Ejemplo n.º 1
0
def draw_histogram(out_dir, multigoal_rule, k, percentages, distribution, reps, n, m, method, threshold=None):
    distribution_name = get_distribution_name(distribution)
    perc = '_'.join([str(p) for p in percentages])

    winner_filename = '{}_{}_{}_k{}_n{}_m{}_{}'.format(multigoal_rule.__name__, distribution_name, perc, k, n, m, method)
    file_path = os.path.join(out_dir, winner_filename)
    mw2d_generate_histogram(file_path, reps)

    histogram_filename = file_path + '.hist'
    mw2d_draw_histogram(histogram_filename, threshold)

    os.remove(histogram_filename)
Ejemplo n.º 2
0
def draw_pareto_chart_from_winner_files(current_dir, m, n, k, multigoal_rule, distribution, distribution_params=None):
    print("{}, k={}".format(multigoal_rule.__name__, k))
    # We assume that there are "repetitions" files generated for each threshold.
    rule_name = multigoal_rule.__name__
    distribution_name = get_distribution_name(distribution)
    rules = get_multigoal_rules(multigoal_rule)
    if not rules:
        return

    xy = {}

    for dir_name in os.listdir(current_dir):
        dir_pattern = '{}_{}_(\d+)_\d+_k{}_n{}_m{}'.format(rule_name, distribution_name, k, n, m)
        r1_match = re.match(dir_pattern, dir_name)
        if r1_match is None:
            continue
        r1 = r1_match.group(1)

        for filename in os.listdir(os.path.join(current_dir, dir_name)):
            rep = get_repetition_from_filename(dir_name, filename)
            if not rep:
                continue

            win_filename = os.path.join(current_dir, dir_name, filename)
            best_filename = '{}_{}.best'.format(dir_name, rep)
            best_filename = os.path.join(current_dir, dir_name, best_filename)

            scores = read_scores(win_filename)
            best = read_scores(best_filename)

            approx = scores[1] / best[1]
            if r1 in xy:
                xy[r1].append(approx)
            else:
                xy[r1] = [approx]

    xy_list = list(xy.items())
    xy_list = sorted(xy_list, key=lambda e: int(e[0]))
    x = [int(x) for x, _ in xy_list]
    y_min = [np.min(ys) for _, ys in xy_list]

    if distribution_params is None:
        filename = '{}_{}_k{}_n{}_m{}'.format(rule_name, distribution_name, k, n, m)
    else:
        distribution_params_string = '_'.join([dpk + str(dpv) for dpk, dpv in distribution_params.items()])
        distribution_params_string = distribution_params_string.replace('.', '')
        filename = '{}_{}_{}_k{}_n{}_m{}'.format(rule_name, distribution_name, distribution_params_string, k, n, m)

    title = "voters: {}, candidates: {}, committee size: {}".format(n, m, k)
    plot(filename, x, y_min, rules, title=title)
Ejemplo n.º 3
0
def draw_approximation_charts(experiment, ms, k_percs, distribution, approximations):
    out_dir = experiment.get_generated_dir_path()
    distribution_name = get_distribution_name(distribution)

    for im, m in enumerate(ms):
        filename = os.path.join(out_dir, 'approx_{}_m{}'.format(distribution_name, m))
        ks = k_percs * m

        axes = plt.gca()

        axes.set_xlim([0, m])
        axes.set_ylim([0, 1.1])

        plt.xlabel('k')
        plt.ylabel('approximation')

        plt.plot(ks, approximations['Approx_Greedy'][im, :])
        plt.plot(ks, approximations['Approx_P'][im, :])
        plt.legend(['Greedy', 'P'])
        plt.title('Approximation in CC+kB')
        plt.savefig(filename)
        plt.clf()
Ejemplo n.º 4
0
def draw_transition_from_winner_files(current_dir, m, n, k, multigoal_rule, distribution, repetitions):
    print("{}, k={}".format(multigoal_rule.__name__, k))
    # We assume that there are "repetitions" files generated for each threshold.
    rule_name = multigoal_rule.__name__
    distribution_name = get_distribution_name(distribution)
    rules = get_multigoal_rules(multigoal_rule)
    if not rules:
        return

    for dir_name in os.listdir(current_dir):
        dir_path = os.path.join(current_dir, dir_name)
        if not os.path.isdir(dir_path):
            continue

        dir_pattern = '{}_{}_(\d+)_(\d+)_k{}_n{}_m{}'.format(rule_name, distribution_name, k, n, m)
        r1_r2_match = re.match(dir_pattern, dir_name)
        if r1_r2_match is None:
            continue

        percentages = r1_r2_match.group(1), r1_r2_match.group(2)

        draw_histogram(dir_path, multigoal_rule, k, percentages, distribution, repetitions, n, m, 'ILP')
Ejemplo n.º 5
0
m = 100  # candidates number
n = 100  # voters number

repetitions = 60
k_ccs = range(0, k + 1)

methods = ['Approx_P', 'Approx_Greedy']
multigoal_rule = MultigoalCCBorda
distribution = generate_uniform

experiments = []
for _ in range(repetitions):
    config = MultigoalExperimentConfig()
    config.add_candidates(distribution(-3, -3, 3, 3, m, 'None'))
    config.add_voters(distribution(-3, -3, 3, 3, n, 'None'))
    config.set_distribution_name(get_distribution_name(distribution))

    experiment = MultigoalExperiment(config)
    experiment.set_multigoal_election(MultigoalCCBorda,
                                      k,
                                      percent_thresholds=[0, 0])
    experiments.append(experiment)

for repetition, experiment in enumerate(experiments):
    for i, k_cc in enumerate(k_ccs):
        file_prefix = 'kcc' + str(k_cc)
        experiment.set_filename(file_prefix)
        experiment.run(n=1,
                       n_start=repetition + 1,
                       methods=methods,
                       k_cc=k_cc,
Ejemplo n.º 6
0
    draw_pareto_chart_from_winner_files
from pmp.multigoal.helpers import get_distribution_name
from pmp.rules import MultigoalBlocBorda

current_file = os.path.abspath(__file__)
current_dir = os.path.dirname(current_file)

repetitions = 4
k = 10
n = 100
m = 100
phi = 0.1

multigoal_rule = MultigoalBlocBorda
distribution = mallows
distribution_name = get_distribution_name(distribution)

start = 90
step = 2
dir_name = 'results_{}_{}_{}_{}_phi{}_k{}_n{}_m{}'.format(
    start, step, multigoal_rule.__name__, distribution_name, phi, k, n, m)

configs = []
for _ in range(repetitions):
    config = MultigoalExperimentConfig()
    config.mallows(phi, m, n)
    config.set_distribution_name(distribution_name)

    configs.append(config)

generate_winner_files_for_pareto(dir_name,