Ejemplo n.º 1
0
def run(file):
    """Command for running a polyaxonfile."""
    plx_file = PolyaxonFile(file)
    if plx_file.run_type == RunTypes.LOCAL:
        # check that polyaxon is installed
        version = get_version(PROJECT_NAME)
        if version is None:
            click.echo("""In order to run locally, polyaxon must be installed.""")
            if click.confirm("Do you want to install polyaxon now?"):
                from polyaxon_cli.cli.version import pip_upgrade
                pip_upgrade(PROJECT_NAME)
            else:
                click.echo("""Your can manually run:
    pip install -U polyaxon
to install to the latest version of polyaxon)""")
                sys.exit(0)

        logger.info('Running polyaxonfile locally')
        from polyaxon.polyaxonfile.local_runner import run
        run(file)
Ejemplo n.º 2
0
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function

import polyaxon as plx

from polyaxon.polyaxonfile import local_runner

if __name__ == "__main__":
    """Creates an experiment using cnn for CIFAR-10 dataset classification task.

    References:
        * Learning Multiple Layers of Features from Tiny Images, A. Krizhevsky, 2009.

    Links:
        * [CIFAR-10 Dataset](https://www.cs.toronto.edu/~kriz/cifar.html)
    """
    plx.datasets.cifar10.prepare('../data/cifar10')
    local_runner.run('./yaml_configs/convnet_cifar10.yml')
Ejemplo n.º 3
0
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function

import polyaxon as plx

from polyaxon.polyaxonfile import local_runner

if __name__ == "__main__":
    """Creates an experiment using Lenet network.

    Links:
        * http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
    """
    plx.datasets.mnist.prepare('../data/mnist')
    local_runner.run('./yaml_configs/lenet.yml')
Ejemplo n.º 4
0
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function

import polyaxon as plx

from polyaxon.polyaxonfile import local_runner

if __name__ == "__main__":
    """Creates an auto encoder on MNIST handwritten digits.

    inks:
        * [MNIST Dataset] http://yann.lecun.com/exdb/mnist/
    """
    plx.datasets.mnist.prepare('../data/mnist')
    local_runner.run('./yaml_configs/conv_autoencoder_mnist.yml')
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function

import polyaxon as plx

from polyaxon.polyaxonfile import local_runner


if __name__ == "__main__":
    """Creates a variational auto encoder on MNIST handwritten digits.

    inks:
        * [MNIST Dataset] http://yann.lecun.com/exdb/mnist/
    """
    plx.datasets.mnist.prepare('../data/mnist')

    local_runner.run('./yaml_configs/variational_autoencoder.yml')
Ejemplo n.º 6
0
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function

import polyaxon as plx

from polyaxon.polyaxonfile import local_runner


if __name__ == "__main__":
    """Creates an experiement using a VGG19 to mnist Dataset.

    References:
        * Very Deep Convolutional Networks for Large-Scale Image Recognition.
        K. Simonyan, A. Zisserman. arXiv technical report, 2014.

    Links:
        * http://arxiv.org/pdf/1409.1556
    """
    plx.datasets.mnist.prepare('../data/mnist')
    local_runner.run('./yaml_configs/vgg19.yml')
Ejemplo n.º 7
0
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function

import polyaxon as plx

from polyaxon.polyaxonfile import local_runner

if __name__ == "__main__":
    """Creates an experiment using cnn for MNIST dataset classification task.

    References:
        * Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to
        document recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998.
    Links:
        * [MNIST Dataset] http://yann.lecun.com/exdb/mnist/
    """
    plx.datasets.mnist.prepare('../data/mnist')
    local_runner.run('./yaml_configs/conv_mnist.yml')
Ejemplo n.º 8
0
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function

import polyaxon as plx

from polyaxon.polyaxonfile import local_runner

if __name__ == "__main__":
    """Creates an experiment using Alexnet applied to Oxford's 17  Category Flower Dataset.

    References:
        * Alex Krizhevsky, Ilya Sutskever & Geoffrey E. Hinton. ImageNet Classification with
        Deep Convolutional Neural Networks. NIPS, 2012.
        * 17 Category Flower Dataset. Maria-Elena Nilsback and Andrew Zisserman.

    Links:
        * [AlexNet Paper](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)  # noqa
        * [Flower Dataset (17)](http://www.robots.ox.ac.uk/~vgg/data/flowers/17/)
    """
    plx.datasets.flowers17.prepare('../data/flowers17')
    local_runner.run('./yaml_configs/alexnet_flower17.yml')
Ejemplo n.º 9
0
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function

import polyaxon as plx

from polyaxon.polyaxonfile import local_runner


if __name__ == "__main__":
    """Creates an auto encoder on MNIST handwritten digits.

    inks:
        * [MNIST Dataset] http://yann.lecun.com/exdb/mnist/
    """
    plx.datasets.mnist.prepare('../data/mnist')
    local_runner.run('./yaml_configs/denoising_conv_autoencoder.yml')