Ejemplo n.º 1
0
def test_get_annotations_for_image(coco_test: CocoDataset):
    coco_test.reindex()
    img_idx = 1
    ann_idxs = coco_test.index.imgidx_to_annidxs[img_idx]
    coco_test.remove_annotations(ann_idxs)
    anns = coco_test.get_annotations(img_idx)
    assert isinstance(anns, list)
    assert len(anns) == 0
Ejemplo n.º 2
0
def merge_datasets(
    datasets: List[Union[SemanticCocoDataset, CocoDataset, InstanceCoco]],
    dest_path: Union[str, Path] = None,
) -> CocoDataset:

    # compute category to cat_idx map for each dataset
    cat_to_idx = [{v["name"]: k
                   for k, v in ds_item.cats.items()} for ds_item in datasets]
    category_names = [list(ctx.keys()) for ctx in cat_to_idx]
    flat_category_name = sorted(
        [item for sublist in category_names for item in sublist])

    # collect all category names
    merged_cat_names = set(flat_category_name)

    merged_idx_to_cat = dict(enumerate(sorted(merged_cat_names), start=1))
    merged_cat_to_idx = {v: k for k, v in merged_idx_to_cat.items()}

    # map categories for each dataset to merged one
    cat_map = [{v: merged_cat_to_idx[k]
                for k, v in ctx.items()} for ctx in cat_to_idx]

    # initializize merged dataset
    out_ds = CocoDataset(dest_path)
    for _, cat_name in sorted(merged_idx_to_cat.items()):
        out_ds.add_category(cat_name, "thing")

    for ds_item, cat_map_item in zip(datasets, cat_map):
        img_names = {a["file_name"]: a["id"] for a in out_ds.imgs.values()}
        # add images
        for img_meta in ds_item.imgs.values():
            # remark: if datasets are not disjoint the might bo overlap here to take care of, i.e. possible multiple definitions of images
            if img_meta["file_name"] not in img_names:
                img_idx = out_ds.add_image(**img_meta)
                img_names[img_meta["file_name"]] = img_idx
            else:
                img_idx = img_names[img_meta["file_name"]]

            orig_img_idx = img_meta["id"]
            anns = ds_item.get_annotations(img_idx=orig_img_idx)
            # add anns
            for ann in anns:
                mapped_ann = rename_annotation_keys(ann)
                mapped_ann["img_id"] = img_idx  # new image idx
                mapped_ann["cat_id"] = cat_map_item[
                    mapped_ann["cat_id"]]  # new category index
                out_ds.add_annotation(**mapped_ann)

    out_ds.reindex()
    return out_ds
Ejemplo n.º 3
0
def test_get_cvat_categories(coco_test: CocoDataset):
    coco_test.reindex()
    expected = [{
        'name': 'bear',
        'color': '',
        'attributes': []
    }, {
        'name': 'toaster',
        'color': '',
        'attributes': []
    }, {
        'name': 'hair drier',
        'color': '',
        'attributes': []
    }]
    cvat_categories = coco_test.get_cvat_categories()
    assert cvat_categories == expected
Ejemplo n.º 4
0
def test_update_images_path(coco_test: CocoDataset):
    coco_test.update_images_path(lambda x: Path(x).name)
    coco_test.reindex()
    assert coco_test.imgs[1]['file_name'] == '000000001442.jpg'