Ejemplo n.º 1
0
	def add_shape(self, f):
		#Create shape
		S = Shape(f, self.R, self.SHAPE_R)
	
		#Add to shape list
		S.shape_num = len(self.shape_list)
		self.shape_list.append(S)
		
		row = []
		for k in range(len(self.shape_list)):
			T = self.shape_list[k]
			ift = real(ipfft(pft_mult(pft_rotate(S.pft, 2.*pi/6.), T.pft), 2*self.SHAPE_R+1,2*self.SHAPE_R+1))
			Spad = imrotate(cpad(S.indicator, array([2*self.SHAPE_R+1,2*self.SHAPE_R+1])), 360./6.)
			Tpad = cpad(T.indicator, array([2*self.SHAPE_R+1,2*self.SHAPE_R+1]))
			pind = real(fftconvolve(Spad, Tpad, mode='same'))
			imshow(pind)
			imshow(ift)
			obst = to_ind(pind, 0.001)
			imshow(obst)
			cutoff = best_cutoff(ift, obst, S.radius + T.radius)
			print cutoff
			imshow(to_ind(ift, cutoff))
			row.append(cutoff * self.tarea)
		self.cutoff_matrix.append(row)

		return S
Ejemplo n.º 2
0
from misc import *

import fourier_obstacle as obstacle
from polar import ipfft, pft_mult
import os
import pickle

db = obstacle.ShapeSet(32, 256)
db.add_shape(load_img("shape3.png"))
db.add_shape(load_img("shape4.png"))


A = db.shape_list[0]
B = db.shape_list[1]

pconv = ipfft(pft_mult(A.pft, B.pft), 513, 513)
imsave("test1.png",  pconv)
imshow(pconv)

#Contstruct sampled convolution field
sconv = zeros((513, 513))
for i in range(513):
	for j in range(513):
		x = 257. - i
		y = 257. - j
		sconv[i, j] = db.potential(A, B, array([0., 0.]), array([x, y]), 0., pi/6.)
		print x,y, sconv[i,j]
		
imsave("test2.png", sconv)
imshow(sconv)
Ejemplo n.º 3
0
	def __init__(self, mass_field, R, SHAPE_R):
		
		#Set basic parameters
		self.R = R
		self.SHAPE_R = SHAPE_R
		self.mass_field = mass_field
		self.mass = sum(mass_field.flatten())

		#Recenter shape so that its center of mass is at the center of image
		center = array(ndi.center_of_mass(mass_field))
		offset = array(mass_field.shape)/2 - center
		nshape = (array(mass_field.shape) + 2. * abs(offset)).round()
		tmp = cpad(mass_field, nshape)
		self.mass_field = ndi.shift(tmp, offset, order=1)
		self.center = array(self.mass_field.shape) / 2
		
		assert(self.mass_field.shape[0] <= SHAPE_R)
		assert(self.mass_field.shape[1] <= SHAPE_R)
		
		#Set indicator/shape area
		self.indicator = to_ind(self.mass_field, 0.01)
		self.area = sum(self.indicator.flatten())
		
		#Compute moment of inertia and radius
		self.moment = 0.
		self.radius = 0.
		for x,p in ndenumerate(self.mass_field):
			r = array(x) - self.center
			self.moment += p * dot(r,r)
			if(p > 0.01):
				self.radius = max(self.radius, norm(r))
		
		#Set shape indicator
		self.shape_num = -1
		
		#Compute polar fourier truncation of indicator
		pind = cpad(self.indicator, array([2*SHAPE_R+1,2*SHAPE_R+1]))
		self.pft  = pfft(pind, R)
		ift = real(ipfft(self.pft, pind.shape[0], pind.shape[1]))
		self.pft[0][0] -= min(ift.flatten()) * ((2. * SHAPE_R + 1) ** 2) #Enforce positivity
		self.pdft = map(pds.diff, self.pft)

		#Compute cutoff parameters
		ift = real(ipfft(self.pft, pind.shape[0], pind.shape[1]))
		self.cutoff = best_cutoff(ift, pind, self.radius)
		ind_ift = to_ind(ift, self.cutoff)
		self.int_res = sum((ift * ind_ift).flatten())
		self.ext_res = sum((ift * (1. - ind_ift)).flatten())
		self.res_area = sum(ind_ift.flatten())
		
		imshow(pind)
		imshow(to_ind(ift, self.cutoff))
		
		#Compute residual energy terms
		self.energy = []
		s = real(self.pft[0][0]) * pi
		for r,l in enumerate(self.pft):
			s += sum(abs(self.pft[r])) * (r * 2. * pi / len(self.pft[r]))
			self.energy.append(s)
		self.total_energy = s
		for r,e in enumerate(self.energy):
			self.energy[r] = s - self.energy[r]