Ejemplo n.º 1
0
 def test_shuffle_batches(self):
     # Shape = [3, 2].
     tensor_1 = tf.constant([[1, 2], [3, 4], [5, 6]])
     tensor_2 = tf.constant([[11, 12], [13, 14], [15, 16]])
     tensor_3 = tf.constant([[21, 22], [23, 24], [25, 26]])
     shuffled_tensor_1, shuffled_tensor_2, shuffled_tensor_3 = (
         data_utils.shuffle_batches([tensor_1, tensor_2, tensor_3]))
     tensor_diff_21 = shuffled_tensor_2 - shuffled_tensor_1
     tensor_diff_31 = shuffled_tensor_3 - shuffled_tensor_1
     self.assertAllEqual(tensor_diff_21, [[10, 10], [10, 10], [10, 10]])
     self.assertAllEqual(tensor_diff_31, [[20, 20], [20, 20], [20, 20]])
Ejemplo n.º 2
0
  def train_one_iteration(inputs):
    """Trains the model for one iteration.

    Args:
      inputs: A dictionary for training inputs.

    Returns:
      The training loss for this iteration.
    """
    _, side_outputs = pipelines.create_model_input(
        inputs, FLAGS.model_input_keypoint_type, keypoint_profile_2d,
        keypoint_profile_3d)

    keypoints_2d = side_outputs[common_module.KEY_PREPROCESSED_KEYPOINTS_2D]
    keypoints_3d, _ = keypoint_preprocessor_3d(
        inputs[common_module.KEY_KEYPOINTS_3D],
        keypoint_profile_3d,
        normalize_keypoints_3d=True)
    keypoints_2d, keypoints_3d = data_utils.shuffle_batches(
        [keypoints_2d, keypoints_3d])

    return model.train((keypoints_2d, keypoints_3d), **optimizers)