Ejemplo n.º 1
0
 def generate_prediction(self, x, y, sigma, theta, phi, cpd):
     
     # make sure theta and phi are 0-2*pi
     theta = np.mod(theta, 2*np.pi)
     phi = np.mod(theta, 2*np.pi)
     
     # create mask for speed
     distance = (self.stimulus.deg_x - x)**2 + (self.stimulus.deg_y - y)**2
     mask = np.zeros_like(distance, dtype='uint8')
     mask[distance < (5*sigma)**2] = 1
     
     # generate the RF
     rf = generate_gabor_receptive_field(x, y, sigma, theta, phi, cpd,
                                         self.stimulus.deg_x, self.stimulus.deg_y)
     
     # extract the stimulus time-series
     response = generate_rf_timeseries(self.stimulus.stim_arr, rf, mask)
     
     # convolve with the HRF
     hrf = self.hrf_model(0, self.stimulus.tr_length)
     
     # convolve it with the stimulus
     model = fftconvolve(response, hrf, 'same')
     
     return model
Ejemplo n.º 2
0
 def receptive_field(self):
     return generate_gabor_receptive_field(*self.estimate)