Ejemplo n.º 1
0
    >>> import numpy.polynomial as P
    >>> import numpy.polynomial.chebyshev as C
    >>> P.polyroots((-1,1,-1,1)) # x^3 - x^2 + x - 1 has two complex roots
    array([ -4.99600361e-16-1.j,  -4.99600361e-16+1.j,   1.00000e+00+0.j])
    >>> C.chebroots((-1,1,-1,1)) # T3 - T2 + T1 - T0 has only real roots
    array([ -5.00000000e-01,   2.60860684e-17,   1.00000000e+00])

    """
    # cs is a trimmed copy
    [cs] = pu.as_series([cs])
    if len(cs) <= 1:
        return np.array([], dtype=cs.dtype)
    if len(cs) == 2:
        return np.array([-cs[0] / cs[1]])
    n = len(cs) - 1
    cmat = np.zeros((n, n), dtype=cs.dtype)
    cmat.flat[1::n + 1] = .5
    cmat.flat[n::n + 1] = .5
    cmat[1, 0] = 1
    cmat[:, -1] -= cs[:-1] * (.5 / cs[-1])
    roots = la.eigvals(cmat)
    roots.sort()
    return roots


#
# Chebyshev series class
#

exec polytemplate.substitute(name='Chebyshev', nick='cheb', domain='[-1,1]')
Ejemplo n.º 2
0
    array([ -1.00000000e+00,  -1.38777878e-17,   1.00000000e+00])

    """
    # cs is a trimmed copy
    [cs] = pu.as_series([cs])
    if len(cs) <= 1 :
        return np.array([], dtype=cs.dtype)
    if len(cs) == 2 :
        return np.array([-.5*cs[0]/cs[1]])

    n = len(cs) - 1
    cs /= cs[-1]
    cmat = np.zeros((n,n), dtype=cs.dtype)
    cmat[1, 0] = .5
    for i in range(1, n):
        cmat[i - 1, i] = i
        if i != n - 1:
            cmat[i + 1, i] = .5
        else:
            cmat[:, i] -= cs[:-1]*.5
    roots = la.eigvals(cmat)
    roots.sort()
    return roots


#
# Hermite series class
#

exec polytemplate.substitute(name='Hermite', nick='herm', domain='[-1,1]')
Ejemplo n.º 3
0
    """
    # cs is a trimmed copy
    [cs] = pu.as_series([cs])
    if len(cs) <= 1 :
        return np.array([], dtype=cs.dtype)
    if len(cs) == 2 :
        return np.array([-cs[0]/cs[1]])

    n = len(cs) - 1
    cs /= cs[-1]
    cmat = np.zeros((n,n), dtype=cs.dtype)
    cmat[1, 0] = 1
    for i in range(1, n):
        tmp = 2*i + 1
        cmat[i - 1, i] = i/tmp
        if i != n - 1:
            cmat[i + 1, i] = (i + 1)/tmp
        else:
            cmat[:, i] -= cs[:-1]*(i + 1)/tmp
    roots = la.eigvals(cmat)
    roots.sort()
    return roots


#
# Legendre series class
#

exec polytemplate.substitute(name='Legendre', nick='leg', domain='[-1,1]')
Ejemplo n.º 4
0
    Parameters
    ----------
    npts : int
        Number of sample points desired.

    Returns
    -------
    pts : ndarray
        The Chebyshev points of the second kind.

    Notes
    -----
    .. versionadded:: 1.5.0

    """
    _npts = int(npts)
    if _npts != npts:
        raise ValueError("npts must be integer")
    if _npts < 2:
        raise ValueError("npts must be >= 2")

    x = np.linspace(-np.pi, 0, _npts)
    return np.cos(x)


#
# Chebyshev series class
#

exec polytemplate.substitute(name='Chebyshev', nick='cheb', domain='[-1,1]')
Ejemplo n.º 5
0
    """
    # cs is a trimmed copy
    [cs] = pu.as_series([cs])
    if len(cs) <= 1 :
        return np.array([], dtype=cs.dtype)
    if len(cs) == 2 :
        return np.array([-cs[0]/cs[1]])

    n = len(cs) - 1
    cs /= cs[-1]
    cmat = np.zeros((n,n), dtype=cs.dtype)
    cmat[1, 0] = 1
    for i in range(1, n):
        tmp = 2*i + 1
        cmat[i - 1, i] = i/tmp
        if i != n - 1:
            cmat[i + 1, i] = (i + 1)/tmp
        else:
            cmat[:, i] -= cs[:-1]*(i + 1)/tmp
    roots = la.eigvals(cmat)
    roots.sort()
    return roots


#
# Legendre series class
#

exec polytemplate.substitute(name='Legendre', nick='leg', domain='[-1,1]')
Ejemplo n.º 6
0
    """
    # cs is a trimmed copy
    [cs] = pu.as_series([cs])
    if len(cs) <= 1 :
        return np.array([], dtype=cs.dtype)
    if len(cs) == 2 :
        return np.array([1 + cs[0]/cs[1]])

    n = len(cs) - 1
    cs /= cs[-1]
    cmat = np.zeros((n,n), dtype=cs.dtype)
    cmat[0, 0] = 1
    cmat[1, 0] = -1
    for i in range(1, n):
        cmat[i - 1, i] = -i
        cmat[i, i] = 2*i + 1
        if i != n - 1:
            cmat[i + 1, i] = -(i + 1)
        else:
            cmat[:, i] += cs[:-1]*(i + 1)
    roots = la.eigvals(cmat)
    roots.sort()
    return roots


#
# Laguerre series class
#

exec polytemplate.substitute(name='Laguerre', nick='lag', domain='[-1,1]')
Ejemplo n.º 7
0
    >>> import numpy.polynomial as P
    >>> P.polyroots(P.polyfromroots((-1,0,1)))
    array([-1.,  0.,  1.])
    >>> P.polyroots(P.polyfromroots((-1,0,1))).dtype
    dtype('float64')
    >>> j = complex(0,1)
    >>> P.polyroots(P.polyfromroots((-j,0,j)))
    array([  0.00000000e+00+0.j,   0.00000000e+00+1.j,   2.77555756e-17-1.j])

    """
    # cs is a trimmed copy
    [cs] = pu.as_series([cs])
    if len(cs) <= 1:
        return np.array([], dtype=cs.dtype)
    if len(cs) == 2:
        return np.array([-cs[0] / cs[1]])
    n = len(cs) - 1
    cmat = np.zeros((n, n), dtype=cs.dtype)
    cmat.flat[n::n + 1] = 1
    cmat[:, -1] -= cs[:-1] / cs[-1]
    roots = la.eigvals(cmat)
    roots.sort()
    return roots


#
# polynomial class
#

exec polytemplate.substitute(name='Polynomial', nick='poly', domain='[-1,1]')
Ejemplo n.º 8
0
    array([-1.,  0.,  1.])
    >>> P.polyroots(P.polyfromroots((-1,0,1))).dtype
    dtype('float64')
    >>> j = complex(0,1)
    >>> P.polyroots(P.polyfromroots((-j,0,j)))
    array([  0.00000000e+00+0.j,   0.00000000e+00+1.j,   2.77555756e-17-1.j])

    """
    # cs is a trimmed copy
    [cs] = pu.as_series([cs])
    if len(cs) <= 1 :
        return np.array([], dtype=cs.dtype)
    if len(cs) == 2 :
        return np.array([-cs[0]/cs[1]])

    n = len(cs) - 1
    cmat = np.zeros((n,n), dtype=cs.dtype)
    cmat.flat[n::n+1] = 1
    cmat[:,-1] -= cs[:-1]/cs[-1]
    roots = la.eigvals(cmat)
    roots.sort()
    return roots


#
# polynomial class
#

exec polytemplate.substitute(name='Polynomial', nick='poly', domain='[-1,1]')

Ejemplo n.º 9
0
    """
    # cs is a trimmed copy
    [cs] = pu.as_series([cs])
    if len(cs) <= 1:
        return np.array([], dtype=cs.dtype)
    if len(cs) == 2:
        return np.array([1 + cs[0] / cs[1]])

    n = len(cs) - 1
    cs /= cs[-1]
    cmat = np.zeros((n, n), dtype=cs.dtype)
    cmat[0, 0] = 1
    cmat[1, 0] = -1
    for i in range(1, n):
        cmat[i - 1, i] = -i
        cmat[i, i] = 2 * i + 1
        if i != n - 1:
            cmat[i + 1, i] = -(i + 1)
        else:
            cmat[:, i] += cs[:-1] * (i + 1)
    roots = la.eigvals(cmat)
    roots.sort()
    return roots


#
# Laguerre series class
#

exec polytemplate.substitute(name='Laguerre', nick='lag', domain='[-1,1]')
Ejemplo n.º 10
0
    Examples
    --------
    >>> import numpy.polynomial.polynomial as poly
    >>> poly.polyroots(poly.polyfromroots((-1,0,1)))
    array([-1.,  0.,  1.])
    >>> poly.polyroots(poly.polyfromroots((-1,0,1))).dtype
    dtype('float64')
    >>> j = complex(0,1)
    >>> poly.polyroots(poly.polyfromroots((-j,0,j)))
    array([  0.00000000e+00+0.j,   0.00000000e+00+1.j,   2.77555756e-17-1.j])

    """
    # cs is a trimmed copy
    [cs] = pu.as_series([cs])
    if len(cs) < 2:
        return np.array([], dtype=cs.dtype)
    if len(cs) == 2:
        return np.array([-cs[0] / cs[1]])

    m = polycompanion(cs)
    r = la.eigvals(m)
    r.sort()
    return r


#
# polynomial class
#

exec polytemplate.substitute(name="Polynomial", nick="poly", domain="[-1,1]")