Ejemplo n.º 1
0
def prepare_model(cfg):
    opt = argparse.ArgumentParser()
    opt.weights = 'weights/yolov4-p5-sd.pt'

    model = Yolov4P5(cfg)
    model.eval()
    model = load_and_fuse_pretrained_weights(model, opt)
    model.optimize_for_inference()

    ipu_opts = ipu_options(opt, cfg, model)
    return inferenceModel(model, ipu_opts)
Ejemplo n.º 2
0
def test_input_plain_list():
    model = torch.nn.ReLU()
    inference_model = poptorch.inferenceModel(model)

    with pytest.raises(TypeError) as excinfo:
        inference_model([torch.tensor([1])])

    assert (str(
        excinfo.value) == "Lists are not supported as input arguments, "
            "including when nested in tuples.\n"
            "Received list input = [tensor([1])]")
Ejemplo n.º 3
0
 def test_explicit_weightcopy_inference(self):
     x = torch.ones([1] + list(datasets_info["cifar10"]["in"]))
     opts = TestWeightSync.create_opts()
     model = models.get_model(opts, datasets_info["imagenet"], pretrained=True)
     model.eval()
     poptorch_model = poptorch.inferenceModel(model)
     y = model(x)
     for _ in range(10):
         poptorch_model.copyWeightsToDevice()
         y_poptorch = poptorch_model(x)
         assert torch.allclose(y, y_poptorch, atol=0.0001)
Ejemplo n.º 4
0
def test_unused_tuple():
    class SimpleAdder(nn.Module):
        def forward(self, x, y, z):  # pylint: disable=unused-argument
            return x + y

    model = SimpleAdder()
    inference_model = poptorch.inferenceModel(model)
    t1 = torch.tensor([1.])
    t2 = torch.tensor([2.])
    z = (torch.tensor([1.]), torch.tensor([1.]))
    inference_model(t1, t2, z)
Ejemplo n.º 5
0
def test_many_implicit_cast_one_less_than(input_type):
    class OneLessThan(nn.Module):
        def forward(self, x):
            return 1 < x  # pylint: disable=misplaced-comparison-constant

    model = poptorch.inferenceModel(OneLessThan())

    t = torch.tensor([2.5, -1, 2.0, 550.4], dtype=input_type)

    np.testing.assert_equal(
        model(t).numpy(), np.array([True, False, True, True]))
Ejemplo n.º 6
0
def test_many_implicit_cast_less_than_one(input_type):
    class LessThanOne(nn.Module):
        def forward(self, x):
            return x < 1

    model = poptorch.inferenceModel(LessThanOne())

    t = torch.tensor([2.5, -1, 2.0, 550.4], dtype=input_type)

    np.testing.assert_equal(
        model(t).numpy(), np.array([False, True, False, False]))
Ejemplo n.º 7
0
def test_ExecutableCaching(capfd):
    poptorch.setLogLevel(1)  # Force debug logging

    class Model(torch.nn.Module):
        def forward(self, x):
            return x * 6

    with tempfile.TemporaryDirectory() as cache:
        opts = poptorch.Options()
        opts.enableExecutableCaching(cache)
        m = poptorch.inferenceModel(Model(), opts)
        m.compile(torch.rand(2, 3))
        m.destroy()
        log = helpers.LogChecker(capfd)
        log.assert_contains("set enableEngineCaching to value true")
        assert os.listdir(), "No executable saved in the cache"

        n = poptorch.inferenceModel(Model(), opts)
        n.compile(torch.rand(2, 3))
        log = helpers.LogChecker(capfd)
        log.assert_contains("set enableEngineCaching to value true")
Ejemplo n.º 8
0
def test_invalid_multiconv_empty():
    class Model(torch.nn.Module):
        def forward(self, x):
            with poptorch.MultiConv():
                return torch.pow(x, 2)

    m = Model()
    poptorch_model = poptorch.inferenceModel(m)
    msg = "Unexpected end_multi_conv"

    with pytest.raises(RuntimeError, match=msg):
        poptorch_model(torch.ones(2, 2))
Ejemplo n.º 9
0
def test_octconv_block(use_multi):
    block = OctConvBlock(3, 6, (0., .5), use_multi=use_multi)

    # N, C, H, W
    x = torch.randn(5, 3, 10, 10)
    out = block(x)

    pop_block = poptorch.inferenceModel(block)
    pop_out = pop_block(x)

    for (cpu, ipu) in zip(out, pop_out):
        torch.testing.assert_allclose(cpu, ipu)
Ejemplo n.º 10
0
def test_access_parameters(use_half):
    torch.manual_seed(42)

    # 10 Batches of 10.
    input = torch.randn(10, 10)

    # 10 batches of 1
    label = torch.randint(0, 10, [1])
    label = label.expand([10])

    class Model(torch.nn.Module):
        def __init__(self):
            super().__init__()
            self.linear = torch.nn.Linear(10, 10)

        def forward(self, x):
            return self.linear(x)

    model = Model()

    if use_half:
        model.half()
        input = input.half()

    # Run on IPU batch size 1 * 10 popart batches.
    opts = poptorch.Options().deviceIterations(10)
    poptorch_model = helpers.trainingModelWithLoss(
        model, options=opts, loss=torch.nn.CrossEntropyLoss())

    original_weights = str(model.linear.weight)
    inference = poptorch.inferenceModel(model)

    # Run all 10 batches as batchsize 10.
    out = inference(input)

    assert original_weights == str(model.linear.weight)

    # Sanity check we weren't already matching the label.
    assert not torch.equal(torch.argmax(out.int(), dim=1), label)

    for _ in range(0, 1000):
        _, loss = poptorch_model(input, label)

        # Each batch should NOT report its own loss. As by default training model should have a "Final" anchor.
        assert len(loss.size()) == 0

    assert original_weights != str(poptorch_model.model.linear.weight)

    # Run with trained weights.
    out = inference(input)

    # Check we are now equal with labels.
    assert torch.equal(torch.argmax(out.int(), dim=1), label)
def test_bert_medium_result():
    torch.manual_seed(42)

    # Bert small.
    pretrained_weights = 'mrm8488/bert-medium-finetuned-squadv2'
    model = transformers.BertForQuestionAnswering.from_pretrained(
        pretrained_weights)
    tokenizer = transformers.BertTokenizer.from_pretrained(
        pretrained_weights, return_token_type_ids=True)

    context = """Edinburgh is Scotland's compact, hilly capital."""
    question = "What is the capital of Scotland?"
    encoding = tokenizer.encode_plus(question, context)

    mask = encoding["attention_mask"]
    ins = encoding["input_ids"]
    input_ids = torch.tensor([ins, ins])

    attention_mask = torch.tensor([mask, mask])
    start_scores_native, end_scores_native = model(
        input_ids, attention_mask=attention_mask)

    opts = poptorch.Options()
    opts.deviceIterations(2)

    model.bert.embeddings.position_embeddings = poptorch.BeginBlock(
        model.bert.embeddings.position_embeddings, ipu_id=1)

    inference_model = poptorch.inferenceModel(model, opts)
    start_score_pop, end_scores_pop = inference_model(input_ids,
                                                      attention_mask)

    # Longer sequences begin to accumulate more floating point error.
    assert torch.allclose(start_scores_native,
                          start_score_pop,
                          rtol=1e-02,
                          atol=1e-02)
    assert torch.allclose(end_scores_native,
                          end_scores_pop,
                          rtol=1e-02,
                          atol=1e-02)

    assert torch.argmax(start_score_pop), torch.argmax(start_scores_native)
    assert torch.argmax(end_scores_pop), torch.argmax(end_scores_native)

    # Convert to string (Only check the first result as we've already established the two were identical)
    ans_tokens = ins[torch.argmax(start_score_pop[0]
                                  ):torch.argmax(end_scores_pop[0]) + 1]
    answer_tokens = tokenizer.convert_ids_to_tokens(ans_tokens)

    answer_tokens_to_string = tokenizer.convert_tokens_to_string(answer_tokens)

    assert answer_tokens_to_string == 'edinburgh'
Ejemplo n.º 12
0
def test_many_implicit_cast_greater_than(input_1_type, input_2_type):
    class GreaterThan(nn.Module):
        def forward(self, x, y):
            return x > y

    model = poptorch.inferenceModel(GreaterThan())

    t1 = torch.tensor([1, -1, 2.0, 550.4], dtype=input_1_type)
    t2 = torch.tensor([2.4, 2, 1.0, 32.4], dtype=input_2_type)

    np.testing.assert_equal(
        model(t1, t2).numpy(), np.array([False, False, True, True]))
Ejemplo n.º 13
0
def test_linear():
    model = torch.nn.Linear(20, 30)
    x = torch.randn(128, 20)

    # Run on CPU.
    nativeOut = model(x)

    # Run on IPU.
    poptorch_model = poptorch.inferenceModel(model)
    poptorch_out = poptorch_model(x)

    assert nativeOut.size() == poptorch_out.size()
    torch.testing.assert_allclose(nativeOut, poptorch_out)
Ejemplo n.º 14
0
def test_embedding():
    model = torch.nn.Embedding(10, 3)
    x = torch.LongTensor([[1, 2, 4, 5], [4, 3, 2, 9]])

    # Run on CPU.
    nativeOut = model(x)

    # Run on IPU.
    poptorch_model = poptorch.inferenceModel(model)
    poptorch_out = poptorch_model(x)

    assert nativeOut.size() == poptorch_out.size()
    assert torch.equal(nativeOut, poptorch_out)
Ejemplo n.º 15
0
def test_PoissonNLLLoss_direct(reduction, log_input, full):
    torch.manual_seed(42)

    model = torch.nn.PoissonNLLLoss(log_input, full, reduction=reduction)
    poptorch_model = poptorch.inferenceModel(model)

    target = torch.poisson(torch.rand(10) * 5)
    input = torch.empty(10).uniform_()

    native_out = model(input, target)
    poptorch_out = poptorch_model(input, target)

    torch.testing.assert_allclose(native_out, poptorch_out)
Ejemplo n.º 16
0
def test_ipu_id_selection():
    class Network(nn.Module):
        def forward(self, x, y):
            return x + y

    model = Network()
    # Force-disable the IPU model
    opts = poptorch.Options().useIpuId(0)
    inference_model = poptorch.inferenceModel(model, opts)
    x = torch.ones(2)
    y = torch.zeros(2)

    inference_model(x, y)
Ejemplo n.º 17
0
def test_SmoothL1Loss_direct(reduction):
    torch.manual_seed(42)

    model = torch.nn.SmoothL1Loss(reduction=reduction)
    poptorch_model = poptorch.inferenceModel(model)

    input = torch.randn(10)
    target = torch.empty(10).uniform_()

    native_out = model(input, target)
    poptorch_out = poptorch_model(input, target)

    torch.testing.assert_allclose(native_out, poptorch_out)
Ejemplo n.º 18
0
def test_lstm_batch_first():
    torch.manual_seed(42)
    numHidden = 5
    inputSize = 3
    lstm = nn.LSTM(3, numHidden, batch_first=True)
    ipuLstm = poptorch.inferenceModel(lstm)
    inputs = [torch.randn(1, inputSize) for _ in range(5)]
    # Add the extra 2nd dimension
    inputs = torch.cat(inputs).view(1, len(inputs), -1)
    hidden = (torch.randn(1, 1, numHidden), torch.randn(1, 1, numHidden))
    out = lstm(inputs, hidden)
    ipuOut = ipuLstm(inputs, hidden)
    assert poptorch.testing.allclose(out, ipuOut)
Ejemplo n.º 19
0
def test_input_nested_list():
    model = torch.nn.ReLU()
    inference_model = poptorch.inferenceModel(model)

    with pytest.raises(TypeError) as excinfo:
        inference_model((torch.tensor([1]), torch.tensor([2]),
                         (torch.tensor([3]), [torch.tensor([4])],
                          torch.tensor([5])), torch.tensor([6])))

    assert (str(
        excinfo.value) == "Lists are not supported as input arguments, "
            "including when nested in tuples.\n"
            "Received list input[2][1] = [tensor([4])]")
Ejemplo n.º 20
0
def test_input_nested_dict():
    model = torch.nn.ReLU()
    inference_model = poptorch.inferenceModel(model)

    with pytest.raises(TypeError) as excinfo:
        inference_model(
            (torch.tensor([1]), torch.tensor([2]), (torch.tensor([3]), {
                'b': torch.tensor([4])
            }, torch.tensor([5])), torch.tensor([6])))

    assert (str(excinfo.value) == "Dictionaries are not supported as input "
            "arguments, including when nested in tuples."
            "\nReceived dict input[2][1] = "
            "{'b': tensor([4])}")
Ejemplo n.º 21
0
def test_BCE_direct(reduction):
    torch.manual_seed(42)

    model = torch.nn.BCELoss(reduction=reduction)

    poptorch_model = poptorch.inferenceModel(model)

    for _ in range(0, 10):
        target = torch.empty(10).random_(2)
        input = torch.empty(10).uniform_()

        groundTruth = model(input, target)
        poptorch_out = poptorch_model(input, target)
        assert torch.allclose(groundTruth, poptorch_out)
Ejemplo n.º 22
0
def prepare_model(cfg, debugging_nms=False):
    opt = argparse.ArgumentParser()
    opt.weights = os.environ['PYTORCH_APPS_DETECTION_PATH'] + '/weights/yolov4-p5-sd.pt'

    model = Yolov4P5(cfg, debugging_nms=debugging_nms)
    model.eval()
    model = load_and_fuse_pretrained_weights(model, opt)
    model.optimize_for_inference()

    if cfg.model.ipu:
        ipu_opts = ipu_options(opt, cfg, model)
        return inferenceModel(model, ipu_opts)
    else:
        return model
Ejemplo n.º 23
0
def test_KLDiv_direct(reduction, log_target):
    torch.manual_seed(42)

    model = torch.nn.KLDivLoss(reduction=reduction, log_target=log_target)
    poptorch_model = poptorch.inferenceModel(model)

    # 2D Tensors to test batchmean
    target = torch.empty(3, 10).uniform_()
    input = torch.randn(3, 10)

    native_out = model(input, target)
    poptorch_out = poptorch_model(input, target)

    torch.testing.assert_allclose(native_out, poptorch_out)
Ejemplo n.º 24
0
def test_layerNormScalar():
    torch.manual_seed(42)

    input = torch.randn([3, 2, 5, 2])
    layerNorm = nn.LayerNorm(2)

    # Run pytorch native on CPU.
    nativeOutput = layerNorm(input)

    # Run on IPU.
    ipuModel = poptorch.inferenceModel(layerNorm)
    poptorchOut = ipuModel(input)

    assert torch.allclose(poptorchOut, nativeOutput)
Ejemplo n.º 25
0
def test_upsample(scale_factor, input_shape):
    mode = "nearest"  # Other modes not supported by Popart
    model = torch.nn.Upsample(scale_factor=scale_factor, mode=mode)
    x = torch.randn(*input_shape)

    # Run on CPU.
    nativeOut = model(x)

    # Run on IPU.
    poptorch_model = poptorch.inferenceModel(model)
    poptorch_out = poptorch_model(x)

    assert nativeOut.size() == poptorch_out.size()
    torch.testing.assert_allclose(nativeOut, poptorch_out)
Ejemplo n.º 26
0
def get_model_and_loader(opt: argparse.ArgumentParser,
                         cfg: yacs.config.CfgNode):
    """Prepares the model and gets a new loader for the model.
    Parameters:
        opt: opt object containing options introduced in the command line
        cfg: yacs object containing the config
    Returns:
        model[Detector]: a torch Detector Model
        loader[DataLoader]: a torch or poptorch DataLoader containing the specified dataset on "cfg"
    """

    # Create model
    model = Yolov4P5(cfg)

    if cfg.model.mode == "train":
        model.train()
    else:
        model.eval()

        # Load weights and fuses some batch normalizations with some convolutions
        if cfg.model.normalization == 'batch':
            if opt.weights:
                print("loading pretrained weights")
                model = load_and_fuse_pretrained_weights(model, opt)
            model.optimize_for_inference()

    # Create the specific ipu options if cfg.model.ipu
    ipu_opts = ipu_options(opt, cfg, model) if cfg.model.ipu else None

    # Creates the loader
    loader = get_loader(opt, cfg, ipu_opts)

    # Calls the poptorch wrapper and compiles the model
    if cfg.model.ipu:
        if cfg.model.mode == "train":
            model = trainingModel(model, ipu_opts)
        else:
            model = inferenceModel(model, ipu_opts)
        try:
            img, _, _, _ = next(iter(loader))
            model.compile(img)
            warm_up_iterations = 100
            for _ in range(warm_up_iterations):
                _ = model(img)
        except Exception as e:
            print(e.args)
            exit(0)

    return model, loader
Ejemplo n.º 27
0
def test_explicit_deletion(use_half):
    class ExampleModel(torch.nn.Module):
        def __init__(self):
            super().__init__()
            self.bias = torch.nn.Parameter(torch.zeros(()))

        def forward(self, x):
            x += 1

            # It is important to make sure the result of the print is used.
            x = poptorch.ipu_print_tensor(x)

            return x + self.bias

    def custom_loss(output, target):
        # Mean squared error with a scale
        loss = output - target
        loss = loss * loss * 5
        return poptorch.identity_loss(loss, reduction="mean")

    class ExampleModelWithCustomLoss(torch.nn.Module):
        def __init__(self):
            super().__init__()
            self.model = ExampleModel()

        def forward(self, input, target=None):
            out = self.model(input)
            if target is not None:
                return out, custom_loss(out, target)
            return out

    opts = poptorch.Options()
    # Both models will use the same IPU device.
    opts.useIpuId(1)

    model = ExampleModelWithCustomLoss()
    input = torch.tensor([1.0, 2.0, 3.0])
    target = torch.tensor([30.0, 40.0, 50.0])
    if use_half:
        model.half()
        input = input.half()
        target = target.half()
    training_model = poptorch.trainingModel(model, opts)
    inference_model = poptorch.inferenceModel(model, opts)

    training_model(input=input, target=target)
    training_model.destroy()

    inference_model(input)
Ejemplo n.º 28
0
def execute_and_check_wrapper(model, input, check_shape_only=False):
    # Run on CPU.
    nativeOut = model(input)

    # Run on IPU.
    poptorch_model = poptorch.inferenceModel(model)
    poptorch_out = poptorch_model(input)

    print(nativeOut.size())

    if not check_shape_only:
        torch.testing.assert_allclose(poptorch_out, nativeOut)
    else:
        # This is due to adaptive pooling's process essentially being an implementation detail.
        assert poptorch_out.size() == nativeOut.size()
Ejemplo n.º 29
0
def test_layerNorm():
    torch.manual_seed(42)

    for i in range(1, 4):
        input = torch.randn([3, 2, 5, 2])
        layerNorm = nn.LayerNorm(input.size()[i:])

        # Run pytorch native on CPU.
        nativeOutput = layerNorm(input)

        # Run on IPU.
        ipuModel = poptorch.inferenceModel(layerNorm)
        poptorchOut = ipuModel(input)

        assert torch.allclose(poptorchOut, nativeOutput)
Ejemplo n.º 30
0
    def test_inference(self):
        self.cfg.inference.nms = False
        model = Yolov4P5(self.cfg)
        model = inferenceModel(model.half().eval())
        y = model(self.input_tensor)

        expected_output_size = model.output_shape((64, 64))

        p3 = expected_output_size['p3']
        p4 = expected_output_size['p4']
        p5 = expected_output_size['p5']

        assert y[0].shape == torch.Size([p3[0], p3[1] * p3[2] * p3[3], p3[4]])
        assert y[1].shape == torch.Size([p4[0], p4[1] * p4[2] * p4[3], p4[4]])
        assert y[2].shape == torch.Size([p5[0], p5[1] * p5[2] * p5[3], p5[4]])