0: pmagplotlib.draw_figs(ANIS) if ans == "c": print("Current Coordinate system is: ") if CS == '-1': print(" Specimen") if CS == '0': print(" Geographic") if CS == '100': print(" Tilt corrected") key = input( " Enter desired coordinate system: [s]pecimen, [g]eographic, [t]ilt corrected ") if key == 's': CS = '-1' if key == 'g': CS = '0' if key == 't': CS = '100' if CS not in orlist: if len(orlist) > 0: CS = orlist[0] else: CS = '-1' if CS == '-1': crd = 's' if CS == '0': crd = 'g' if CS == '100': crd = 't' print( "desired coordinate system not available, using available: ", crd) k -= 1 goon = 0 if ans == "": if isite == 1: goon = 0 else: print("Good bye ") sys.exit() if ans == 'd': if initcdf == 0: initcdf = 1 ANIS['vxcdf'], ANIS['vycdf'], ANIS['vzcdf'] = 4, 5, 6 pmagplotlib.plot_init(ANIS['vxcdf'], 5, 5) pmagplotlib.plot_init(ANIS['vycdf'], 5, 5) pmagplotlib.plot_init(ANIS['vzcdf'], 5, 5) Dir, comp = [], 1 print(""" Input: Vi D I to compare eigenvector Vi with direction D/I where Vi=1: principal Vi=2: major Vi=3: minor D= declination of comparison direction I= inclination of comparison direction""") con = 1 while con == 1: try: vdi = input("Vi D I: ").split() vec = int(vdi[0])-1 Dir = [float(vdi[1]), float(vdi[2])] con = 0 except IndexError: print(" Incorrect entry, try again ") bpars, hpars = pmagplotlib.plot_anis( ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp, vec, Dir, nb) Dir, comp = [], 0 if ans == 'g': con, cnt = 1, 0 while con == 1: try: print( " Input: input pole to great circle ( D I) to plot a great circle: ") di = input(" D I: ").split() PDir.append(float(di[0])) PDir.append(float(di[1])) con = 0 except: cnt += 1 if cnt < 10: print( " enter the dec and inc of the pole on one line ") else: print( "ummm - you are doing something wrong - i give up") sys.exit() pmagplotlib.plot_circ(ANIS['data'], PDir, 90., 'g') pmagplotlib.plot_circ(ANIS['conf'], PDir, 90., 'g') if verbose and plots == 0: pmagplotlib.draw_figs(ANIS) if ans == "p": k -= 2 goon = 0 if ans == "q": k = plt goon = 0 if ans == "s": keepon = 1 site = input(" print site or part of site desired: ") while keepon == 1: try: k = sitelist.index(site) keepon = 0 except: tmplist = [] for qq in range(len(sitelist)): if site in sitelist[qq]: tmplist.append(sitelist[qq]) print(site, " not found, but this was: ") print(tmplist) site = input('Select one or try again\n ') k = sitelist.index(site) goon, ans = 0, "" if ans == "a": locs = pmag.makelist(Locs) if pmagplotlib.isServer: # use server plot naming convention title = "LO:_"+locs+'_SI:__'+'_SA:__SP:__CO:_'+crd else: # use more readable plot naming convention title = "{}_{}".format(locs, crd) save(ANIS, fmt, title) goon = 0 else: if verbose: print('skipping plot - not enough data points') k += 1 # put rmag_results stuff here if len(ResRecs) > 0: ResOut, keylist = pmag.fillkeys(ResRecs) pmag.magic_write(outfile, ResOut, 'rmag_results') if verbose: print(" Good bye ")
def main(): """ NAME aniso_magic.py DESCRIPTION plots anisotropy data with either bootstrap or hext ellipses SYNTAX aniso_magic.py [-h] [command line options] OPTIONS -h plots help message and quits -usr USER: set the user name -f AFILE, specify specimens.txt formatted file for input -fsa SAMPFILE, specify samples.txt file (required to plot by site) -fsi SITEFILE, specify site file (required to include location information) -x Hext [1963] and bootstrap -B DON'T do bootstrap, do Hext -par Tauxe [1998] parametric bootstrap -v plot bootstrap eigenvectors instead of ellipses -sit plot by site instead of entire file -crd [s,g,t] coordinate system, default is specimen (g=geographic, t=tilt corrected) -P don't make any plots - just fill in the specimens, samples, sites tables -sav don't make the tables - just save all the plots -fmt [svg, jpg, eps] format for output images, pdf default -gtc DEC INC dec,inc of pole to great circle [down(up) in green (cyan) -d Vi DEC INC; Vi (1,2,3) to compare to direction DEC INC -nb N; specifies the number of bootstraps - default is 1000 DEFAULTS AFILE: specimens.txt plot bootstrap ellipses of Constable & Tauxe [1987] NOTES minor axis: circles major axis: triangles principal axis: squares directions are plotted on the lower hemisphere for bootstrapped eigenvector components: Xs: blue, Ys: red, Zs: black """ args = sys.argv if "-h" in args: print main.__doc__ sys.exit() #version_num = pmag.get_version() verbose = pmagplotlib.verbose dir_path = pmag.get_named_arg_from_sys("-WD", ".") num_bootstraps = pmag.get_named_arg_from_sys("-nb", 1000) #user = pmag.get_named_arg_from_sys("-usr", "") ipar = pmag.get_flag_arg_from_sys("-par", true=1, false=0) ihext = pmag.get_flag_arg_from_sys("-x", true=1, false=0) ivec = pmag.get_flag_arg_from_sys("-v", true=1, false=0) iplot = pmag.get_flag_arg_from_sys("-P", true=0, false=1) isite = pmag.get_flag_arg_from_sys("-sit", true=1, false=0) iboot, vec = 1, 0 infile = pmag.get_named_arg_from_sys('-f', 'specimens.txt') samp_file = pmag.get_named_arg_from_sys('-fsa', 'samples.txt') site_file = pmag.get_named_arg_from_sys('-fsi', 'sites.txt') #outfile = pmag.get_named_arg_from_sys("-F", "rmag_results.txt") fmt = pmag.get_named_arg_from_sys("-fmt", "pdf") hpars, bpars = [], [] CS, crd = -1, 's' ResRecs = [] comp, Dir, PDir = 0, [], [] if '-B' in args: iboot, ihext = 0, 1 if '-crd' in sys.argv: ind = sys.argv.index('-crd') crd = sys.argv[ind+1] if crd == 'g': CS = 0 if crd == 't': CS = 100 if '-sav' in args: plots = 1 verbose = 0 else: plots = 0 if '-gtc' in args: ind = args.index('-gtc') d, i = float(args[ind+1]), float(args[ind+2]) PDir.append(d) PDir.append(i) if '-d' in args: comp = 1 ind = args.index('-d') vec = int(args[ind+1])-1 Dir = [float(args[ind+2]), float(args[ind+3])] # # set up plots # ANIS = {} initcdf, inittcdf = 0, 0 ANIS['data'], ANIS['conf'] = 1, 2 if iboot == 1: ANIS['tcdf'] = 3 if iplot == 1: inittcdf = 1 pmagplotlib.plot_init(ANIS['tcdf'], 5, 5) if comp == 1 and iplot == 1: initcdf = 1 ANIS['vxcdf'], ANIS['vycdf'], ANIS['vzcdf'] = 4, 5, 6 pmagplotlib.plot_init(ANIS['vxcdf'], 5, 5) pmagplotlib.plot_init(ANIS['vycdf'], 5, 5) pmagplotlib.plot_init(ANIS['vzcdf'], 5, 5) if iplot == 1: pmagplotlib.plot_init(ANIS['conf'], 5, 5) pmagplotlib.plot_init(ANIS['data'], 5, 5) # read in the data fnames = {'specimens': infile, 'samples': samp_file, 'sites': site_file} con = nb.Contribution(dir_path, read_tables=['specimens', 'samples', 'sites'], custom_filenames=fnames) spec_container = con.tables['specimens'] spec_df = con.propagate_name_down('location', 'specimens') # get only anisotropy records spec_df = spec_container.get_records_for_code('AE-', strict_match=False) if 'aniso_tilt_correction' not in spec_df.columns: spec_df['aniso_tilt_correction'] = None orlist = spec_df['aniso_tilt_correction'].dropna().unique() if CS not in orlist: if len(orlist) > 0: CS = orlist[0] else: CS = -1 if CS == -1: crd = 's' if CS == 0: crd = 'g' if CS == 100: crd = 't' if verbose: print "desired coordinate system not available, using available: ", crd if isite == 1: sitelist = spec_df['site'].unique() sitelist.sort() plt = len(sitelist) else: plt = 1 k = 0 while k < plt: site = "" loc_name = "" sdata, Ss = [], [] # list of S format data if isite == 0: sdata = spec_df if 'location' in sdata.columns: loc_name = ':'.join(sdata['location'].unique()) else: site = sitelist[k] sdata = spec_df[spec_df['site'] == site] if 'location' in sdata.columns: loc_name = sdata['location'][0] csrecs = sdata[sdata['aniso_tilt_correction'] == CS] #anitypes = csrecs['aniso_type'].unique() for name in ['citations', 'location', 'site', 'sample']: if name not in csrecs: csrecs[name] = "" Locs = csrecs['location'].unique() #Sites = csrecs['site'].unique() #Samples = csrecs['sample'].unique() #Specimens = csrecs['specimen'].unique() #Cits = csrecs['citations'].unique() for ind, rec in csrecs.iterrows(): s = [float(i.strip()) for i in rec['aniso_s'].split(':')] if s[0] <= 1.0: Ss.append(s) # protect against crap # tau,Vdirs=pmag.doseigs(s) # do we need fpars somewhere??? # fpars = pmag.dohext(int(rec["aniso_s_n_measurements"]) -6, float(rec["aniso_s_sigma"]), s) # fill in ResRecs (ignoring this for now, grab it from aniso_magic if needed) if len(Ss) > 1: title = "LO:_" + loc_name + '_SI:_' + site + '_SA:__SP:__CO:_' + crd bpars, hpars = pmagplotlib.plotANIS(ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp, vec, Dir, num_bootstraps) if len(PDir) > 0: pmagplotlib.plotC(ANIS['data'], PDir, 90., 'g') pmagplotlib.plotC(ANIS['conf'], PDir, 90., 'g') if verbose and plots == 0: pmagplotlib.drawFIGS(ANIS) if plots == 1: save(ANIS,fmt,title) if hpars != [] and ihext == 1: HextRec = {} #for key in ResRec.keys():HextRec[key]=ResRec[key] # copy over stuff HextRec["anisotropy_v1_dec"] = '%7.1f'%(hpars["v1_dec"]) HextRec["anisotropy_v2_dec"] = '%7.1f'%(hpars["v2_dec"]) HextRec["anisotropy_v3_dec"] = '%7.1f'%(hpars["v3_dec"]) HextRec["anisotropy_v1_inc"] = '%7.1f'%(hpars["v1_inc"]) HextRec["anisotropy_v2_inc"] = '%7.1f'%(hpars["v2_inc"]) HextRec["anisotropy_v3_inc"] = '%7.1f'%(hpars["v3_inc"]) HextRec["anisotropy_t1"] = '%10.8f'%(hpars["t1"]) HextRec["anisotropy_t2"] = '%10.8f'%(hpars["t2"]) HextRec["anisotropy_t3"] = '%10.8f'%(hpars["t3"]) HextRec["anisotropy_hext_F"] = '%7.1f '%(hpars["F"]) HextRec["anisotropy_hext_F12"] = '%7.1f '%(hpars["F12"]) HextRec["anisotropy_hext_F23"] = '%7.1f '%(hpars["F23"]) HextRec["anisotropy_v1_eta_semi_angle"] = '%7.1f '%(hpars["e12"]) HextRec["anisotropy_v1_eta_dec"] = '%7.1f '%(hpars["v2_dec"]) HextRec["anisotropy_v1_eta_inc"] = '%7.1f '%(hpars["v2_inc"]) HextRec["anisotropy_v1_zeta_semi_angle"] = '%7.1f '%(hpars["e13"]) HextRec["anisotropy_v1_zeta_dec"] = '%7.1f '%(hpars["v3_dec"]) HextRec["anisotropy_v1_zeta_inc"] = '%7.1f '%(hpars["v3_inc"]) HextRec["anisotropy_v2_eta_semi_angle"] = '%7.1f '%(hpars["e12"]) HextRec["anisotropy_v2_eta_dec"] = '%7.1f '%(hpars["v1_dec"]) HextRec["anisotropy_v2_eta_inc"] = '%7.1f '%(hpars["v1_inc"]) HextRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f '%(hpars["e23"]) HextRec["anisotropy_v2_zeta_dec"] = '%7.1f '%(hpars["v3_dec"]) HextRec["anisotropy_v2_zeta_inc"] = '%7.1f '%(hpars["v3_inc"]) HextRec["anisotropy_v3_eta_semi_angle"] = '%7.1f '%(hpars["e12"]) HextRec["anisotropy_v3_eta_dec"] = '%7.1f '%(hpars["v1_dec"]) HextRec["anisotropy_v3_eta_inc"] = '%7.1f '%(hpars["v1_inc"]) HextRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f '%(hpars["e23"]) HextRec["anisotropy_v3_zeta_dec"] = '%7.1f '%(hpars["v2_dec"]) HextRec["anisotropy_v3_zeta_inc"] = '%7.1f '%(hpars["v2_inc"]) HextRec["magic_method_codes"] = 'LP-AN:AE-H' if verbose: print "Hext Statistics: " print " tau_i, V_i_D, V_i_I, V_i_zeta, V_i_zeta_D, V_i_zeta_I, V_i_eta, V_i_eta_D, V_i_eta_I" print HextRec["anisotropy_t1"], HextRec["anisotropy_v1_dec"], print HextRec["anisotropy_v1_inc"], HextRec["anisotropy_v1_eta_semi_angle"], print HextRec["anisotropy_v1_eta_dec"], HextRec["anisotropy_v1_eta_inc"], print HextRec["anisotropy_v1_zeta_semi_angle"], HextRec["anisotropy_v1_zeta_dec"], print HextRec["anisotropy_v1_zeta_inc"] # print HextRec["anisotropy_t2"],HextRec["anisotropy_v2_dec"], print HextRec["anisotropy_v2_inc"], HextRec["anisotropy_v2_eta_semi_angle"], print HextRec["anisotropy_v2_eta_dec"], HextRec["anisotropy_v2_eta_inc"], print HextRec["anisotropy_v2_zeta_semi_angle"], HextRec["anisotropy_v2_zeta_dec"], print HextRec["anisotropy_v2_zeta_inc"] # print HextRec["anisotropy_t3"], HextRec["anisotropy_v3_dec"], print HextRec["anisotropy_v3_inc"], HextRec["anisotropy_v3_eta_semi_angle"], print HextRec["anisotropy_v3_eta_dec"], HextRec["anisotropy_v3_eta_inc"], print HextRec["anisotropy_v3_zeta_semi_angle"], HextRec["anisotropy_v3_zeta_dec"], print HextRec["anisotropy_v3_zeta_inc"] #HextRec['magic_software_packages']=version_num #ResRecs.append(HextRec) if bpars != []: BootRec = {} #for key in ResRec.keys():BootRec[key]=ResRec[key] # copy over stuff BootRec["anisotropy_v1_dec"] = '%7.1f'%(bpars["v1_dec"]) BootRec["anisotropy_v2_dec"] = '%7.1f'%(bpars["v2_dec"]) BootRec["anisotropy_v3_dec"] = '%7.1f'%(bpars["v3_dec"]) BootRec["anisotropy_v1_inc"] = '%7.1f'%(bpars["v1_inc"]) BootRec["anisotropy_v2_inc"] = '%7.1f'%(bpars["v2_inc"]) BootRec["anisotropy_v3_inc"] = '%7.1f'%(bpars["v3_inc"]) BootRec["anisotropy_t1"] = '%10.8f'%(bpars["t1"]) BootRec["anisotropy_t2"] = '%10.8f'%(bpars["t2"]) BootRec["anisotropy_t3"] = '%10.8f'%(bpars["t3"]) BootRec["anisotropy_v1_eta_inc"] = '%7.1f '%(bpars["v1_eta_inc"]) BootRec["anisotropy_v1_eta_dec"] = '%7.1f '%(bpars["v1_eta_dec"]) BootRec["anisotropy_v1_eta_semi_angle"] = '%7.1f '%(bpars["v1_eta"]) BootRec["anisotropy_v1_zeta_inc"] = '%7.1f '%(bpars["v1_zeta_inc"]) BootRec["anisotropy_v1_zeta_dec"] = '%7.1f '%(bpars["v1_zeta_dec"]) BootRec["anisotropy_v1_zeta_semi_angle"] = '%7.1f '%(bpars["v1_zeta"]) BootRec["anisotropy_v2_eta_inc"] = '%7.1f '%(bpars["v2_eta_inc"]) BootRec["anisotropy_v2_eta_dec"] = '%7.1f '%(bpars["v2_eta_dec"]) BootRec["anisotropy_v2_eta_semi_angle"] = '%7.1f '%(bpars["v2_eta"]) BootRec["anisotropy_v2_zeta_inc"] = '%7.1f '%(bpars["v2_zeta_inc"]) BootRec["anisotropy_v2_zeta_dec"] = '%7.1f '%(bpars["v2_zeta_dec"]) BootRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f '%(bpars["v2_zeta"]) BootRec["anisotropy_v3_eta_inc"] = '%7.1f '%(bpars["v3_eta_inc"]) BootRec["anisotropy_v3_eta_dec"] = '%7.1f '%(bpars["v3_eta_dec"]) BootRec["anisotropy_v3_eta_semi_angle"] = '%7.1f '%(bpars["v3_eta"]) BootRec["anisotropy_v3_zeta_inc"] = '%7.1f '%(bpars["v3_zeta_inc"]) BootRec["anisotropy_v3_zeta_dec"] = '%7.1f '%(bpars["v3_zeta_dec"]) BootRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f '%(bpars["v3_zeta"]) BootRec["anisotropy_hext_F"] = '' BootRec["anisotropy_hext_F12"] = '' BootRec["anisotropy_hext_F23"] = '' BootRec["magic_method_codes"] = 'LP-AN:AE-H:AE-BS' # regular bootstrap if ipar == 1: BootRec["magic_method_codes"] = 'LP-AN:AE-H:AE-BS-P' # parametric bootstrap if verbose: print "Boostrap Statistics: " print " tau_i, V_i_D, V_i_I, V_i_zeta, V_i_zeta_D, V_i_zeta_I, V_i_eta, V_i_eta_D, V_i_eta_I" print BootRec["anisotropy_t1"], BootRec["anisotropy_v1_dec"], print BootRec["anisotropy_v1_inc"], BootRec["anisotropy_v1_eta_semi_angle"], print BootRec["anisotropy_v1_eta_dec"], BootRec["anisotropy_v1_eta_inc"], print BootRec["anisotropy_v1_zeta_semi_angle"], BootRec["anisotropy_v1_zeta_dec"], print BootRec["anisotropy_v1_zeta_inc"] # print BootRec["anisotropy_t2"], BootRec["anisotropy_v2_dec"], BootRec["anisotropy_v2_inc"], print BootRec["anisotropy_v2_eta_semi_angle"], BootRec["anisotropy_v2_eta_dec"], print BootRec["anisotropy_v2_eta_inc"], BootRec["anisotropy_v2_zeta_semi_angle"], print BootRec["anisotropy_v2_zeta_dec"], BootRec["anisotropy_v2_zeta_inc"] # print BootRec["anisotropy_t3"], BootRec["anisotropy_v3_dec"], BootRec["anisotropy_v3_inc"], print BootRec["anisotropy_v3_eta_semi_angle"], BootRec["anisotropy_v3_eta_dec"], print BootRec["anisotropy_v3_eta_inc"], BootRec["anisotropy_v3_zeta_semi_angle"], print BootRec["anisotropy_v3_zeta_dec"], BootRec["anisotropy_v3_zeta_inc"] #BootRec['magic_software_packages'] = version_num ResRecs.append(BootRec) k += 1 goon = 1 while goon == 1 and iplot == 1 and verbose: if iboot == 1: print "compare with [d]irection " print " plot [g]reat circle, change [c]oord. system, change [e]llipse calculation, s[a]ve plots, [q]uit " if isite == 1: print " [p]revious, [s]ite, [q]uit, <return> for next " ans = raw_input("") if ans == "q": sys.exit() if ans == "e": iboot, ipar, ihext, ivec = 1, 0, 0, 0 e = raw_input("Do Hext Statistics 1/[0]: ") if e == "1": ihext = 1 e = raw_input("Suppress bootstrap 1/[0]: ") if e == "1": iboot = 0 if iboot == 1: e = raw_input("Parametric bootstrap 1/[0]: ") if e == "1": ipar = 1 e = raw_input("Plot bootstrap eigenvectors: 1/[0]: ") if e == "1": ivec=1 if iplot == 1: if inittcdf == 0: ANIS['tcdf'] = 3 pmagplotlib.plot_init(ANIS['tcdf'], 5, 5) inittcdf = 1 bpars, hpars = pmagplotlib.plotANIS(ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp, vec, Dir, num_bootstraps) if verbose and plots == 0: pmagplotlib.drawFIGS(ANIS) if ans == "c": print "Current Coordinate system is: " if CS == -1: print " Specimen" if CS == 0: print " Geographic" if CS == 100: print " Tilt corrected" key = raw_input(" Enter desired coordinate system: [s]pecimen, [g]eographic, [t]ilt corrected ") if key == 's': CS = -1 if key == 'g': CS = 0 if key == 't': CS = 100 if CS not in orlist: if len(orlist) > 0: CS = orlist[0] else: CS = -1 if CS == -1: crd = 's' if CS == 0: crd = 'g' if CS == 100: crd = 't' print "desired coordinate system not available, using available: ", crd k -= 1 goon = 0 if ans == "": if isite == 1: goon = 0 else: print "Good bye " sys.exit() if ans == 'd': if initcdf == 0: initcdf = 1 ANIS['vxcdf'], ANIS['vycdf'], ANIS['vzcdf'] = 4, 5, 6 pmagplotlib.plot_init(ANIS['vxcdf'], 5, 5) pmagplotlib.plot_init(ANIS['vycdf'], 5, 5) pmagplotlib.plot_init(ANIS['vzcdf'], 5, 5) Dir, comp = [], 1 print """ Input: Vi D I to compare eigenvector Vi with direction D/I where Vi=1: principal Vi=2: major Vi=3: minor D= declination of comparison direction I= inclination of comparison direction""" con = 1 while con == 1: try: vdi = raw_input("Vi D I: ").split() vec = int(vdi[0])-1 Dir = [float(vdi[1]), float(vdi[2])] con = 0 except IndexError: print " Incorrect entry, try again " bpars, hpars = pmagplotlib.plotANIS(ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp, vec, Dir, num_bootstraps) Dir, comp = [], 0 if ans == 'g': con, cnt = 1, 0 while con == 1: try: print " Input: input pole to great circle ( D I) to plot a great circle: " di = raw_input(" D I: ").split() PDir.append(float(di[0])) PDir.append(float(di[1])) con=0 except: cnt += 1 if cnt < 10: print " enter the dec and inc of the pole on one line " else: print "ummm - you are doing something wrong - i give up" sys.exit() pmagplotlib.plotC(ANIS['data'], PDir, 90., 'g') pmagplotlib.plotC(ANIS['conf'], PDir, 90., 'g') if verbose and plots == 0: pmagplotlib.drawFIGS(ANIS) if ans == "p": k -= 2 goon = 0 if ans == "q": k = plt goon = 0 if ans == "s": keepon = 1 site = raw_input(" print site or part of site desired: ") while keepon == 1: try: k = sitelist.index(site) keepon = 0 except: tmplist = [] for qq in range(len(sitelist)): if site in sitelist[qq]: tmplist.append(sitelist[qq]) print site, " not found, but this was: " print tmplist site = raw_input('Select one or try again\n ') k = sitelist.index(site) goon, ans = 0, "" if ans == "a": locs = pmag.makelist(Locs) site_name = "_" if isite: site_name = site title = "LO:_" + locs + '_SI:_' + site_name + '_SA:__SP:__CO:_' + crd save(ANIS, fmt, title) goon = 0 else: if verbose: print 'skipping plot - not enough data points' k += 1 # put rmag_results stuff here #if len(ResRecs)>0: # ResOut,keylist=pmag.fillkeys(ResRecs) # pmag.magic_write(outfile,ResOut,'rmag_results') if verbose: print " Good bye "