Ejemplo n.º 1
0
def coarsening_example0(**kwargs):
    #######################
    # Simple 2d coarsening based on tpfa for Cartesian grids
    # isotropic permeability
    #######################
    Nx = Ny = 7
    g = structured.CartGrid([Nx, Ny], [1, 1])
    g.compute_geometry()

    if kwargs["visualize"]:
        plot_grid(g, info="all", alpha=0)

    part = create_partition(tpfa_matrix(g))
    g = generate_coarse_grid(g, part)
    g.compute_geometry(is_starshaped=True)

    if kwargs["visualize"]:
        plot_grid(g, info="all", alpha=0)

    g = structured.CartGrid([Nx, Ny], [1, 1])
    g.compute_geometry()

    part = create_partition(tpfa_matrix(g), cdepth=3)
    g = generate_coarse_grid(g, part)
    g.compute_geometry(is_starshaped=True)

    if kwargs["visualize"]:
        plot_grid(g, info="all", alpha=0)
Ejemplo n.º 2
0
def setup_2d():
    grid_list = []

    # Unstructured perturbation
    nx = np.array([2, 2])
    g_cart_unpert = structured.CartGrid(nx)
    g_cart_unpert.compute_geometry()

    grid_list.append(g_cart_unpert)

    # Structured perturbation
    g_cart_spert = structured.CartGrid(nx)
    g_cart_spert.nodes[0, 4] = 1.5
    g_cart_spert.compute_geometry()
    grid_list.append(g_cart_spert)

    # Larger grid, random perturbations
    nx = np.array([3, 3])
    g_cart_rpert = structured.CartGrid(nx)
    dx = 1
    pert = .4
    rand = np.vstack(
        (
            np.random.rand(g_cart_rpert.dim, g_cart_rpert.num_nodes),
            np.repeat(0., g_cart_rpert.num_nodes),
        )
    )
    g_cart_rpert.nodes = g_cart_rpert.nodes + dx * pert * (0.5 - rand)
    g_cart_rpert.compute_geometry()
    grid_list.append(g_cart_rpert)

    return grid_list
Ejemplo n.º 3
0
def setup_2d():
    grid_list = []

    # Unstructured perturbation
    nx = np.array([2, 2])
    g_cart_unpert = structured.CartGrid(nx)
    g_cart_unpert.compute_geometry()

    grid_list.append(g_cart_unpert)

    # Structured perturbation
    g_cart_spert = structured.CartGrid(nx)
    g_cart_spert.nodes[0, 4] = 1.5
    g_cart_spert.compute_geometry()
    grid_list.append(g_cart_spert)

    # Larger grid, random perturbations
    nx = np.array([3, 3])
    g_cart_rpert = structured.CartGrid(nx)
    dx = 1
    pert = 0.4
    rand = np.vstack(
        (
            np.random.rand(g_cart_rpert.dim, g_cart_rpert.num_nodes),
            np.repeat(0.0, g_cart_rpert.num_nodes),
        )
    )
    g_cart_rpert.nodes = g_cart_rpert.nodes + dx * pert * (0.5 - rand)
    # No perturbations of the z-coordinate (which is not active in this case)
    g_cart_rpert.nodes[2, :] = 0
    g_cart_rpert.compute_geometry()
    grid_list.append(g_cart_rpert)

    return grid_list
Ejemplo n.º 4
0
    def test_upwind_example1(self, if_export=False):
        #######################
        # Simple 2d upwind problem with implicit Euler scheme in time
        #######################
        T = 1
        Nx, Ny = 10, 1
        g = structured.CartGrid([Nx, Ny], [1, 1])
        g.compute_geometry()

        advect = upwind.Upwind("transport")
        param = Parameters(g)
        dis = advect.discharge(g, [1, 0, 0])

        b_faces = g.get_all_boundary_faces()
        bc = BoundaryCondition(g, b_faces, ["dir"] * b_faces.size)
        bc_val = np.hstack(([1], np.zeros(g.num_faces - 1)))
        param.set_bc("transport", bc)
        param.set_bc_val("transport", bc_val)

        data = {"param": param, "discharge": dis}
        data["deltaT"] = advect.cfl(g, data)

        U, rhs = advect.matrix_rhs(g, data)
        M, _ = mass_matrix.MassMatrix().matrix_rhs(g, data)

        conc = np.zeros(g.num_cells)

        # Perform an LU factorization to speedup the solver
        IE_solver = sps.linalg.factorized((M + U).tocsc())

        # Loop over the time
        Nt = int(T / data["deltaT"])
        time = np.empty(Nt)
        folder = "example1"
        save = Exporter(g, "conc_IE", folder)
        for i in np.arange(Nt):

            # Update the solution
            # Backward and forward substitution to solve the system
            conc = IE_solver(M.dot(conc) + rhs)
            time[i] = data["deltaT"] * i
            if if_export:
                save.write_vtk({"conc": conc}, time_step=i)

        if if_export:
            save.write_pvd(time)

        known = np.array([
            0.99969927,
            0.99769441,
            0.99067741,
            0.97352474,
            0.94064879,
            0.88804726,
            0.81498958,
            0.72453722,
            0.62277832,
            0.51725056,
        ])
        assert np.allclose(conc, known)
Ejemplo n.º 5
0
    def test_uniform_displacement_neumann(self):
        physdims = [1, 1]
        g_size = [4, 8]
        g_list = [structured.CartGrid([n, n], physdims=physdims) for n in g_size]
        [g.compute_geometry() for g in g_list]
        error = []
        for g in g_list:
            bot = np.ravel(np.argwhere(g.face_centers[1, :] < 1e-10))
            left = np.ravel(np.argwhere(g.face_centers[0, :] < 1e-10))
            dir_faces = np.hstack((left, bot))
            bound = bc.BoundaryCondition(
                g, dir_faces.ravel("F"), ["dir"] * dir_faces.size
            )
            constit = setup_stiffness(g)

            # Python inverter is most efficient for small problems
            stress, bound_stress = mpsa.mpsa(g, constit, bound, inverter="python")

            div = fvutils.vector_divergence(g)
            a = div * stress

            d_x = np.random.rand(1)
            d_y = np.random.rand(1)
            d_bound = np.zeros((g.dim, g.num_faces))
            d_bound[0, bound.is_dir] = d_x
            d_bound[1, bound.is_dir] = d_y

            rhs = div * bound_stress * d_bound.ravel("F")

            d = np.linalg.solve(a.todense(), -rhs)

            traction = stress * d + bound_stress * d_bound.ravel("F")
            self.assertTrue(np.max(np.abs(d[::2] - d_x)) < 1e-8)
            self.assertTrue(np.max(np.abs(d[1::2] - d_y)) < 1e-8)
            self.assertTrue(np.max(np.abs(traction)) < 1e-8)
Ejemplo n.º 6
0
    def test_upwind_1d_discharge_negative(self):
        g = structured.CartGrid(3, 1)
        g.compute_geometry()

        solver = upwind.Upwind()
        param = Parameters(g)
        dis = solver.discharge(g, [-2, 0, 0])

        bf = g.get_boundary_faces()
        bc = BoundaryCondition(g, bf, bf.size * ['neu'])
        param.set_bc(solver, bc)

        data = {'param': param, 'discharge': dis}
        M = solver.matrix_rhs(g, data)[0].todense()
        deltaT = solver.cfl(g, data)

        M_known = np.array([[0,-2, 0],
                            [0, 2,-2],
                            [0, 0, 2]])
        deltaT_known = 1/12

        rtol = 1e-15
        atol = rtol
        assert np.allclose(M, M_known, rtol, atol)
        assert np.allclose(deltaT, deltaT_known, rtol, atol)
Ejemplo n.º 7
0
    def test_coarse_grid_2d(self):
        g = structured.CartGrid([3, 2])
        g.compute_geometry()
        co.generate_coarse_grid(g, [5, 2, 2, 5, 2, 2])

        assert g.num_cells == 2
        assert g.num_faces == 12
        assert g.num_nodes == 11

        pt = np.tile(np.array([2, 1, 0]), (g.nodes.shape[1], 1)).T
        find = np.isclose(pt, g.nodes).all(axis=0)
        assert find.any() == False

        faces_cell0, _, orient_cell0 = sps.find(g.cell_faces[:, 0])
        assert np.array_equal(faces_cell0, [1, 2, 4, 5, 7, 8, 10, 11])
        assert np.array_equal(orient_cell0, [-1, 1, -1, 1, -1, -1, 1, 1])

        faces_cell1, _, orient_cell1 = sps.find(g.cell_faces[:, 1])
        assert np.array_equal(faces_cell1, [0, 1, 3, 4, 6, 9])
        assert np.array_equal(orient_cell1, [-1, 1, -1, 1, -1, 1])

        known = np.array([[0, 4], [1, 5], [3, 6], [4, 7], [5, 8], [6, 10],
                          [0, 1], [1, 2], [2, 3], [7, 8], [8, 9], [9, 10]])

        for f in np.arange(g.num_faces):
            assert np.array_equal(sps.find(g.face_nodes[:, f])[0], known[f, :])
Ejemplo n.º 8
0
    def test_cart_3d(self):
        g = structured.CartGrid([4, 3, 3])
        g.nodes = g.nodes + 0.2 * np.random.random((g.dim, g.nodes.shape[1]))
        g.compute_geometry()

        # Pick out cells (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 2), (1, 0, 2)
        c = np.array([0, 1, 4, 12, 24, 25])

        h, sub_f, sub_n = partition.extract_subgrid(g, c)

        # There are 20 nodes in each layer
        nodes_0 = np.array([0, 1, 2, 5, 6, 7, 10, 11])
        nodes_1 = nodes_0 + 20
        nodes_2 = np.array([0, 1, 2, 5, 6, 7]) + 40
        nodes_3 = nodes_2 + 20
        true_nodes = np.hstack((nodes_0, nodes_1, nodes_2, nodes_3))

        faces_x = np.array([0, 1, 2, 5, 6, 15, 16, 30, 31, 32])
        # y-faces start on 45
        faces_y = np.array([45, 46, 49, 50, 53, 61, 65, 77, 78, 81, 82])
        # z-faces start on 93
        faces_z = np.array([93, 94, 97, 105, 106, 109, 117, 118, 129, 130])
        true_faces = np.hstack((faces_x, faces_y, faces_z))

        assert np.array_equal(true_nodes, sub_n)
        assert np.array_equal(true_faces, sub_f)

        self.compare_grid_geometries(g, h, c, true_faces, true_nodes)
Ejemplo n.º 9
0
    def test_upwind_2d_cart_surf_discharge_negative(self):
        g = structured.CartGrid([3, 2], [1, 1])
        R = cg.rot(np.pi / 6., [1, 1, 0])
        g.nodes = np.dot(R, g.nodes)
        g.compute_geometry(is_embedded=True)

        solver = upwind.Upwind()
        param = Parameters(g)
        dis = solver.discharge(g, np.dot(R, [-1, 0, 0]))

        bf = g.tags['domain_boundary_faces'].nonzero()[0]
        bc = BoundaryCondition(g, bf, bf.size * ['neu'])
        param.set_bc(solver, bc)

        data = {'param': param, 'discharge': dis}
        M = solver.matrix_rhs(g, data)[0].todense()
        deltaT = solver.cfl(g, data)

        M_known = 0.5 * np.array([[0, -1, 0, 0, 0, 0],
                                  [0, 1, -1, 0, 0, 0],
                                  [0, 0, 1, 0, 0, 0],
                                  [0, 0, 0, 0, -1, 0],
                                  [0, 0, 0, 0, 1, -1],
                                  [0, 0, 0, 0, 0, 1]])

        deltaT_known = 1 / 6

        rtol = 1e-15
        atol = rtol
        assert np.allclose(M, M_known, rtol, atol)
        assert np.allclose(deltaT, deltaT_known, rtol, atol)
Ejemplo n.º 10
0
    def test_upwind_2d_cart_discharge_positive(self):
        g = structured.CartGrid([3, 2], [1, 1])
        g.compute_geometry()

        solver = upwind.Upwind()
        param = Parameters(g)
        dis = solver.discharge(g, [2, 0, 0])

        bf = g.tags['domain_boundary_faces'].nonzero()[0]
        bc = BoundaryCondition(g, bf, bf.size * ['neu'])
        param.set_bc(solver, bc)

        data = {'param': param, 'discharge': dis}
        M = solver.matrix_rhs(g, data)[0].todense()
        deltaT = solver.cfl(g, data)

        M_known = np.array([[1, 0, 0, 0, 0, 0],
                            [-1, 1, 0, 0, 0, 0],
                            [0, -1, 0, 0, 0, 0],
                            [0, 0, 0, 1, 0, 0],
                            [0, 0, 0, -1, 1, 0],
                            [0, 0, 0, 0, -1, 0]])

        deltaT_known = 1 / 12

        rtol = 1e-15
        atol = rtol
        assert np.allclose(M, M_known, rtol, atol)
        assert np.allclose(deltaT, deltaT_known, rtol, atol)
Ejemplo n.º 11
0
    def test_upwind_1d_discharge_negative_bc_neu(self):
        g = structured.CartGrid(3, 1)
        g.compute_geometry()

        solver = upwind.Upwind()
        param = Parameters(g)
        dis = solver.discharge(g, [-2, 0, 0])

        bf = g.tags['domain_boundary_faces'].nonzero()[0]
        bc = BoundaryCondition(g, bf, bf.size * ['neu'])
        bc_val = np.array([2, 0, 0, -2]).ravel('F')
        param.set_bc(solver, bc)
        param.set_bc_val(solver, bc_val)

        data = {'param': param, 'discharge': dis}
        M, rhs = solver.matrix_rhs(g, data)
        deltaT = solver.cfl(g, data)

        M_known = np.array([[0, -2, 0],
                            [0, 2, -2],
                            [0, 0, 2]])
        rhs_known = np.array([-2, 0, 2])
        deltaT_known = 1 / 12

        rtol = 1e-15
        atol = rtol
        assert np.allclose(M.todense(), M_known, rtol, atol)
        assert np.allclose(rhs, rhs_known, rtol, atol)
        assert np.allclose(deltaT, deltaT_known, rtol, atol)
Ejemplo n.º 12
0
    def test_subcell_topology_2d_cart_1(self):
        x = np.ones(2, dtype=int)
        g = structured.CartGrid(x)

        subcell_topology = fvutils.SubcellTopology(g)

        self.assertTrue(np.all(subcell_topology.cno == 0))

        ncum = np.bincount(
            subcell_topology.nno, weights=np.ones(subcell_topology.nno.size)
        )
        self.assertTrue(np.all(ncum == 2))

        fcum = np.bincount(
            subcell_topology.fno, weights=np.ones(subcell_topology.fno.size)
        )
        self.assertTrue(np.all(fcum == 2))

        # There is only one cell, thus only unique subfno
        usubfno = np.unique(subcell_topology.subfno)
        self.assertTrue(usubfno.size == subcell_topology.subfno.size)

        self.assertTrue(
            np.all(np.in1d(subcell_topology.subfno, subcell_topology.subhfno))
        )
Ejemplo n.º 13
0
 def setUp(self):
     self.tol = set_tol()
     nc = np.array([2, 2])
     g = structured.CartGrid(nc)
     g.nodes[0, 4] = 1.5
     g.compute_geometry()
     self.g = g
Ejemplo n.º 14
0
def darcy_dualVEM_example0(**kwargs):
    #######################
    # Simple 2d Darcy problem with known exact solution
    #######################
    Nx = Ny = 25
    g = structured.CartGrid([Nx, Ny], [1, 1])
    g.compute_geometry()

    kxx = np.ones(g.num_cells)
    perm = tensor.SecondOrderTensor(g.dim, kxx)

    f = np.ones(g.num_cells)

    b_faces = g.get_all_boundary_faces()
    bnd = bc.BoundaryCondition(g, b_faces, ["dir"] * b_faces.size)
    bnd_val = np.zeros(g.num_faces)

    solver = dual.DualVEM()
    data = {"k": perm, "source": f, "bc": bnd, "bc_val": bnd_val}
    D, rhs = solver.matrix_rhs(g, data)

    up = sps.linalg.spsolve(D, rhs)
    u, p = solver.extract_u(g, up), solver.extract_p(g, up)
    P0u = solver.project_u(g, u)

    if kwargs["visualize"]:
        plot_grid(g, p, P0u)

    norms = np.array([error.norm_L2(g, p), error.norm_L2(g, P0u)])
    norms_known = np.array([0.041554943620853595, 0.18738227880674516])
    assert np.allclose(norms, norms_known)
Ejemplo n.º 15
0
    def test_upwind_1d_discharge_negative_bc_dir(self):
        g = structured.CartGrid(3, 1)
        g.compute_geometry()

        solver = upwind.Upwind()
        param = Parameters(g)
        dis = solver.discharge(g, [-2, 0, 0])

        bf = g.tags["domain_boundary_faces"].nonzero()[0]
        bc = BoundaryCondition(g, bf, bf.size * ["dir"])
        bc_val = 3 * np.ones(g.num_faces).ravel("F")
        param.set_bc(solver, bc)
        param.set_bc_val(solver, bc_val)

        data = {"param": param, "discharge": dis}
        M, rhs = solver.matrix_rhs(g, data)
        deltaT = solver.cfl(g, data)

        M_known = np.array([[2, -2, 0], [0, 2, -2], [0, 0, 2]])
        rhs_known = np.array([0, 0, 6])
        deltaT_known = 1 / 12

        rtol = 1e-15
        atol = rtol
        self.assertTrue(np.allclose(M.todense(), M_known, rtol, atol))
        self.assertTrue(np.allclose(rhs, rhs_known, rtol, atol))
        self.assertTrue(np.allclose(deltaT, deltaT_known, rtol, atol))
Ejemplo n.º 16
0
    def test_upwind_2d_cart_surf_discharge_positive(self):
        g = structured.CartGrid([3, 2], [1, 1])
        R = cg.rot(np.pi / 4., [0, 1, 0])
        g.nodes = np.dot(R, g.nodes)
        g.compute_geometry()

        solver = upwind.Upwind()
        param = Parameters(g)
        dis = solver.discharge(g, np.dot(R, [1, 0, 0]))

        bf = g.tags["domain_boundary_faces"].nonzero()[0]
        bc = BoundaryCondition(g, bf, bf.size * ["neu"])
        param.set_bc(solver, bc)

        data = {"param": param, "discharge": dis}
        M = solver.matrix_rhs(g, data)[0].todense()
        deltaT = solver.cfl(g, data)

        M_known = 0.5 * np.array([
            [1, 0, 0, 0, 0, 0],
            [-1, 1, 0, 0, 0, 0],
            [0, -1, 0, 0, 0, 0],
            [0, 0, 0, 1, 0, 0],
            [0, 0, 0, -1, 1, 0],
            [0, 0, 0, 0, -1, 0],
        ])

        deltaT_known = 1 / 6

        rtol = 1e-15
        atol = rtol
        self.assertTrue(np.allclose(M, M_known, rtol, atol))
        self.assertTrue(np.allclose(deltaT, deltaT_known, rtol, atol))
Ejemplo n.º 17
0
def darcy_dual_hybridVEM_example0(**kwargs):
    #######################
    # Simple 2d Darcy problem with known exact solution
    #######################
    Nx = Ny = 25
    g = structured.CartGrid([Nx, Ny], [1, 1])
    g.compute_geometry()

    kxx = np.ones(g.num_cells)
    perm = tensor.SecondOrderTensor(g.dim, kxx)

    f = np.ones(g.num_cells)

    b_faces = g.get_all_boundary_faces()
    bnd = bc.BoundaryCondition(g, b_faces, ['dir'] * b_faces.size)
    bnd_val = np.zeros(g.num_faces)

    solver = hybrid.HybridDualVEM()
    data = {'perm': perm, 'source': f, 'bc': bnd, 'bc_val': bnd_val}
    H, rhs = solver.matrix_rhs(g, data)

    l = sps.linalg.spsolve(H, rhs)
    u, p = solver.compute_up(g, l, data)
    P0u = dual.DualVEM().project_u(g, u)

    if kwargs['visualize']:
        plot_grid(g, p, P0u)

    norms = np.array([error.norm_L2(g, p), error.norm_L2(g, P0u)])
    norms_known = np.array([0.041554943620853595, 0.18738227880674516])
    assert np.allclose(norms, norms_known)
Ejemplo n.º 18
0
 def test_create_partition_2d_cart(self):
     g = structured.CartGrid([5, 5])
     g.compute_geometry()
     part = co.create_partition(co.tpfa_matrix(g))
     known = np.array([0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 3, 2, 2, 2, 1, 3, 3, 2,\
                       4, 4, 3, 3, 4, 4, 4])
     assert np.array_equal(part, known)
Ejemplo n.º 19
0
def make_grid(grid, grid_dims, domain, dim):
    if grid.lower() == "cart" or grid.lower() == "cartesian":
        return structured.CartGrid(grid_dims, domain)
    elif (grid.lower() == "simplex" and dim == 2) or grid.lower() == "triangular":
        return simplex.StructuredTriangleGrid(grid_dims, domain)
    elif grid.lower() == "tetrahedral":
        g = simplex.StructuredTetrahedralGrid(grid_dims, domain)
        return g
Ejemplo n.º 20
0
def setup_cart_2d(nx):

    g = structured.CartGrid(nx)
    g.compute_geometry()

    kxx = np.ones(g.num_cells)
    perm = tensor.SecondOrderTensor(g.dim, kxx)

    return g, perm
Ejemplo n.º 21
0
def darcy_dual_hybridVEM_example3(**kwargs):
    #######################
    # Simple 3d Darcy problem with known exact solution
    #######################
    Nx = Ny = Nz = 7
    g = structured.CartGrid([Nx, Ny, Nz], [1, 1, 1])
    g.compute_geometry()

    kxx = np.ones(g.num_cells)
    perm = tensor.SecondOrderTensor(g.dim, kxx)

    def funP_ex(pt):
        return (np.sin(2 * np.pi * pt[0]) * np.sin(2 * np.pi * pt[1]) *
                np.sin(2 * np.pi * pt[2]))

    def funU_ex(pt):
        return [
            -2 * np.pi * np.cos(2 * np.pi * pt[0]) *
            np.sin(2 * np.pi * pt[1]) * np.sin(2 * np.pi * pt[2]),
            -2 * np.pi * np.sin(2 * np.pi * pt[0]) *
            np.cos(2 * np.pi * pt[1]) * np.sin(2 * np.pi * pt[2]),
            -2 * np.pi * np.sin(2 * np.pi * pt[0]) *
            np.sin(2 * np.pi * pt[1]) * np.cos(2 * np.pi * pt[2]),
        ]

    def fun(pt):
        return 12 * np.pi**2 * funP_ex(pt)

    f = np.array([fun(pt) for pt in g.cell_centers.T])

    b_faces = g.get_all_boundary_faces()
    bnd = bc.BoundaryCondition(g, b_faces, ["dir"] * b_faces.size)
    bnd_val = np.zeros(g.num_faces)
    bnd_val[b_faces] = funP_ex(g.face_centers[:, b_faces])

    solver = hybrid.HybridDualVEM()
    data = {"perm": perm, "source": f, "bc": bnd, "bc_val": bnd_val}
    H, rhs = solver.matrix_rhs(g, data)

    l = sps.linalg.spsolve(H, rhs)
    u, p = solver.compute_up(g, l, data)
    P0u = dual.DualVEM().project_u(g, u)

    if kwargs["visualize"]:
        plot_grid(g, p, P0u)

    p_ex = error.interpolate(g, funP_ex)
    u_ex = error.interpolate(g, funU_ex)

    np.set_printoptions(linewidth=999999)
    np.set_printoptions(precision=16)

    errors = np.array(
        [error.error_L2(g, p, p_ex),
         error.error_L2(g, P0u, u_ex)])
    errors_known = np.array([0.1010936831876412, 0.0680593765009036])
    assert np.allclose(errors, errors_known)
Ejemplo n.º 22
0
def test_tpfa_cart_2d():
    """ Apply TPFA on Cartesian grid, should obtain Laplacian stencil. """

    # Set up 3 X 3 Cartesian grid
    nx = np.array([3, 3])
    g = structured.CartGrid(nx)
    g.compute_geometry()

    kxx = np.ones(g.num_cells)
    perm = tensor.SecondOrder(g.dim, kxx)

    bound_faces = np.array([0, 3, 12])
    bound = bc.BoundaryCondition(g, bound_faces, ['dir'] * bound_faces.size)

    discr = tpfa.Tpfa()
    d = _assign_params(g, perm, bound)
    discr.discretize(g, d)
    trm, bound_flux = d['flux'], d['bound_flux']
    div = g.cell_faces.T
    a = div * trm
    b = -(div * bound_flux).A
    
    # Checks on interior cell
    mid = 4
    assert a[mid, mid] == 4
    assert a[mid - 1, mid] == -1
    assert a[mid + 1, mid] == -1
    assert a[mid - 3, mid] == -1
    assert a[mid + 3, mid] == -1

    assert np.all(b[mid, :] == 0)

    # The first cell should have two Dirichlet bnds
    assert a[0, 0] == 6
    assert a[0, 1] == -1
    assert a[0, 3] == -1

    assert b[0, 0] == 2
    assert b[0, 12] == 2

    # Cell 3 has one Dirichlet, one Neumann face
    print(a)
    assert a[2, 2] == 4
    assert a[2, 1] == -1
    assert a[2, 5] == -1

    assert b[2, 3] == 2
    assert b[2, 14] == -1
    # Cell 2 has one Neumann face
    assert a[1, 1] == 3
    assert a[1, 0] == -1
    assert a[1, 2] == -1
    assert a[1, 4] == -1

    assert b[1, 13] == -1

    return a
Ejemplo n.º 23
0
def make_grid(grid, grid_dims, domain, dim):
    if grid.lower() == 'cart' or grid.lower() == 'cartesian':
        return structured.CartGrid(grid_dims, domain)
    elif (grid.lower() == 'simplex' and dim == 2) \
            or grid.lower() == 'triangular':
        return simplex.StructuredTriangleGrid(grid_dims, domain)
    elif grid.lower() == 'tetrahedral':
        g =simplex.StructuredTetrahedralGrid(grid_dims, domain)
        return g
Ejemplo n.º 24
0
    def test_tag_1d(self):
        g = structured.CartGrid(3, 1)

        self.assertTrue(np.array_equal(g.tags["fracture_faces"], [False] * g.num_faces))
        self.assertTrue(np.array_equal(g.tags["fracture_nodes"], [False] * g.num_nodes))
        self.assertTrue(np.array_equal(g.tags["tip_faces"], [False] * g.num_faces))
        self.assertTrue(np.array_equal(g.tags["tip_nodes"], [False] * g.num_nodes))
        known = [True, False, False, True]
        self.assertTrue(np.array_equal(g.tags["domain_boundary_faces"], known))
        self.assertTrue(np.array_equal(g.tags["domain_boundary_nodes"], known))
Ejemplo n.º 25
0
 def test_create_partition_3d_cart(self):
     g = structured.CartGrid([4, 4, 4])
     g.compute_geometry()
     part = co.create_partition(co.tpfa_matrix(g))
     known = np.array([1, 1, 1, 1, 2, 4, 1, 3, 2, 2, 3, 3, 2, 2, 3, 3, 5, 4,\
                       1, 6, 4, 4, 4, 3, 2, 4, 7,
                       3, 8, 8, 3, 3, 5, 5, 6, 6, 5, 4, 7, 6, 8, 7, 7, 7, 8,\
                       8, 7, 9, 5, 5, 6, 6, 5, 5,
                       6, 6, 8, 8, 7, 9, 8, 8, 9, 9]) - 1
     assert np.array_equal(part, known)
Ejemplo n.º 26
0
def coarsening_example2(**kwargs):
    #######################
    # Simple 2d coarsening based on tpfa for Cartesian grids
    # anisotropic permeability
    #######################
    Nx = Ny = 7
    g = structured.CartGrid([Nx, Ny], [1, 1])
    g.compute_geometry()

    if kwargs["visualize"]:
        plot_grid(g, info="all", alpha=0)

    kxx = 3 * np.ones(g.num_cells)
    kyy = np.ones(g.num_cells)
    perm = tensor.SecondOrderTensor(g.dim, kxx=kxx, kyy=kyy)

    part = create_partition(tpfa_matrix(g, perm=perm))
    g = generate_coarse_grid(g, part)
    g.compute_geometry(is_starshaped=True)

    if kwargs["visualize"]:
        plot_grid(g, info="all", alpha=0)

    g = structured.CartGrid([Nx, Ny], [1, 1])
    g.compute_geometry()

    part = create_partition(tpfa_matrix(g, perm=perm), cdepth=3)
    g = generate_coarse_grid(g, part)
    g.compute_geometry(is_starshaped=True)

    if kwargs["visualize"]:
        plot_grid(g, info="all", alpha=0)

    g = structured.CartGrid([Nx, Ny], [1, 1])
    g.compute_geometry()

    part = create_partition(tpfa_matrix(g, perm=perm), cdepth=2, epsilon=1e-2)
    g = generate_coarse_grid(g, part)
    g.compute_geometry(is_starshaped=True)

    if kwargs["visualize"]:
        plot_grid(g, info="all", alpha=0)
Ejemplo n.º 27
0
    def test_3d_coarse_dims_specified(self):
        g = structured.CartGrid([4, 4, 4])
        coarse_dims = np.array([2, 2, 2])

        p = partition.partition_structured(g, coarse_dims)
        p_known = np.array([[0, 0, 1, 1], [0, 0, 1, 1], [2, 2, 3, 3],
                            [2, 2, 3, 3], [0, 0, 1, 1], [0, 0, 1, 1],
                            [2, 2, 3, 3], [2, 2, 3, 3], [4, 4, 5, 5],
                            [4, 4, 5, 5], [6, 6, 7, 7], [6, 6, 7, 7],
                            [4, 4, 5, 5], [4, 4, 5, 5], [6, 6, 7, 7],
                            [6, 6, 7, 7]]).ravel('C')
        assert np.allclose(p, p_known)
Ejemplo n.º 28
0
    def test_2d_coarse_dims_specified(self):
        g = structured.CartGrid([4, 10])
        coarse_dims = np.array([2, 3])
        p = partition.partition_structured(g, coarse_dims)

        p_known = np.array(
            [[0., 0., 1., 1.], [0., 0., 1., 1.], [0., 0., 1., 1.],
             [2., 2., 3., 3.], [2., 2., 3., 3.], [2., 2., 3., 3.],
             [4., 4., 5., 5.], [4., 4., 5., 5.], [4., 4., 5., 5.],
             [4., 4., 5., 5.]],
            dtype='int').ravel('C')
        assert np.allclose(p, p_known)
Ejemplo n.º 29
0
def darcy_dualVEM_example3(**kwargs):
    #######################
    # Simple 3d Darcy problem with known exact solution
    #######################
    Nx = Ny = Nz = 7
    g = structured.CartGrid([Nx, Ny, Nz], [1, 1, 1])
    g.compute_geometry()

    kxx = np.ones(g.num_cells)
    perm = tensor.SecondOrder(g.dim, kxx)

    def funP_ex(pt):
        return np.sin(2*np.pi*pt[0])*np.sin(2*np.pi*pt[1])\
            * np.sin(2*np.pi*pt[2])

    def funU_ex(pt):
        return [-2*np.pi*np.cos(2*np.pi*pt[0])\
                * np.sin(2*np.pi*pt[1])*np.sin(2*np.pi*pt[2]),
                -2*np.pi*np.sin(2*np.pi*pt[0])\
                * np.cos(2*np.pi*pt[1])*np.sin(2*np.pi*pt[2]),
                -2*np.pi*np.sin(2*np.pi*pt[0])\
                * np.sin(2*np.pi*pt[1])*np.cos(2*np.pi*pt[2])]

    def fun(pt):
        return 12 * np.pi**2 * funP_ex(pt)

    f = np.array([fun(pt) for pt in g.cell_centers.T])

    b_faces = g.get_boundary_faces()
    bnd = bc.BoundaryCondition(g, b_faces, ['dir'] * b_faces.size)
    bnd_val = np.zeros(g.num_faces)
    bnd_val[b_faces] = funP_ex(g.face_centers[:, b_faces])

    solver = dual.DualVEM()
    data = {'perm': perm, 'source': f, 'bc': bnd, 'bc_val': bnd_val}
    D, rhs = solver.matrix_rhs(g, data)

    up = sps.linalg.spsolve(D, rhs)
    u, p = solver.extract_u(g, up), solver.extract_p(g, up)
    P0u = solver.project_u(g, u)

    if kwargs['visualize']:
        plot_grid(g, p, P0u)

    p_ex = error.interpolate(g, funP_ex)
    u_ex = error.interpolate(g, funU_ex)

    errors = np.array(
        [error.error_L2(g, p, p_ex),
         error.error_L2(g, P0u, u_ex)])
    errors_known = np.array([0.1010936831876412, 0.0680593765009036])
    assert np.allclose(errors, errors_known)
Ejemplo n.º 30
0
 def test_create_partition_2d_cart_cdepth4(self):
     g = structured.CartGrid([10, 10])
     g.compute_geometry()
     part = co.create_partition(co.tpfa_matrix(g), cdepth=4)
     known = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\
                       1, 1, 1, 1, 1, 1, 1, 1, 1,
                       1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1,\
                       1, 1, 1, 2, 2, 3, 3, 1, 1,
                       1, 1, 1, 2, 2, 2, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 3, 3,\
                       3, 3, 1, 1, 2, 2, 2, 2, 3,
                       3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2,\
                       2]) - 1
     assert np.array_equal(part, known)