Ejemplo n.º 1
0
def test_metallicity():
    """
    Test isochrone generation at different metallicities
    """
    # Define isochrone parameters
    logAge = np.log10(5 * 10**6.)
    AKs = 0.8
    dist = 4000
    evo_model = evolution.MISTv1()
    atm_func = atmospheres.get_phoenixv16_atmosphere
    red_law = reddening.RedLawHosek18b()
    filt_list = ['wfc3,ir,f127m', 'wfc3,ir,f139m', 'wfc3,ir,f153m']

    # Start with a solar metallicity isochrone
    metallicity = 0.0

    # Make Isochrone object, with high mass_sampling to decrease compute time
    my_iso = synthetic.IsochronePhot(logAge,
                                     AKs,
                                     dist,
                                     metallicity=metallicity,
                                     evo_model=evo_model,
                                     atm_func=atm_func,
                                     red_law=red_law,
                                     filters=filt_list,
                                     mass_sampling=10)

    # Test isochrone properties
    assert my_iso.points.meta['METAL_IN'] == 0.0
    assert os.path.exists('iso_6.70_0.80_04000_p00.fits')

    # Now for non-solar metallicity
    metallicity = -1.5

    # Make Isochrone object, with high mass_sampling to decrease compute time
    my_iso = synthetic.IsochronePhot(logAge,
                                     AKs,
                                     dist,
                                     metallicity=metallicity,
                                     evo_model=evo_model,
                                     atm_func=atm_func,
                                     red_law=red_law,
                                     filters=filt_list,
                                     mass_sampling=10)

    metal_act = np.log10(0.00047 / 0.0142)  # For Mist isochrones

    # Test isochrone properties
    assert my_iso.points.meta['METAL_IN'] == -1.5
    assert my_iso.points.meta['METAL_ACT'] == metal_act
    assert os.path.exists('iso_6.70_0.80_04000_m15.fits')

    return
Ejemplo n.º 2
0
def test_IsochronePhot(plot=False):
    from popstar import synthetic as syn

    logAge = 6.7
    AKs = 2.7
    distance = 4000
    filt_list = ['wfc3,ir,f127m', 'nirc2,J']
    mass_sampling = 1

    startTime = time.time()
    iso = syn.IsochronePhot(logAge,
                            AKs,
                            distance,
                            filters=filt_list,
                            mass_sampling=mass_sampling)
    endTime = time.time()
    print('Test completed in: %d seconds' % (endTime - startTime))
    # Typically takes 120 seconds if file is regenerated.
    # Limited by pysynphot.Icat call in atmospheres.py

    assert iso.points.meta['LOGAGE'] == logAge
    assert iso.points.meta['AKS'] == AKs
    assert iso.points.meta['DISTANCE'] == distance
    assert len(iso.points) > 100

    assert 'm_nirc2_J' in iso.points.colnames

    if plot:
        plt.figure(1)
        iso.plot_CMD('mag814w', 'mag160w')

        plt.figure(2)
        iso.plot_mass_magnitude('mag160w')

    return
Ejemplo n.º 3
0
def time_test_cluster():
    from popstar import synthetic as syn
    from popstar import atmospheres as atm
    from popstar import evolution
    from popstar import reddening
    from popstar.imf import imf
    from popstar.imf import multiplicity

    logAge = 6.7
    AKs = 2.7
    distance = 4000
    cluster_mass = 10**4

    startTime = time.time()
    
    evo = evolution.MergedBaraffePisaEkstromParsec()
    atm_func = atm.get_merged_atmosphere
    red_law = reddening.RedLawNishiyama09()
    filt_list = ['nirc2,J', 'nirc2,Kp']
    
    iso = syn.IsochronePhot(logAge, AKs, distance,
                            evo_model=evo, atm_func=atm_func,
                            red_law=red_law, filters=filt_list)
    print('Constructed isochrone: %d seconds' % (time.time() - startTime))

    imf_limits = np.array([0.07, 0.5, 150])
    imf_powers = np.array([-1.3, -2.35])
    multi = multiplicity.MultiplicityUnresolved()
    my_imf = imf.IMF_broken_powerlaw(imf_limits, imf_powers, multiplicity=multi)
    print('Constructed IMF with multiples: %d seconds' % (time.time() - startTime))
    
    cluster = syn.ResolvedCluster(iso, my_imf, cluster_mass)
    print('Constructed cluster: %d seconds' % (time.time() - startTime))

    return
Ejemplo n.º 4
0
    def __init__(self,
                 age=3.9e6,
                 ext=2.63,
                 dist=7.971e3,
                 met=0.0,
                 phase=None,
                 use_atm_func='merged'):
        log_age = np.log10(age)

        self.log_age = log_age
        self.A_Ks = ext
        self.dist = dist
        self.met = met

        # Evolution/Atmosphere Models
        evo_model = evolution.MISTv1()

        if use_atm_func == 'merged':
            atm_func = atmospheres.get_merged_atmosphere
        elif use_atm_func == 'phoenix':
            atm_func = atmospheres.get_phoenixv16_atmosphere

        # Extinction law
        red_law = reddening.RedLawNoguerasLara18()
        self.ext_alpha = 2.30

        ## Calculate extinctions implied by isochrone extinction
        self.A_B = self.A_Ks * (lambda_Ks / lambda_B)**self.ext_alpha
        self.A_R = self.A_Ks * (lambda_Ks / lambda_R)**self.ext_alpha

        # Create an isochhrone with the given parameters
        self.iso_curAge = synthetic.IsochronePhot(self.log_age,
                                                  self.A_Ks,
                                                  self.dist,
                                                  evo_model=evo_model,
                                                  atm_func=atm_func,
                                                  red_law=red_law,
                                                  metallicity=self.met,
                                                  filters=self.filt_list)

        # Save out specific stellar parameter columns needed
        ## If needing specific phase, draw it out before saving
        if phase is not None:
            phase_check = np.where(
                self.iso_curAge.points['phase'] == mist_phase_dict[phase])
        else:
            phase_check = np.where(self.iso_curAge.points['phase'] >= -1)

        self.iso_mass_init = self.iso_curAge.points['mass'][phase_check]
        self.iso_mass = self.iso_curAge.points['mass_current'][phase_check]
        self.iso_rad = (self.iso_curAge.points['R'][phase_check]).to(u.solRad)
        self.iso_lum = self.iso_curAge.points['L'][phase_check]
        self.iso_teff = self.iso_curAge.points['Teff'][phase_check]

        self.iso_mag_B = self.iso_curAge.points['m_ubv_B'][phase_check]
        self.iso_mag_R = self.iso_curAge.points['m_ubv_R'][phase_check]

        self.iso_rad_min = np.min(self.iso_rad).value
        self.iso_rad_max = np.max(self.iso_rad).value
Ejemplo n.º 5
0
def animate_ages():
    # Define isochrone parameters
    dist = 4000  # distance in parsecs
    AKs = 1.0  # Ks filter extinction in mags

    logAge = np.arange(6, 9, 0.05)  # Age in log(years)

    # Define extinction law and filters
    redlaw = reddening.RedLawCardelli(3.1)  # Rv = 3.1
    evo_model = evolution.MISTv1()

    filt_list = ['nirc2,J', 'nirc2,Kp']

    plt.figure(1)

    for aa in range(len(logAge)):
        iso = synthetic.IsochronePhot(logAge[aa],
                                      AKs,
                                      dist,
                                      filters=filt_list,
                                      red_law=redlaw,
                                      evo_model=evo_model,
                                      mass_sampling=3)

        plt.clf()
        plt.plot(iso.points['m_nirc2_J'] - iso.points['m_nirc2_Kp'],
                 iso.points['m_nirc2_J'])
        plt.xlabel('J - Kp')
        plt.ylabel('J')
        plt.gca().invert_yaxis()
        plt.title('Age = 10^{0:.2f}'.format(logAge[aa]))

        plt.xlim(1, 3)
        plt.ylim(28, 6)
        plt.savefig(
            '/u/jlu/doc/present/2020_06_ucb_lunch/iso_age_{0:.2f}.png'.format(
                logAge[aa]))
Ejemplo n.º 6
0
def make_sim_cluster():
    work_dir = '/u/jlu/work/gc/jwst/2018_03_19/'

    ages = [4e6, 1e8, 8e9]
    cluster_mass = [1e4, 1e4, 1e7]
    AKs = 2.7
    deltaAKs = 1.0
    distance = 8000
    mass_sampling = 5

    isochrones = []
    clusters = []

    evo = evolution.MergedBaraffePisaEkstromParsec()
    atm_func = atm.get_merged_atmosphere
    red_law = reddening.RedLawHosek18()
    multi = multiplicity.MultiplicityUnresolved()

    imf_mass_limits = np.array([0.07, 0.5, 1, np.inf])
    imf_powers_old = np.array([-1.3, -2.3, -2.3])
    imf_powers_yng = np.array([-1.3, -1.8, -1.8])
    my_imf_old = imf.IMF_broken_powerlaw(imf_mass_limits,
                                         imf_powers_old,
                                         multiplicity=multi)
    my_imf_yng = imf.IMF_broken_powerlaw(imf_mass_limits,
                                         imf_powers_yng,
                                         multiplicity=multi)

    # Test all filters
    filt_list = [
        'wfc3,ir,f127m', 'wfc3,ir,f139m', 'wfc3,ir,f153m', 'acs,wfc1,f814w',
        'wfc3,ir,f125w', 'wfc3,ir,f160w', 'jwst,F090W', 'jwst,F115W',
        'jwst,F164N', 'jwst,F187N', 'jwst,F212N', 'jwst,F323N', 'jwst,F405N',
        'jwst,F466N', 'jwst,F470N', 'jwst,F140M', 'jwst,F162M', 'jwst,F182M',
        'jwst,F210M', 'jwst,F250M', 'jwst,F300M', 'jwst,F335M', 'jwst,F360M',
        'jwst,F410M', 'jwst,F430M', 'jwst,F460M', 'jwst,F480M', 'nirc2,J',
        'nirc2,H', 'nirc2,Kp', 'nirc2,Lp', 'nirc2,Ms'
    ]

    startTime = time.time()
    for ii in range(len(ages)):
        logAge = np.log10(ages[ii])

        iso = syn.IsochronePhot(logAge,
                                AKs,
                                distance,
                                evo_model=evo,
                                atm_func=atm_func,
                                red_law=red_law,
                                filters=filt_list,
                                mass_sampling=mass_sampling,
                                iso_dir=work_dir)

        print('Constructed isochrone: %d seconds' % (time.time() - startTime))

        if ii < 2:
            imf_ii = my_imf_yng
        else:
            imf_ii = my_imf_old

        cluster = syn.ResolvedClusterDiffRedden(iso, imf_ii, cluster_mass[ii],
                                                deltaAKs)

        # Save generated clusters to file.
        save_file_fmt = '{0}/clust_{1:.2f}_{2:4.2f}_{3:4s}.fits'
        save_file_txt = save_file_fmt.format(work_dir, logAge, AKs,
                                             str(distance).zfill(5))
        save_file = open(save_file_txt, 'wb')
        pickle.dump(cluster, save_file)

    return

    return
Ejemplo n.º 7
0
def test_phot_consistency(filt='all'):
    """
    Test photometric consistency of generated isochrone (IsochronePhot)
    against pre-generated isochrone with native filter sampling. Requires
    consistency to within 0.005 mag.

    Base isochrone is at 5 Myr, AKs = 0, 1000 pc, mass_sampling=10 

    Paramters:
    ----------
    filt: 'all', 'hst', 'vista', 'decam', 'ps1', 'jwst'
        Specify what filter set you want to test

    """
    from astropy.table import Table
    import os

    # Load pre-generated isochrone, located in popstar tests directory
    direct = os.path.dirname(__file__)
    orig = Table.read(direct + '/iso_6.70_0.00_01000.fits', format='fits')

    # Generate new isochrone with popstar code
    if filt == 'all':
        filt_list = [
            'wfc3,ir,f127m', 'wfc3,ir,f139m', 'wfc3,ir,f153m',
            'acs,wfc1,f814w', 'wfc3,ir,f125w', 'wfc3,ir,f160w', 'decam,y',
            'decam,i', 'decam,z', 'decam,u', 'decam,g', 'decam,r', 'vista,Y',
            'vista,Z', 'vista,J', 'vista,H', 'vista,Ks', 'ps1,z', 'ps1,g',
            'ps1,r', 'ps1,i', 'ps1,y', 'jwst,F070W', 'jwst,F090W',
            'jwst,F115W', 'jwst,F140M', 'jwst,F150W', 'jwst,F150W2',
            'jwst,F162M', 'jwst,F164N', 'jwst,F182M', 'jwst,F187N',
            'jwst,F200W', 'jwst,F212N', 'jwst,F210M', 'jwst,F250M',
            'jwst,F277W', 'jwst,F300M', 'jwst,F322W2', 'jwst,F323N',
            'jwst,F335M', 'jwst,F356W', 'jwst,F360M', 'jwst,F405N',
            'jwst,F410M', 'jwst,F430M', 'jwst,F444W', 'jwst,F460M',
            'jwst,F466N', 'jwst,F470N', 'jwst,F480M', 'nirc2,J', 'nirc2,H',
            'nirc2,Kp', 'nirc2,K', 'nirc2,Lp', 'nirc2,Hcont', 'nirc2,FeII',
            'nirc2,Brgamma', 'jg,J', 'jg,H', 'jg,K', 'nirc1,K', 'nirc1_H',
            'ctio_osiris,K', 'ctio_osiris,H', 'naco,H', 'naco,Ks', 'ztf,g',
            'ztf,r', 'ztf,i'
        ]

    elif filt == 'decam':
        filt_list = [
            'decam,y', 'decam,i', 'decam,z', 'decam,u', 'decam,g', 'decam,r'
        ]
    elif filt == 'vista':
        filt_list = ['vista,Y', 'vista,Z', 'vista,J', 'vista,H', 'vista,Ks']
    elif filt == 'ps1':
        filt_list = ['ps1,z', 'ps1,g', 'ps1,r', 'ps1,i', 'ps1,y']
    elif filt == 'jwst':
        filt_list = [
            'jwst,F070W', 'jwst,F090W', 'jwst,F115W', 'jwst,F140M',
            'jwst,F150W', 'jwst,F150W2', 'jwst,F162M', 'jwst,F164N',
            'jwst,F182M', 'jwst,F187N', 'jwst,F200W', 'jwst,F212N',
            'jwst,F210M', 'jwst,F250M', 'jwst,F277W', 'jwst,F300M',
            'jwst,F322W2', 'jwst,F323N', 'jwst,F335M', 'jwst,F356W',
            'jwst,F360M', 'jwst,F405N', 'jwst,F410M', 'jwst,F430M',
            'jwst,F444W', 'jwst,F460M', 'jwst,F466N', 'jwst,F470N',
            'jwst,F480M'
        ]
    elif filt == 'hst':
        filt_list = [
            'wfc3,ir,f127m', 'wfc3,ir,f139m', 'wfc3,ir,f153m',
            'acs,wfc1,f814w', 'wfc3,ir,f125w', 'wfc3,ir,f160w'
        ]
    elif filt == 'nirc2':
        filt_list = [
            'nirc2,J', 'nirc2,H', 'nirc2,Kp', 'nirc2,K', 'nirc2,Lp',
            'nirc2,Ms', 'nirc2,Hcont', 'nirc2,FeII', 'nirc2,Brgamma'
        ]
    elif filt == 'jg':
        filt_list = ['jg,J', 'jg,H', 'jg,K']
    elif filt == 'ztf':
        filt_list = ['ztf,g', 'ztf,r', 'ztf,i']
    elif filt == 'misc':
        filt_list = [
            'nirc1,K', 'nirc1,H', 'ctio_osiris,K', 'ctio_osiris,H', 'naco,H',
            'naco,Ks'
        ]

    print('Making isochrone')
    iso = synthetic.IsochronePhot(6.7,
                                  0,
                                  1000,
                                  mass_sampling=10,
                                  filters=filt_list,
                                  rebin=True)
    iso = iso.points

    # First find masses that are the same
    foo = []
    for ii in iso['mass']:
        tmp = np.where(orig['mass'] == ii)[0][0]
        foo.append(tmp)

    assert len(foo) == len(iso)
    orig = orig[foo]

    # Identify the photometry columns
    cols = list(iso.keys())
    idx = []
    for ii in range(len(cols)):
        if cols[ii].startswith('mag'):
            idx.append(ii)
    mag_cols = np.array(cols)[idx]

    # Test the consistency of each column with the original isochrone
    for ii in mag_cols:
        orig_mag = orig[ii]
        new_mag = iso[ii]

        np.testing.assert_allclose(orig_mag,
                                   new_mag,
                                   rtol=0.01,
                                   err_msg="{0} failed".format(ii))

        # Also report median abs difference
        diff = abs(orig_mag - new_mag)
        print(('{0} median abs diff: {1}'.format(ii, np.median(diff))))

    print(('Phot consistency test successful for {0}'.format(filt)))

    # Remove iso file we just wrote, since it was only a test
    os.remove('iso_6.70_0.00_01000.fits')
    return
Ejemplo n.º 8
0
def time_test_mass_match():
    from popstar import synthetic as syn
    from popstar import atmospheres as atm
    from popstar import evolution
    from popstar.imf import imf
    from popstar.imf import multiplicity

    log_age = 6.7
    AKs = 2.7
    distance = 4000
    cluster_mass = 5e3

    imf_in = imf.Kroupa_2001(multiplicity=None)

    start_time = time.time()
    iso = syn.IsochronePhot(log_age, AKs, distance)
    iso_masses = iso.points['mass']
    print('Generated iso masses in {0:.0f} s'.format(time.time() - start_time))

    start_time = time.time()
    star_masses, isMulti, compMass, sysMass = imf_in.generate_cluster(
        cluster_mass)
    print('Generated cluster masses in {0:.0f} s'.format(time.time() -
                                                         start_time))

    def match_model_masses1(isoMasses, starMasses):
        indices = np.empty(len(starMasses), dtype=int)

        for ii in range(len(starMasses)):
            theMass = starMasses[ii]

            dm = np.abs(isoMasses - theMass)
            mdx = dm.argmin()

            # Model mass has to be within 10% of the desired mass
            if (dm[mdx] / theMass) > 0.1:
                indices[ii] = -1
            else:
                indices[ii] = mdx

        return indices

    def match_model_masses2(isoMasses, starMasses):
        isoMasses_tmp = isoMasses.reshape((len(isoMasses), 1))
        kdt = KDTree(isoMasses_tmp)

        starMasses_tmp = starMasses.reshape((len(starMasses), 1))
        q_results = kdt.query(starMasses_tmp, k=1)
        indices = q_results[1]

        dm_frac = np.abs(starMasses - isoMasses[indices]) / starMasses

        idx = np.where(dm_frac > 0.1)[0]
        indices[idx] = -1

        return indices

    print('Test #1 START')
    start_time = time.time()
    idx1 = match_model_masses1(iso_masses, star_masses)
    stop_time = time.time()
    print('Test #1 STOPPED after {0:.0f} seconds'.format(stop_time -
                                                         start_time))

    print('Test #2 START')
    start_time = time.time()
    idx2 = match_model_masses2(iso_masses, star_masses)
    stop_time = time.time()
    print('Test #2 STOPPED after {0:.0f} seconds'.format(stop_time -
                                                         start_time))

    return
Ejemplo n.º 9
0
def test_ifmr_multiplicity():
    from popstar import synthetic as syn
    from popstar import atmospheres as atm
    from popstar import evolution
    from popstar import reddening
    from popstar import ifmr
    from popstar.imf import imf
    from popstar.imf import multiplicity

    # Define cluster parameters
    logAge = 9.7
    AKs = 0.0
    distance = 1000
    cluster_mass = 1e6
    mass_sampling = 5

    # Test all filters
    filt_list = ['nirc2,Kp', 'nirc2,H', 'nirc2,J']

    startTime = time.time()

    evo = evolution.MISTv1()
    atm_func = atm.get_merged_atmosphere
    ifmr_obj = ifmr.IFMR()

    red_law = reddening.RedLawNishiyama09()

    iso = syn.IsochronePhot(logAge,
                            AKs,
                            distance,
                            evo_model=evo,
                            atm_func=atm_func,
                            red_law=red_law,
                            filters=filt_list,
                            mass_sampling=mass_sampling)

    print('Constructed isochrone: %d seconds' % (time.time() - startTime))

    # Now to create the cluster.
    imf_mass_limits = np.array([0.07, 0.5, 1, np.inf])
    imf_powers = np.array([-1.3, -2.3, -2.3])

    ##########
    # Start without multiplicity and IFMR
    ##########
    my_imf1 = imf.IMF_broken_powerlaw(imf_mass_limits,
                                      imf_powers,
                                      multiplicity=None)
    print('Constructed IMF: %d seconds' % (time.time() - startTime))

    cluster1 = syn.ResolvedCluster(iso, my_imf1, cluster_mass, ifmr=ifmr_obj)
    clust1 = cluster1.star_systems
    print('Constructed cluster: %d seconds' % (time.time() - startTime))

    ##########
    # Test with multiplicity and IFMR
    ##########
    multi = multiplicity.MultiplicityUnresolved()
    my_imf2 = imf.IMF_broken_powerlaw(imf_mass_limits,
                                      imf_powers,
                                      multiplicity=multi)
    print('Constructed IMF with multiples: %d seconds' %
          (time.time() - startTime))

    cluster2 = syn.ResolvedCluster(iso, my_imf2, cluster_mass, ifmr=ifmr_obj)
    clust2 = cluster2.star_systems
    comps2 = cluster2.companions
    print('Constructed cluster with multiples: %d seconds' %
          (time.time() - startTime))

    ##########
    # Tests
    ##########

    # Check that we have black holes, neutron stars, and white dwarfs in both.
    assert len(np.where(clust1['phase'] == 101)) > 0  # WD
    assert len(np.where(clust2['phase'] == 101)) > 0
    assert len(np.where(clust1['phase'] == 102)) > 0  # NS
    assert len(np.where(clust2['phase'] == 102)) > 0
    assert len(np.where(clust1['phase'] == 103)) > 0  # BH
    assert len(np.where(clust2['phase'] == 103)) > 0

    # Now check that we have companions that are WDs, NSs, and BHs
    assert len(np.where(comps2['phase'] == 101)) > 0
    assert len(np.where(comps2['phase'] == 102)) > 0
    assert len(np.where(comps2['phase'] == 103)) > 0

    # Make sure no funky phase designations (due to interpolation effects)
    # slipped through
    idx = np.where((clust1['phase'] > 5) & (clust1['phase'] < 101)
                   & (clust1['phase'] != 9))
    idx2 = np.where((comps2['phase'] > 5) & (comps2['phase'] < 101)
                    & (comps2['phase'] != 9))
    assert len(idx[0]) == 0

    return
Ejemplo n.º 10
0
def test_iso_wave():
    """
    Test to make sure isochrones generated have spectra with the proper 
    wavelength range, and that the user has control over that wavelength
    range (propagated through IsochronePhot)
    """
    # Define isochrone parameters
    logAge = np.log10(5 * 10**6.)  # Age in log(years)
    AKs = 0.8  # extinction in mags
    dist = 4000  # distance in parsec

    # Define evolution/atmosphere models and extinction law (optional)
    evo_model = evolution.MergedBaraffePisaEkstromParsec()
    atm_func = atmospheres.get_merged_atmosphere
    red_law = reddening.RedLawHosek18b()

    # Also specify filters for synthetic photometry (optional). Here we use
    # the HST WFC3-IR F127M, F139M, and F153M filters
    filt_list = ['wfc3,ir,f127m']

    # First, let's make sure the vega spectrum has the proper limits
    vega = synthetic.Vega()

    assert np.min(vega.wave) == 995
    assert np.max(vega.wave) == 100200

    # Make Isochrone object. Will use wave_range = [3000,52000].
    # Make sure range matches to resolution of atmosphere.
    wave_range1 = [3000, 52000]
    my_iso = synthetic.IsochronePhot(logAge,
                                     AKs,
                                     dist,
                                     evo_model=evo_model,
                                     atm_func=atm_func,
                                     red_law=red_law,
                                     filters=filt_list,
                                     mass_sampling=10,
                                     wave_range=wave_range1,
                                     recomp=True)

    test = my_iso.spec_list[0]

    assert np.min(test.wave) == 3010
    assert np.max(test.wave) == 51900

    # Now let's try changing the wave range. Is it carried through
    # properly?
    wave_range2 = [1200, 90000]
    my_iso = synthetic.IsochronePhot(logAge,
                                     AKs,
                                     dist,
                                     evo_model=evo_model,
                                     atm_func=atm_func,
                                     red_law=red_law,
                                     filters=filt_list,
                                     mass_sampling=10,
                                     wave_range=wave_range2,
                                     recomp=True)

    test2 = my_iso.spec_list[0]

    assert np.min(test2.wave) == 1205
    assert np.max(test2.wave) == 89800

    # Does the error exception catch the bad wave_range?
    wave_range3 = [1200, 1000000]
    try:
        my_iso = synthetic.IsochronePhot(logAge,
                                         AKs,
                                         dist,
                                         evo_model=evo_model,
                                         atm_func=atm_func,
                                         red_law=red_law,
                                         filters=filt_list,
                                         mass_sampling=10,
                                         wave_range=wave_range3,
                                         recomp=True)
        print(
            'WAVE TEST FAILED!!! Should have crashed here, wavelength range out of bounds'
        )
        pdb.set_trace()
    except:
        print('Wavelength out of bound condition passed. Test is good')
        pass
    return
Ejemplo n.º 11
0
def test_cluster_mass():
    from popstar import synthetic as syn
    from popstar import atmospheres as atm
    from popstar import evolution
    from popstar import reddening
    from popstar import ifmr
    from popstar.imf import imf
    from popstar.imf import multiplicity

    # Define cluster parameters
    logAge = 6.7
    AKs = 2.4
    distance = 4000
    cluster_mass = 10**5.
    mass_sampling = 5

    # Test filters
    filt_list = ['nirc2,J', 'nirc2,Kp']

    startTime = time.time()

    # Define evolution/atmosphere models and extinction law
    evo = evolution.MISTv1()
    atm_func = atmospheres.get_merged_atmosphere
    red_law = reddening.RedLawHosek18b()

    iso = syn.IsochronePhot(logAge,
                            AKs,
                            distance,
                            evo_model=evo,
                            atm_func=atm_func,
                            red_law=red_law,
                            filters=filt_list,
                            mass_sampling=mass_sampling)

    print('Constructed isochrone: %d seconds' % (time.time() - startTime))

    # Now to create the cluster.
    imf_mass_limits = np.array([0.2, 0.5, 1, 120.0])
    imf_powers = np.array([-1.3, -2.3, -2.3])

    # IFMR
    my_ifmr = ifmr.IFMR()

    ##########
    # Start without multiplicity
    ##########
    my_imf1 = imf.IMF_broken_powerlaw(imf_mass_limits,
                                      imf_powers,
                                      multiplicity=None)
    print('Constructed IMF: %d seconds' % (time.time() - startTime))

    cluster1 = syn.ResolvedCluster(iso, my_imf1, cluster_mass, ifmr=my_ifmr)
    clust1 = cluster1.star_systems
    print('Constructed cluster: %d seconds' % (time.time() - startTime))

    # Check that the total mass is within tolerance of input mass
    cluster_mass_out = clust1['systemMass'].sum()
    assert np.abs(cluster_mass_out -
                  cluster_mass) < 200.0  # within 200 Msun of desired mass.
    print('Cluster Mass: IN = ', cluster_mass, " OUT = ", cluster_mass_out)

    ##########
    # Test with multiplicity
    ##########
    multi = multiplicity.MultiplicityUnresolved()
    my_imf2 = imf.IMF_broken_powerlaw(imf_mass_limits,
                                      imf_powers,
                                      multiplicity=multi)
    print('Constructed IMF with multiples: %d seconds' %
          (time.time() - startTime))

    cluster2 = syn.ResolvedCluster(iso, my_imf2, cluster_mass, ifmr=my_ifmr)
    clust2 = cluster2.star_systems
    print('Constructed cluster with multiples: %d seconds' %
          (time.time() - startTime))

    # Check that the total mass is within tolerance of input mass
    cluster_mass_out = clust2['systemMass'].sum()
    assert np.abs(cluster_mass_out -
                  cluster_mass) < 200.0  # within 200 Msun of desired mass.
    print('Cluster Mass: IN = ', cluster_mass, " OUT = ", cluster_mass_out)

    return
Ejemplo n.º 12
0
def test_IsochronePhot(plot=False):
    from popstar import synthetic as syn
    from popstar import evolution, atmospheres, reddening

    logAge = 6.7
    AKs = 2.7
    distance = 4000
    filt_list = ['wfc3,ir,f127m', 'nirc2,J']
    mass_sampling = 1
    iso_dir = 'iso/'

    evo_model = evolution.MISTv1()
    atm_func = atmospheres.get_merged_atmosphere
    redlaw = reddening.RedLawNishiyama09()

    startTime = time.time()
    iso = syn.IsochronePhot(logAge,
                            AKs,
                            distance,
                            evo_model=evo_model,
                            atm_func=atm_func,
                            red_law=redlaw,
                            filters=filt_list,
                            mass_sampling=mass_sampling,
                            iso_dir=iso_dir)
    endTime = time.time()
    print('IsochronePhot generated in: %d seconds' % (endTime - startTime))
    # Typically takes 120 seconds if file is regenerated.
    # Limited by pysynphot.Icat call in atmospheres.py

    assert iso.points.meta['LOGAGE'] == logAge
    assert iso.points.meta['AKS'] == AKs
    assert iso.points.meta['DISTANCE'] == distance
    assert len(iso.points) > 100

    assert 'm_nirc2_J' in iso.points.colnames

    if plot:
        plt.figure(1)
        iso.plot_CMD('mag814w', 'mag160w')

        plt.figure(2)
        iso.plot_mass_magnitude('mag160w')

    # Finally, let's test the isochronePhot file generation
    assert os.path.exists('{0}/iso_{1:.2f}_{2:4.2f}_{3:4s}_p00.fits'.format(
        iso_dir, logAge, AKs,
        str(distance).zfill(5)))

    # Check 1: If we try to remake the isochrone, does it read the file rather than
    # making a new one
    iso_new = syn.IsochronePhot(logAge,
                                AKs,
                                distance,
                                evo_model=evo_model,
                                atm_func=atm_func,
                                red_law=redlaw,
                                filters=filt_list,
                                mass_sampling=mass_sampling,
                                iso_dir=iso_dir)

    assert iso_new.recalc == False

    # Check 2: If we change evo model, atmo model, or redlaw,
    # does IsochronePhot regenerate the isochrone and overwrite the existing one?
    evo2 = evolution.MergedBaraffePisaEkstromParsec()
    mass_sampling = 20

    iso_new = syn.IsochronePhot(logAge,
                                AKs,
                                distance,
                                evo_model=evo2,
                                atm_func=atm_func,
                                red_law=redlaw,
                                filters=filt_list,
                                mass_sampling=mass_sampling,
                                iso_dir=iso_dir)

    assert iso_new.recalc == True

    redlaw2 = reddening.RedLawHosek18b()
    iso_new = syn.IsochronePhot(logAge,
                                AKs,
                                distance,
                                evo_model=evo2,
                                atm_func=atm_func,
                                red_law=redlaw2,
                                filters=filt_list,
                                mass_sampling=mass_sampling,
                                iso_dir=iso_dir)

    assert iso_new.recalc == True

    atm2 = atmospheres.get_castelli_atmosphere
    iso_new = syn.IsochronePhot(logAge,
                                AKs,
                                distance,
                                evo_model=evo2,
                                atm_func=atm2,
                                red_law=redlaw2,
                                filters=filt_list,
                                mass_sampling=mass_sampling,
                                iso_dir=iso_dir)

    assert iso_new.recalc == True

    return
Ejemplo n.º 13
0
def test_ResolvedCluster():
    from popstar import synthetic as syn
    from popstar import atmospheres as atm
    from popstar import evolution
    from popstar import reddening
    from popstar.imf import imf
    from popstar.imf import multiplicity

    # Define cluster parameters
    logAge = 6.7
    AKs = 2.4
    distance = 4000
    cluster_mass = 10**5.
    mass_sampling=5

    # Test all filters
    filt_list = ['wfc3,ir,f127m', 'wfc3,ir,f139m', 'wfc3,ir,f153m', 'acs,wfc1,f814w',
                     'wfc3,ir,f125w', 'wfc3,ir,f160w', 'decam,y', 'decam,i', 'decam,z',
                         'decam,u', 'decam,g', 'decam,r', 'vista,Y', 'vista,Z',
                         'vista,J', 'vista,H', 'vista,Ks', 'ps1,z', 'ps1,g', 'ps1,r',
                         'ps1,i', 'ps1,y', 'jwst,F090W', 'jwst,F164N', 'jwst,F212N',
                         'jwst,F323N', 'jwst,F466N', 'nirc2,J', 'nirc2,H', 'nirc2,Kp',
                         'nirc2,K', 'nirc2,Lp', 'nirc2,Ms', 'nirc2,Hcont', 'nirc2,FeII',
                         'nirc2,Brgamma', 'jg,J', 'jg,H', 'jg,K']

    startTime = time.time()
    
    evo = evolution.MergedBaraffePisaEkstromParsec()
    atm_func = atm.get_merged_atmosphere

    red_law = reddening.RedLawNishiyama09()
    
    iso = syn.IsochronePhot(logAge, AKs, distance,
                            evo_model=evo, atm_func=atm_func,
                            red_law=red_law, filters=filt_list,
                            mass_sampling=mass_sampling)

    print('Constructed isochrone: %d seconds' % (time.time() - startTime))

    # Now to create the cluster.
    imf_mass_limits = np.array([0.07, 0.5, 1, np.inf])
    imf_powers = np.array([-1.3, -2.3, -2.3])

    ##########
    # Start without multiplicity
    ##########
    my_imf1 = imf.IMF_broken_powerlaw(imf_mass_limits, imf_powers,
                                      multiplicity=None)
    print('Constructed IMF: %d seconds' % (time.time() - startTime))
    
    cluster1 = syn.ResolvedCluster(iso, my_imf1, cluster_mass)
    clust1 = cluster1.star_systems
    print('Constructed cluster: %d seconds' % (time.time() - startTime))

    plt.figure(3)
    plt.clf()
    plt.plot(clust1['m_nirc2_J'] - clust1['m_nirc2_Kp'], clust1['m_nirc2_J'], 'r.')
    plt.plot(iso.points['m_nirc2_J'] - iso.points['m_nirc2_Kp'], iso.points['m_nirc2_J'], 'c.')
    plt.gca().invert_yaxis()

    # *** Visual Inspections: ***
    #  - check that points (red) fall between isochrone points (blue)

    ##########
    # Test with multiplicity
    ##########
    multi = multiplicity.MultiplicityUnresolved()
    my_imf2 = imf.IMF_broken_powerlaw(imf_mass_limits, imf_powers,
                                      multiplicity=multi)
    print('Constructed IMF with multiples: %d seconds' % (time.time() - startTime))
    
    cluster2 = syn.ResolvedCluster(iso, my_imf2, cluster_mass)
    clust2 = cluster2.star_systems
    print('Constructed cluster with multiples: %d seconds' % (time.time() - startTime))

    ##########
    # Plots 
    ##########
    # Plot an IR CMD and compare cluster members to isochrone.
    plt.figure(1)
    plt.clf()
    plt.plot(clust1['m_nirc2_J'] - clust1['m_nirc2_Kp'], clust1['m_nirc2_J'], 'r.')
    plt.plot(clust2['m_nirc2_J'] - clust2['m_nirc2_Kp'], clust2['m_nirc2_J'], 'b.')
    plt.plot(iso.points['m_nirc2_J'] - iso.points['m_nirc2_Kp'], iso.points['m_nirc2_J'], 'c-')
    plt.gca().invert_yaxis()
    plt.xlabel('J - Kp (mag)')
    plt.ylabel('J (mag')

    # Plot a mass-magnitude relationship.
    plt.figure(2)
    plt.clf()
    plt.semilogx(clust1['mass'], clust1['m_nirc2_J'], 'r.')
    plt.semilogx(clust2['mass'], clust2['m_nirc2_J'], 'r.')
    plt.gca().invert_yaxis()
    plt.xlabel('Mass (Msun)')
    plt.ylabel('J (mag)')
    
    # # Plot the spectrum of the most massive star
    # idx = cluster.mass.argmax()
    # plt.clf()
    # plt.plot(cluster.stars[idx].wave, cluster.stars[idx].flux, 'k.')

    # # Plot an integrated spectrum of the whole cluster.
    # wave, flux = cluster.get_integrated_spectrum()
    # plt.clf()
    # plt.plot(wave, flux, 'k.')

    return
Ejemplo n.º 14
0
    def likelihood(cube, ndim, nparams):
        ##########
        # Priors (I think order matters)
        ##########
        parName = [
            'distance', 'LogAge', 'AKs', 'dAKs', 'alpha1', 'alpha2', 'mbreak',
            'Mcl'
        ]
        par, par_prior_logp = get_prior_info(cube, parName)

        sysMass = np.zeros(len(t))

        ##########
        # Load up the model cluster.
        ##########
        imf_mass_limits = np.array([imf_mmin, par['mbreak'], imf_mmax])
        imf_powers = np.array([par['alpha2'], par['alpha1']])
        imf_multi = None
        new_imf = imf.IMF_broken_powerlaw(imf_mass_limits, imf_powers,
                                          imf_multi)

        print 'Getting Isochrone'
        new_iso = synthetic.IsochronePhot(par['LogAge'],
                                          par['AKs'],
                                          par['distance'],
                                          evo_model=evo_model,
                                          atm_func=atm_func,
                                          red_law=red_law)

        print 'Getting Cluster'
        cluster = synthetic.ResolvedClusterDiffRedden(new_iso,
                                                      new_imf,
                                                      Mcl_sim,
                                                      par['dAKs'],
                                                      red_law=red_law)

        # Convert simulated cluster into agnitude-color-color histogram
        mag = cluster.star_systems['mag160w']
        col1 = cluster.star_systems['mag814w'] - mag
        col2 = cluster.star_systems['mag125w'] - mag

        data = np.array([mag, col1, col2]).T
        bins = np.array([bins_mag, bins_col1, bins_col2])

        H_sim_c, edges = np.histogramdd(data, bins=bins, normed=True)
        H_sim = H_sim_c * completeness_map

        # Convert Observed cluster into magnitude-color-color histogram
        mag = t['m_2010_F160W']
        col1 = t['m_2005_F814W'] - t['m_2010_F160W']
        col2 = t['m_2010_F125W'] - t['m_2010_F160W']

        data = np.array([mag, col1, col2]).T
        bins = np.array([bins_mag, bins_col1, bins_col2])

        H_obs, edges = np.histogramdd(data, bins=bins)

        # Plotting
        extent = (bins_col1[0], bins_col2[-1], bins_mag[0], bins_mag[-1])
        py.figure(1)
        py.clf()
        py.imshow(H_sim_c.sum(axis=2), extent=extent)
        py.gca().invert_yaxis()
        py.colorbar()
        py.axis('tight')
        py.title('Sim Complete')

        py.figure(2)
        py.clf()
        py.imshow(H_sim.sum(axis=2), extent=extent)
        py.gca().invert_yaxis()
        py.colorbar()
        py.axis('tight')
        py.title('Sim Incomplete')

        py.figure(3)
        py.clf()
        py.imshow(H_obs.sum(axis=2), extent=extent)
        py.gca().invert_yaxis()
        py.colorbar()
        py.axis('tight')
        py.title('Obs Incomplete')

        py.figure(4)
        py.clf()
        py.imshow(completeness_map.mean(axis=2), extent=extent, vmin=0, vmax=1)
        py.gca().invert_yaxis()
        py.colorbar()
        py.axis('tight')
        py.title('Completeness Map')

        pdb.set_trace()

        mcc_cluster = 1

        print likei.sum()
        return likei.sum()
Ejemplo n.º 15
0
import numpy as np
import pandas as pd
from astropy.io import ascii
from astropy.io import fits
import matplotlib.pyplot as plt
from popstar import synthetic, evolution, atmospheres, reddening, ifmr
from popstar.imf import imf, multiplicity


# Define isochrone parameters
logAge = 9.6   # Age in log(years)
AKs = 0  # extinction in mags
dist = 1000  # distance in parsec
metallicities = [-1]  # Metallicity in [M/H]

# Define evolution/atmosphere models and extinction law
evo_model = evolution.MISTv1()
atm_func = atmospheres.get_merged_atmosphere
red_law = reddening.RedLawHosek18b()

# Also specify filters for synthetic photometry (optional). Here we use
# the HST WFC3-IR F127M, F139M, and F153M filters
filt_list = ['wfc3,ir,f127m', 'wfc3,ir,f139m', 'wfc3,ir,f153m']

# Make Isochrone object. Note that is calculation will take a few minutes, unless the
# isochrone has been generated previously.
for metallicity in metallicities:
    my_iso = synthetic.IsochronePhot(logAge, AKs, dist, metallicity=metallicity,
                                     evo_model=evo_model, atm_func=atm_func, red_law=red_law, filters=filt_list)
    print(my_iso.save_file)
Ejemplo n.º 16
0
def test_ResolvedClusterDiffRedden():
    from popstar import synthetic as syn
    from popstar import atmospheres as atm
    from popstar import evolution
    from popstar import reddening
    from popstar.imf import imf
    from popstar.imf import multiplicity

    logAge = 6.7
    AKs = 2.4
    distance = 4000
    cluster_mass = 10**5.
    deltaAKs = 0.05
    mass_sampling = 5

    # Test filters
    filt_list = ['nirc2,J', 'nirc2,Kp']

    startTime = time.time()

    evo = evolution.MergedBaraffePisaEkstromParsec()
    atm_func = atm.get_merged_atmosphere

    red_law = reddening.RedLawNishiyama09()

    iso = syn.IsochronePhot(logAge,
                            AKs,
                            distance,
                            evo_model=evo,
                            atm_func=atm_func,
                            red_law=red_law,
                            filters=filt_list,
                            mass_sampling=mass_sampling)

    print('Constructed isochrone: %d seconds' % (time.time() - startTime))

    imf_mass_limits = np.array([0.07, 0.5, 1, np.inf])
    imf_powers = np.array([-1.3, -2.3, -2.3])

    ##########
    # Start without multiplicity
    ##########
    my_imf1 = imf.IMF_broken_powerlaw(imf_mass_limits,
                                      imf_powers,
                                      multiplicity=None)
    print('Constructed IMF: %d seconds' % (time.time() - startTime))

    cluster1 = syn.ResolvedClusterDiffRedden(iso, my_imf1, cluster_mass,
                                             deltaAKs)
    clust1 = cluster1.star_systems
    print('Constructed cluster: %d seconds' % (time.time() - startTime))

    assert len(clust1) > 0

    plt.figure(3)
    plt.clf()
    plt.plot(clust1['m_nirc2_J'] - clust1['m_nirc2_Kp'], clust1['m_nirc2_J'],
             'r.')
    plt.plot(iso.points['m_nirc2_J'] - iso.points['m_nirc2_Kp'],
             iso.points['m_nirc2_J'], 'c.')
    plt.gca().invert_yaxis()

    # *** Visual Inspections: ***
    #  - check that points (red) fall between isochrone points (blue)

    ##########
    # Test with multiplicity
    ##########
    multi = multiplicity.MultiplicityUnresolved()
    my_imf2 = imf.IMF_broken_powerlaw(imf_mass_limits,
                                      imf_powers,
                                      multiplicity=multi)
    print('Constructed IMF with multiples: %d seconds' %
          (time.time() - startTime))

    cluster2 = syn.ResolvedClusterDiffRedden(iso, my_imf2, cluster_mass,
                                             deltaAKs)
    clust2 = cluster2.star_systems
    print('Constructed cluster with multiples: %d seconds' %
          (time.time() - startTime))

    assert len(clust2) > 0
    assert len(cluster2.companions) > 0
    assert np.sum(clust2['N_companions']) == len(cluster2.companions)

    ##########
    # Plots
    ##########
    # Plot an IR CMD and compare cluster members to isochrone.
    plt.figure(1)
    plt.clf()
    plt.plot(clust1['m_nirc2_J'] - clust1['m_nirc2_Kp'], clust1['m_nirc2_J'],
             'r.')
    plt.plot(clust2['m_nirc2_J'] - clust2['m_nirc2_Kp'], clust2['m_nirc2_J'],
             'b.')
    plt.plot(iso.points['m_nirc2_J'] - iso.points['m_nirc2_Kp'],
             iso.points['m_nirc2_J'], 'c-')
    plt.gca().invert_yaxis()
    plt.xlabel('J - Kp (mag)')
    plt.ylabel('J (mag')

    # Plot a mass-magnitude relationship.
    plt.figure(2)
    plt.clf()
    plt.semilogx(clust1['mass'], clust1['m_nirc2_J'], 'r.')
    plt.semilogx(clust2['mass'], clust2['m_nirc2_J'], 'r.')
    plt.gca().invert_yaxis()
    plt.xlabel('Mass (Msun)')
    plt.ylabel('J (mag)')

    return
Ejemplo n.º 17
0
    def __init__(self,
                 age=3.9e6,
                 ext=2.63,
                 dist=7.971e3,
                 met=0.0,
                 phase=None,
                 use_atm_func='merged'):
        log_age = np.log10(age)

        self.log_age = log_age
        self.A_Ks = ext
        self.dist = dist
        self.met = met

        # Evolution/Atmosphere Models
        evo_model = evolution.MISTv1()

        if use_atm_func == 'merged':
            atm_func = atmospheres.get_merged_atmosphere
        elif use_atm_func == 'castelli':
            atm_fun = atmospheres.get_castelli_atmosphere
        elif use_atm_func == 'phoenix':
            atm_func = atmospheres.get_phoenixv16_atmosphere

        # Extinction law
        red_law = reddening.RedLawNoguerasLara18()
        self.ext_alpha = 2.30

        ## Calculate extinctions implied by isochrone extinction
        self.A_Lp = self.A_Ks * (lambda_Ks / lambda_Lp)**self.ext_alpha
        self.A_Kp = self.A_Ks * (lambda_Ks / lambda_Kp)**self.ext_alpha
        self.A_H = self.A_Ks * (lambda_Ks / lambda_H)**self.ext_alpha

        # Create an isochrone with the given parameters
        self.iso_curAge = synthetic.IsochronePhot(self.log_age,
                                                  self.A_Ks,
                                                  self.dist,
                                                  evo_model=evo_model,
                                                  atm_func=atm_func,
                                                  red_law=red_law,
                                                  metallicity=self.met,
                                                  filters=self.filt_list)

        ## Create another isochrone for absolute mags / passband luminosities
        self.iso_absMag = synthetic.IsochronePhot(self.log_age,
                                                  0.0,
                                                  10.0,
                                                  evo_model=evo_model,
                                                  atm_func=atm_func,
                                                  red_law=red_law,
                                                  metallicity=self.met,
                                                  filters=self.filt_list)

        # Save out specific stellar parameter columns needed
        ## If needing specific phase, draw it out before saving
        if phase is not None:
            phase_check = np.where(
                self.iso_curAge.points['phase'] == mist_phase_dict[phase])
        else:
            phase_check = np.where(self.iso_curAge.points['phase'] >= -1)

        self.iso_mass_init = (self.iso_curAge.points['mass'][phase_check]).to(
            u.solMass)
        self.iso_mass = self.iso_curAge.points['mass_current'][phase_check]
        self.iso_rad = (self.iso_curAge.points['R'][phase_check]).to(u.solRad)
        self.iso_lum = self.iso_curAge.points['L'][phase_check]
        self.iso_teff = self.iso_curAge.points['Teff'][phase_check]
        self.iso_logg = self.iso_curAge.points['logg'][phase_check]

        self.iso_mag_Lp = self.iso_curAge.points['m_nirc2_Lp'][phase_check]
        self.iso_mag_Kp = self.iso_curAge.points['m_nirc2_Kp'][phase_check]
        self.iso_mag_H = self.iso_curAge.points['m_nirc2_H'][phase_check]

        ## Stellar parameters from the absolute magnitude isochrones
        self.iso_absMag_mass_init = self.iso_absMag.points['mass'][phase_check]
        self.iso_absMag_mass = self.iso_absMag.points['mass_current'][
            phase_check]
        self.iso_absMag_rad = (self.iso_absMag.points['R'][phase_check]).to(
            u.solRad)
        self.iso_absMag_Lp = self.iso_absMag.points['m_nirc2_Lp'][phase_check]
        self.iso_absMag_Kp = self.iso_absMag.points['m_nirc2_Kp'][phase_check]
        self.iso_absMag_H = self.iso_absMag.points['m_nirc2_H'][phase_check]

        ## Maximum bounds on the radius in isochrone
        self.iso_rad_min = np.min(self.iso_rad).value
        self.iso_rad_max = np.max(self.iso_rad).value

        ## Maximum bounds on the initial mass in isochrone
        self.iso_mass_init_min = np.min(self.iso_mass_init).value
        self.iso_mass_init_max = np.max(self.iso_mass_init).value