Ejemplo n.º 1
0
H = h_int_kanamori(spin_names, orb_names,
                   np.array([[0, U - 3 * J], [U - 3 * J, 0]]),
                   np.array([[U, U - 2 * J], [U - 2 * J, U]]), J, True)
H -= mu * N

# Diagonalize H
ed.diagonalize(H)

# Compute G(i\omega)
G_iw = ed.G_iw(gf_struct, beta, n_iw)

# Compute G(\tau)
G_tau = ed.G_tau(gf_struct, beta, n_tau)

# Compute G(\omega)
G_w = ed.G_w(gf_struct, beta, energy_window, n_w, 0.01)

###########
# G^{(2)} #
###########

common_g2_params = {
    'gf_struct': gf_struct,
    'beta': beta,
    'blocks': g2_blocks,
    'n_iw': g2_n_iw
}

###############################
# G^{(2)}(i\omega;i\nu,i\nu') #
###############################
Ejemplo n.º 2
0
def make_calc():

    # ------------------------------------------------------------------
    # -- Hubbard atom with two bath sites, Hamiltonian

    params = dict(
        beta=2.0,
        V1=2.0,
        V2=5.0,
        epsilon1=0.00,
        epsilon2=4.00,
        mu=2.0,
        U=5.0,
        ntau=40,
        niw=15,
    )

    # ------------------------------------------------------------------

    class Dummy():
        def __init__(self):
            pass

    d = Dummy()  # storage space
    d.params = params

    print '--> Solving SIAM with parameters'
    for key, value in params.items():
        print '%10s = %-10s' % (key, str(value))
        globals()[key] = value  # populate global namespace

    # ------------------------------------------------------------------

    up, do = 'up', 'dn'
    docc = c_dag(up, 0) * c(up, 0) * c_dag(do, 0) * c(do, 0)
    nA = c_dag(up, 0) * c(up, 0) + c_dag(do, 0) * c(do, 0)
    nB = c_dag(up, 1) * c(up, 1) + c_dag(do, 1) * c(do, 1)
    nC = c_dag(up, 2) * c(up, 2) + c_dag(do, 2) * c(do, 2)

    d.H = -mu * nA + epsilon1 * nB + epsilon2 * nC + U * docc + \
        V1 * (c_dag(up,0)*c(up,1) + c_dag(up,1)*c(up,0) + \
              c_dag(do,0)*c(do,1) + c_dag(do,1)*c(do,0) ) + \
        V2 * (c_dag(up,0)*c(up,2) + c_dag(up,2)*c(up,0) + \
              c_dag(do,0)*c(do,2) + c_dag(do,2)*c(do,0) )

    # ------------------------------------------------------------------
    # -- Exact diagonalization

    # Conversion from TRIQS to Pomerol notation for operator indices
    # TRIQS:   block_name, inner_index
    # Pomerol: site_label, orbital_index, spin_name
    index_converter = {
        (up, 0): ('loc', 0, 'up'),
        (do, 0): ('loc', 0, 'down'),
        (up, 1): ('loc', 1, 'up'),
        (do, 1): ('loc', 1, 'down'),
        (up, 2): ('loc', 2, 'up'),
        (do, 2): ('loc', 2, 'down'),
    }

    # -- Create Exact Diagonalization instance
    ed = PomerolED(index_converter, verbose=True)
    ed.diagonalize(d.H)  # -- Diagonalize H

    gf_struct = [[up, [0]], [do, [0]]]

    # -- Single-particle Green's functions
    G_iw = ed.G_iw(gf_struct, beta, n_iw=niw)
    G_tau = ed.G_tau(gf_struct, beta, n_tau=ntau)
    G_w = ed.G_w(gf_struct,
                 beta,
                 energy_window=(-2.5, 2.5),
                 n_w=100,
                 im_shift=0.01)

    d.G_iw = G_iw['up']
    d.G_tau = G_tau['up']
    d.G_w = G_w['up']

    # -- Particle-particle two-particle Matsubara frequency Green's function
    opt = dict(block_order='AABB',
               beta=beta,
               gf_struct=gf_struct,
               blocks=set([("up", "dn")]),
               n_iw=niw,
               n_inu=niw)

    G2_iw = ed.G2_iw_inu_inup(channel='AllFermionic', **opt)
    d.G2_iw = G2_iw['up', 'dn']

    G2_iw_pp = ed.G2_iw_inu_inup(channel='PP', **opt)
    d.G2_iw_pp = G2_iw_pp['up', 'dn']

    G2_iw_ph = ed.G2_iw_inu_inup(channel='PH', **opt)
    d.G2_iw_ph = G2_iw_ph['up', 'dn']

    # ------------------------------------------------------------------
    # -- Store to hdf5

    filename = 'data_pomerol.h5'
    with HDFArchive(filename, 'w') as res:
        for key, value in d.__dict__.items():
            res[key] = value