Ejemplo n.º 1
0
	def detect_pose(self, im, bbox):
		im_in = im
		cords = bbox[0:4]
		center, scale = self.x1y1x2y2_to_cs(cords)
		r=0
		
		trans = get_affine_transform(center[0], scale[0], r, self.image_size)
		input_image = cv2.warpAffine(im_in, trans, (int(self.image_width), int(self.image_height)), flags=cv2.INTER_LINEAR)
		with torch.no_grad():
			input = self.transform(input_image)
			input = input.unsqueeze(0)
			with torch.cuda.device(self.gpu_id):
				input = input.cuda()
				output = self.model(input)
				if cfg.TEST.FLIP_TEST:
					input_flipped = np.flip(input.cpu().numpy(),3).copy()
					input_flipped = torch.from_numpy(input_flipped).cuda()
					output_flipped = self.model(input_flipped)
					output_flipped = flip_back(output_flipped.cpu().numpy(), self.flip_pairs)
					output_flipped = torch.from_numpy(output_flipped.copy()).cuda()
					if cfg.TEST.SHIFT_HEATMAP:
						output_flipped[:, :, :, 1:] = output_flipped.clone()[:, :, :, 0:-1]
					output = (output + output_flipped) *0.5
		
		output = output.cpu().numpy()
		preds, maxvals = self.get_final_preds(output, center, scale)
		preds, maxvals = preds.squeeze(), maxvals.squeeze()
		heatmaps = output.squeeze()
		#For posetrack dataset, the 3th and 4th channel is None
		preds = np.delete(preds, [3,4], axis=0)
		maxvals = np.delete(maxvals, [3,4], axis=0)
		heatmaps = np.delete(heatmaps, [3,4], axis=0)
		#print(heatmaps.shape,preds,maxvals)
		return preds, maxvals, heatmaps
Ejemplo n.º 2
0
    def detect_pose_secway(self, im, bbox):
        cords = bbox[0:4]
        H, W, C = im.shape
        xmin, ymin, xmax, ymax = [int(i) for i in cords]
        xmax = min(xmax, W)
        ymax = min(ymax, H)
        xmin = max(xmin, 0)
        ymin = max(ymin, 0)
        w, h = xmax - xmin, ymax - ymin
        if w < 0 or h < 0:
            return np.zeros([17, 2]), np.zeros([17]), np.zeros([17, 64, 64])
        im_in = im[ymin:ymax, xmin:xmax, :]
        scale_factor = [self.image_width / w, self.image_height / h]
        im_resize = cv2.resize(im_in,
                               (int(self.image_width), int(self.image_height)),
                               interpolation=cv2.INTER_LINEAR)
        with torch.no_grad():
            input = self.transform(im_resize)
            input = input.unsqueeze(0)

            with torch.cuda.device(self.gpu_id):
                adj = self.reset_adj_no1()
                adj = adj.unsqueeze(0)
                adj = adj.type(torch.cuda.FloatTensor)
                input = input.cuda()
                output = self.model(input, adj)
                if cfg.TEST.FLIP_TEST:
                    input_flipped = np.flip(input.cpu().numpy(), 3).copy()
                    input_flipped = torch.from_numpy(input_flipped).cuda()
                    output_flipped = self.model(input_flipped, adj)
                    output_flipped = flip_back(output_flipped.cpu().numpy(),
                                               self.flip_pairs)
                    output_flipped = torch.from_numpy(
                        output_flipped.copy()).cuda()
                    if cfg.TEST.SHIFT_HEATMAP:
                        output_flipped[:, :, :,
                                       1:] = output_flipped.clone()[:, :, :,
                                                                    0:-1]
                    output = (output + output_flipped) * 0.5

            preds, maxvals = get_max_preds(output.clone().cpu().numpy())
            preds, maxvals = preds.squeeze() * 4, maxvals.squeeze()
            heatmaps = output.cpu().numpy().squeeze()

            #For posetrack dataset, the 3th and 4th channel is None
            preds = np.delete(preds, [3, 4], axis=0)
            preds[:, 0] = preds[:, 0] / scale_factor[0] + bbox[0]
            preds[:, 1] = preds[:, 1] / scale_factor[1] + bbox[1]
            maxvals = np.delete(maxvals, [3, 4], axis=0)
            heatmaps = np.delete(heatmaps, [3, 4], axis=0)
        return preds, maxvals, heatmaps
Ejemplo n.º 3
0
def validate(val_loader,
             model,
             criterion,
             num_classes,
             debug=False,
             flip=True):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    acces = AverageMeter()

    # predictions
    predictions = torch.Tensor(val_loader.dataset.__len__(), num_classes, 2)

    # switch to evaluate mode
    model.eval()

    gt_win, pred_win = None, None
    end = time.time()
    bar = Bar('Eval ', max=len(val_loader))
    with torch.no_grad():
        for i, (input, target, meta) in enumerate(val_loader):
            # measure data loading time
            data_time.update(time.time() - end)

            input = input.to(device, non_blocking=True)
            target = target.to(device, non_blocking=True)
            target_weight = meta['target_weight'].to(device, non_blocking=True)

            # compute output
            output = model(input)
            score_map = output[-1].cpu() if type(
                output) == list else output.cpu()
            if flip:
                flip_input = torch.from_numpy(fliplr(
                    input.clone().numpy())).float().to(device)
                flip_output = model(flip_input)
                flip_output = flip_output[-1].cpu() if type(
                    flip_output) == list else flip_output.cpu()
                flip_output = flip_back(flip_output)
                score_map += flip_output

            if type(output) == list:  # multiple output
                loss = 0
                for o in output:
                    loss += criterion(o, target, target_weight)
                output = output[-1]
            else:  # single output
                loss = criterion(output, target, target_weight)

            acc = accuracy(score_map, target.cpu(), idx)

            # generate predictions
            preds = final_preds(score_map, meta['center'], meta['scale'],
                                [64, 64])
            for n in range(score_map.size(0)):
                predictions[meta['index'][n], :, :] = preds[n, :, :]

            if debug:
                gt_batch_img = batch_with_heatmap(input, target)
                pred_batch_img = batch_with_heatmap(input, score_map)
                if not gt_win or not pred_win:
                    plt.subplot(121)
                    gt_win = plt.imshow(gt_batch_img)
                    plt.subplot(122)
                    pred_win = plt.imshow(pred_batch_img)
                else:
                    gt_win.set_data(gt_batch_img)
                    pred_win.set_data(pred_batch_img)
                plt.pause(.05)
                plt.draw()

            # measure accuracy and record loss
            losses.update(loss.item(), input.size(0))
            acces.update(acc[0], input.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            # plot progress
            bar.suffix = '({batch}/{size}) Data: {data:.6f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | Acc: {acc: .4f}'.format(
                batch=i + 1,
                size=len(val_loader),
                data=data_time.val,
                bt=batch_time.avg,
                total=bar.elapsed_td,
                eta=bar.eta_td,
                loss=losses.avg,
                acc=acces.avg)
            bar.next()

        bar.finish()
    return losses.avg, acces.avg, predictions
Ejemplo n.º 4
0
def validate(val_loader, model, criterion, num_classes, debug=False, flip=True, _logger=None):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    acces = AverageMeter()

    # predictions
    predictions = torch.Tensor(val_loader.dataset.__len__(), num_classes, 2)
    autoloss =  models.loss.UniLoss(valid=True)
    # switch to evaluate mode
    model.eval()
    #model.train()
    gt_win, pred_win = None, None
    end = time.time()
    bar = Bar('Processing', max=len(val_loader))
    for i, (inputs, target, meta) in enumerate(val_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        target = target.cuda(async=True)

        input_var = torch.autograd.Variable(inputs.cuda(), volatile=True)
        target_var = torch.autograd.Variable(target, volatile=True)

        # compute output
        output = model(input_var)
        score_map = output[-1].data.cpu()
        if flip:
            flip_input_var = torch.autograd.Variable(
                    torch.from_numpy(fliplr(inputs.clone().numpy())).float().cuda(), 
                    volatile=True
                )
            flip_output_var = model(flip_input_var)
            flip_output = flip_back(flip_output_var[-1].data.cpu())
            score_map += flip_output



        loss = 0
        for o in output:
            loss += criterion(o, target_var)
        #acc = accuracy(score_map, target.cpu(), idx)
        _, acc, _ = autoloss(output[-1], meta)
        # generate predictions
        preds = final_preds(score_map, meta['center'], meta['scale'], [64, 64])
        for n in range(score_map.size(0)):
            predictions[meta['index'][n], :, :] = preds[n, :, :]


        if debug:
            gt_batch_img = batch_with_heatmap(inputs, target)
            pred_batch_img = batch_with_heatmap(inputs, score_map)
            if not gt_win or not pred_win:
                plt.subplot(121)
                gt_win = plt.imshow(gt_batch_img)
                plt.subplot(122)
                pred_win = plt.imshow(pred_batch_img)
            else:
                gt_win.set_data(gt_batch_img)
                pred_win.set_data(pred_batch_img)
            plt.pause(.05)
            plt.draw()

        # measure accuracy and record loss
        losses.update(loss.item(), inputs.size(0))
        acces.update(acc.item(), inputs.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix  = '({batch}/{size}) Data: {data:.6f}s | Batch: {bt:.3f}s | Total: {total:} | Loss: {loss:.4f} | Acc: {acc: .4f}'.format(
                    batch=i + 1,
                    size=len(val_loader),
                    data=data_time.val,
                    bt=batch_time.avg,
                    total=bar.elapsed_td,
                    loss=losses.avg*100,
                    acc=acces.avg*100
                    )
        _logger.info(bar.suffix)

    bar.finish()
    return losses.avg*100, acces.avg*100, predictions
Ejemplo n.º 5
0
def validate(val_loader,
             model,
             criterion,
             num_classes,
             idx,
             save_result_dir,
             meta_dir,
             anno_type,
             flip=True,
             evaluate=False,
             scales=[0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.6],
             multi_scale=False,
             save_heatmap=False):

    anno_type = anno_type[0].lower()

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    acces = AverageMeter()

    num_scales = len(scales)

    # switch to evaluate mode
    model.eval()

    meanstd_file = '../datasets/arm/mean.pth.tar'
    meanstd = torch.load(meanstd_file)
    mean = meanstd['mean']

    gt_win, pred_win = None, None
    end = time.time()
    bar = Bar('Processing', max=len(val_loader))
    for i, (inputs, target, meta) in enumerate(val_loader):
        #print(inputs.shape)
        # measure data loading time
        data_time.update(time.time() - end)

        if anno_type != 'none':

            target = target.cuda(async=True)
            target_var = torch.autograd.Variable(target)

        input_var = torch.autograd.Variable(inputs.cuda())

        with torch.no_grad():
            # compute output
            output = model(input_var)

            score_map = output[-1].data.cpu()
            if flip:
                flip_input_var = torch.autograd.Variable(
                    torch.from_numpy(fliplr(
                        inputs.clone().numpy())).float().cuda(), )
                flip_output_var = model(flip_input_var)
                flip_output = flip_back(flip_output_var[-1].data.cpu(),
                                        meta_dir=meta_dir[0])
                score_map += flip_output
                score_map /= 2

            if anno_type != 'none':

                loss = 0
                for o in output:
                    loss += criterion(o, target_var)
                acc = accuracy(score_map, target.cpu(), idx, pck_threshold)

        if multi_scale:
            new_scales = []
            new_res = []
            new_score_map = []
            new_inp = []
            new_meta = []
            img_name = []
            confidence = []
            new_center = []

            num_imgs = score_map.size(0) // num_scales
            for n in range(num_imgs):
                score_map_merged, res, conf = multi_scale_merge(
                    score_map[num_scales * n:num_scales * (n + 1)].numpy(),
                    meta['scale'][num_scales * n:num_scales * (n + 1)])
                inp_merged, _, _ = multi_scale_merge(
                    inputs[num_scales * n:num_scales * (n + 1)].numpy(),
                    meta['scale'][num_scales * n:num_scales * (n + 1)])
                new_score_map.append(score_map_merged)
                new_scales.append(meta['scale'][num_scales * (n + 1) - 1])
                new_center.append(meta['center'][num_scales * n])
                new_res.append(res)
                new_inp.append(inp_merged)
                img_name.append(meta['img_name'][num_scales * n])
                confidence.append(conf)

            if len(new_score_map) > 1:
                score_map = torch.tensor(
                    np.stack(new_score_map))  #stack back to 4-dim
                inputs = torch.tensor(np.stack(new_inp))
            else:
                score_map = torch.tensor(
                    np.expand_dims(new_score_map[0], axis=0))
                inputs = torch.tensor(np.expand_dims(new_inp[0], axis=0))

        else:
            img_name = []
            confidence = []
            for n in range(score_map.size(0)):
                img_name.append(meta['img_name'][n])
                confidence.append(
                    np.amax(score_map[n].numpy(), axis=(1, 2)).tolist())

        # generate predictions
        if multi_scale:
            preds = final_preds(score_map, new_center, new_scales, new_res[0])
        else:
            preds = final_preds(score_map, meta['center'], meta['scale'],
                                [64, 64])

        for n in range(score_map.size(0)):
            if evaluate:
                with open(
                        os.path.join(save_result_dir, 'preds',
                                     img_name[n] + '.json'), 'w') as f:
                    obj = {
                        'd2_key': preds[n].numpy().tolist(),
                        'score': confidence[n]
                    }
                    json.dump(obj, f)

        if evaluate:
            for n in range(score_map.size(0)):
                inp = inputs[n]
                pred = score_map[n]
                for t, m in zip(inp, mean):
                    t.add_(m)
                scipy.misc.imsave(
                    os.path.join(save_result_dir, 'visualization',
                                 '{}.jpg'.format(img_name[n])),
                    sample_with_heatmap(inp, pred))

                if save_heatmap:
                    score_map_original_size = align_back(
                        score_map[n], meta['center'][n],
                        meta['scale'][len(scales) * n - 1],
                        meta['original_size'][n])
                    np.save(
                        os.path.join(save_result_dir, 'heatmaps',
                                     '{}.npy'.format(img_name[n])),
                        score_map_original_size)

        if anno_type != 'none':

            # measure accuracy and record loss
            losses.update(loss.item(), inputs.size(0))
            acces.update(acc[0], inputs.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix = '({batch}/{size}) Data: {data:.6f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | Acc: {acc: .4f}'.format(
            batch=i + 1,
            size=len(val_loader),
            data=data_time.val,
            bt=batch_time.avg,
            total=bar.elapsed_td,
            eta=bar.eta_td,
            loss=losses.avg,
            acc=acces.avg)
        bar.next()

    bar.finish()

    if anno_type != 'none':
        return losses.avg, acces.avg
    else:
        return 0, 0
def validate(val_loader,
             model,
             criterion,
             num_classes,
             args,
             flip=False,
             test_batch=6):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    acces = AverageMeter()

    pck_score = np.zeros(num_classes)
    pck_count = np.zeros(num_classes)

    # predictions
    predictions = torch.Tensor(val_loader.dataset.__len__(), num_classes, 2)

    # switch to evaluate mode
    model.eval()

    gt_win, pred_win = None, None
    end = time.time()
    bar = Bar('Eval ', max=len(val_loader))

    with torch.no_grad():
        for i, (input, target, meta) in enumerate(val_loader):
            # measure data loading time
            data_time.update(time.time() - end)

            input = input.to(device, non_blocking=True)
            target = target.to(device, non_blocking=True)
            target_weight = meta['target_weight'].to(device, non_blocking=True)

            # compute output
            if args.arch == 'hg':
                output = model(input)
            elif args.arch == 'hg_multitask':
                output, _ = model(input)
            else:
                raise Exception("unspecified arch")

            score_map = output[-1].cpu() if type(
                output) == list else output.cpu()

            if flip:
                flip_input = torch.from_numpy(
                    fliplr(input.clone().cpu().numpy())).float().to(device)
                flip_output = model(flip_input)
                flip_output = flip_output[-1].cpu() if type(
                    flip_output) == list else flip_output.cpu()
                flip_output = flip_back(flip_output)
                score_map += flip_output

            acc, _ = accuracy_2animal(score_map, target.cpu(), idx1, idx2)

            # cal per joint [email protected]
            for j in range(num_classes):
                if acc[j + 1] > -1:
                    pck_score[j] += acc[j + 1].numpy()
                    pck_count[j] += 1

            # generate predictions
            preds = final_preds(score_map, meta['center'], meta['scale'],
                                [64, 64])
            for n in range(score_map.size(0)):
                predictions[meta['index'][n], :, :] = preds[n, :, :]

            # measure accuracy and record loss
            acces.update(acc[0], input.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            # plot progress
            bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Acc: {acc: .8f}'.format(
                batch=i + 1,
                size=len(val_loader),
                data=data_time.val,
                bt=batch_time.avg,
                total=bar.elapsed_td,
                eta=bar.eta_td,
                acc=acces.avg)
            bar.next()

        bar.finish()

    for j in range(num_classes):
        pck_score[j] /= float(pck_count[j])

    print("\nper joint [email protected]:")
    print(list(pck_score))

    return _, acces.avg, predictions
Ejemplo n.º 7
0
def validate(val_loader,
             model,
             criterion,
             num_classes,
             debug=False,
             flip=True):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    acces = AverageMeter()

    # predictions
    predictions = torch.Tensor(val_loader.dataset.__len__(), num_classes, 2)

    # switch to evaluate mode
    model.eval()

    gt_win, pred_win = None, None
    end = time.time()
    bar = Bar('Eval ', max=len(val_loader))
    with torch.no_grad():
        for i, (input, target, meta, img_path) in enumerate(val_loader):
            # measure data loading time
            data_time.update(time.time() - end)

            indexes = []

            input = input.to(device, non_blocking=True)
            #print (input.shape)

            #image = input.cpu().permute(0,2,3,1).numpy()
            #image = np.squeeze(image)

            path = str(img_path)
            path = path[3:len(path) - 2]
            image = cv2.imread(path)
            # cv2.imshow("image", image)
            # cv2.waitKey(10)
            # time.sleep(1)

            target = target.to(device, non_blocking=True)
            target_weight = meta['target_weight'].to(device, non_blocking=True)

            # compute output
            #print (input.shape)
            output = model(input)
            score_map = output[-1].cpu() if type(
                output) == list else output.cpu()

            if flip:
                flip_input = torch.from_numpy(fliplr(
                    input.clone().numpy())).float().to(device)
                flip_output = model(flip_input)
                flip_output = flip_output[-1].cpu() if type(
                    flip_output) == list else flip_output.cpu()
                flip_output = flip_back(flip_output)
                score_map += flip_output

            if type(output) == list:  # multiple output
                loss = 0
                for o in output:
                    loss += criterion(o, target, target_weight)
                output = output[-1]
            else:  # single output
                loss = criterion(output, target, target_weight)

            #print (acc)
            # generate predictions
            preds, vals = final_preds(score_map, meta['center'], meta['scale'],
                                      [64, 64])

            # for z in range(target.shape[1]):
            #     for j in range(target.shape[2]):
            #         for k in range(target.shape[3]):
            #             if target[0,z,j,k]==1.0:
            #                 indexes.append(z)

            # coords = np.squeeze(preds)
            # for m in range(0,len(coords)):
            #     val = vals[0][m].numpy()
            #     if val>0.6: #threshold for confidence score
            #         x,y = coords[m][0].cpu().numpy(), coords[m][1].cpu().numpy()
            #         cv2.circle(image, (x,y), 1, (0,0,255), -1)
            #         #indexes.append(m)

            acc = accuracy(score_map, target.cpu(), indexes)
            #print ((target.cpu()).shape[1])

            for n in range(score_map.size(0)):
                predictions[meta['index'][n], :, :] = preds[n, :, :]

            #print ("scored", score_map.shape)

            if debug:
                gt_batch_img = batch_with_heatmap(input, target)
                pred_batch_img = batch_with_heatmap(input, score_map)
                if not gt_win or not pred_win:
                    plt.subplot(121)
                    gt_win = plt.imshow(gt_batch_img)
                    plt.subplot(122)
                    pred_win = plt.imshow(pred_batch_img)
                else:
                    gt_win.set_data(gt_batch_img)
                    pred_win.set_data(pred_batch_img)
                plt.pause(.05)
                plt.draw()
                cv2.imwrite(
                    '/home/shantam/Documents/Programs/pytorch-pose/example/predictions/pred'
                    + str(i) + '.png', image)
                #time.sleep(5)

            # measure accuracy and record loss
            losses.update(loss.item(), input.size(0))
            acces.update(acc[0], input.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            # plot progress
            bar.suffix = '({batch}/{size}) Data: {data:.6f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | Acc: {acc: .4f}'.format(
                batch=i + 1,
                size=len(val_loader),
                data=data_time.val,
                bt=batch_time.avg,
                total=bar.elapsed_td,
                eta=bar.eta_td,
                loss=losses.avg,
                acc=acces.avg)
            bar.next()

        bar.finish()
    return losses.avg, acces.avg, predictions
Ejemplo n.º 8
0
def validate(val_loader, model, criterion, num_classes, debug=False, flip=True):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    acces = AverageMeter()

    # predictions
    predictions = torch.Tensor(val_loader.dataset.__len__(), num_classes, 2)

    # switch to evaluate mode
    model.eval()

    gt_win, pred_win = None, None
    end = time.time()
    bar = Bar('Processing', max=len(val_loader))
    for i, (inputs, target, meta) in enumerate(val_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        target = target.cuda(async=True)

        input_var = torch.autograd.Variable(inputs.cuda(), volatile=True)
        target_var = torch.autograd.Variable(target, volatile=True)

        # compute output
        output = model(input_var)
        score_map = output[-1].data.cpu()
        if flip:
            flip_input_var = torch.autograd.Variable(
                torch.from_numpy(
                    fliplr(inputs.clone().numpy())).float().cuda(),
                volatile=True
            )
            flip_output_var = model(flip_input_var)
            flip_output = flip_back(flip_output_var[-1].data.cpu())
            score_map += flip_output

        loss = 0
        for o in output:
            loss += criterion(o, target_var)
        acc = accuracy_segm(score_map, target.cpu())

        if debug:
            for j in range(len(score_map)):
                save_im_in(inputs[j], "debug/test_in_{}.jpg".format(j))
                save_im_out(score_map[j, 0, :, :],
                            "debug/test_out_{}.jpg".format(j))
                save_im_out(target[j, 0, :, :],
                            "debug/test_target_{}.jpg".format(j))

        # measure accuracy and record loss
        losses.update(loss.data[0], inputs.size(0))
        acces.update(acc[0], inputs.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix = '({batch}/{size}) Data: {data:.6f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | Acc: {acc: .4f}'.format(
            batch=i + 1,
            size=len(val_loader),
            data=data_time.val,
            bt=batch_time.avg,
            total=bar.elapsed_td,
            eta=bar.eta_td,
            loss=losses.avg,
            acc=acces.avg
        )
        bar.next()

    bar.finish()
    return losses.avg, acces.avg
Ejemplo n.º 9
0
def validate(val_loader,
             model,
             criterion,
             num_classes,
             args,
             flip=False,
             test_batch=6):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    acces = AverageMeter()

    pck_score = np.zeros(num_classes)
    pck_count = np.zeros(num_classes)

    # predictions
    predictions = torch.Tensor(val_loader.dataset.__len__(), num_classes, 2)

    # switch to evaluate mode
    model.eval()

    end = time.time()
    bar = Bar('Eval ', max=len(val_loader))
    with torch.no_grad():
        for i, (input, target, meta) in enumerate(val_loader):
            # measure data loading time
            data_time.update(time.time() - end)

            input = input.to(device, non_blocking=True)
            target = target.to(device, non_blocking=True)

            output, output_refine = model(input, 1, return_domain=False)
            score_map = output_refine[0].cpu()

            if flip:
                flip_input = torch.from_numpy(
                    fliplr(input.clone().cpu().numpy())).float().to(device)
                _, flip_output_refine = model(flip_input,
                                              1,
                                              return_domain=False)
                flip_output = flip_output_refine[0].cpu()
                flip_output = flip_back(flip_output, 'real_animal')
                score_map += flip_output

            acc, _ = accuracy_2animal(score_map, target.cpu(), idx1, idx2)
            # cal per joint [email protected]
            for j in range(num_classes):
                if acc[j + 1] > -1:
                    pck_score[j] += acc[j + 1].numpy()
                    pck_count[j] += 1

            # generate predictions
            preds = final_preds(score_map, meta['center'], meta['scale'],
                                [64, 64])

            for n in range(score_map.size(0)):
                predictions[meta['index'][n], :, :] = preds[n, :, :]

            # measure accuracy and record loss
            acces.update(acc[0], input.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            # plot progress
            bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Acc: {acc: .8f}'.format(
                batch=i + 1,
                size=len(val_loader),
                data=data_time.val,
                bt=batch_time.avg,
                total=bar.elapsed_td,
                eta=bar.eta_td,
                acc=acces.avg)
            bar.next()

        bar.finish()

    for j in range(num_classes):
        pck_score[j] /= float(pck_count[j])
    print("\nper joint [email protected]:")
    print('Animal: {}, total number of joints: {}'.format(
        args.animal, pck_count.sum()))
    print(list(pck_score))

    parts = {
        'eye': [0, 1],
        'chin': [2],
        'hoof': [3, 4, 5, 6],
        'hip': [7],
        'knee': [8, 9, 10, 11],
        'shoulder': [12, 13],
        'elbow': [14, 15, 16, 17]
    }
    for p in parts.keys():
        part = parts[p]
        score = 0.
        count = 0.
        for joint in part:
            score += pck_score[joint] * pck_count[joint]
            count += pck_count[joint]
        print('\n Joint {}: {} '.format(p, score / count))

    return _, acces.avg, predictions
def validate(val_loader,
             model,
             criterion,
             debug=False,
             flip=True,
             test_batch=6,
             njoints=68):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    acces = AverageMeter()

    # predictions
    predictions = torch.Tensor(val_loader.dataset.__len__(), njoints, 2)

    # switch to evaluate mode
    model.eval()

    gt_win, pred_win = None, None
    end = time.time()
    bar = Bar('Eval ', max=len(val_loader))

    interocular_dists = torch.zeros((njoints, val_loader.dataset.__len__()))

    with torch.no_grad():
        for i, (input, target, meta) in enumerate(val_loader):
            # measure data loading time
            data_time.update(time.time() - end)

            input = input.to(device, non_blocking=True)
            target = target.to(device, non_blocking=True)
            target_weight = meta['target_weight'].to(device, non_blocking=True)

            # compute output
            output = model(input)
            score_map = output[-1].cpu() if type(
                output) == list else output.cpu()
            if flip:
                flip_input = torch.from_numpy(fliplr(
                    input.clone().numpy())).float().to(device)
                flip_output = model(flip_input)
                flip_output = flip_output[-1].cpu() if type(
                    flip_output) == list else flip_output.cpu()
                flip_output = flip_back(flip_output)
                score_map += flip_output

            if type(output) == list:  # multiple output
                loss = 0
                for o in output:
                    loss += criterion(o, target, target_weight, len(idx))
                output = output[-1]
            else:  # single output
                loss = criterion(output, target, target_weight, len(idx))

            acc, batch_interocular_dists = accuracy(score_map, target.cpu(),
                                                    idx)
            interocular_dists[:, i * test_batch:(i + 1) *
                              test_batch] = batch_interocular_dists

            # generate predictions
            preds = final_preds(score_map, meta['center'], meta['scale'],
                                [64, 64])
            for n in range(score_map.size(0)):
                predictions[meta['index'][n], :, :] = preds[n, :, :]

            if debug:
                gt_batch_img = batch_with_heatmap(input, target)
                pred_batch_img = batch_with_heatmap(input, score_map)
                if not gt_win or not pred_win:
                    plt.subplot(121)
                    gt_win = plt.imshow(gt_batch_img)
                    plt.subplot(122)
                    pred_win = plt.imshow(pred_batch_img)
                else:
                    gt_win.set_data(gt_batch_img)
                    pred_win.set_data(pred_batch_img)
                plt.pause(.05)
                plt.draw()

            # measure accuracy and record loss
            losses.update(loss.item(), input.size(0))
            acces.update(acc[0], input.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            # plot progress
            bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.8f} | Acc: {acc: .8f}'.format(
                batch=i + 1,
                size=len(val_loader),
                data=data_time.val,
                bt=batch_time.avg,
                total=bar.elapsed_td,
                eta=bar.eta_td,
                loss=losses.avg,
                acc=acces.avg)
            bar.next()

        bar.finish()
        idx_array = np.array(idx) - 1
        interocular_dists_pickup = interocular_dists[idx_array, :]
        mean_error = torch.mean(
            interocular_dists_pickup[interocular_dists_pickup != -1])
        auc = calc_metrics(interocular_dists,
                           idx)  # this is auc of predicted maps and target.
        #print("=> Mean Error: {:.8f}, [email protected]: {:.8f} based on maps".format(mean_error, auc))
    return losses.avg, acces.avg, predictions, auc, mean_error
Ejemplo n.º 11
0
    def validate(self):
        batch_time = AverageMeter()
        data_time = AverageMeter()
        losses = AverageMeter()
        acces = AverageMeter()

        predictions = torch.Tensor(self.val_loader.dataset.__len__(),
                                   self.num_classes, 2)

        self.netG.eval()

        gt_win, pred_win = None, None
        end = time.time()
        bar = Bar('Eval ', max=len(self.val_loader))
        with torch.no_grad():
            for i, (input, target, meta, mpii) in enumerate(self.val_loader):
                if mpii == False:
                    continue
                data_time.update(time.time() - end)

                input = input.to(self.device, non_blocking=True)
                target = target.to(self.device, non_blocking=True)
                target_weight = meta['target_weight'].to(self.device,
                                                         non_blocking=True)

                output = self.netG(input)
                score_map = output[-1].cpu() if type(
                    output) == list else output.cpu()
                if self.flip:
                    flip_input = torch.from_numpy
                    flip_output = self.netG(flip_input)
                    flip_output = flip_output[-1].cpu() if type(
                        flip_output) == list else flip_output.cpu()
                    flip_output = flip_back(flip_output)
                    score_map += flip_output

                if type(output) == list:
                    loss = 0
                    for o in output:
                        loss += self.criterion(o, target, target_weight)
                    output = output[-1]
                else:
                    loss = self.criterion(output, target, target_weight)

                acc = accuracy(score_map, target.cpu(), self.idx)

                preds = final_preds(score_map, meta['center'], meta['scale'],
                                    [64, 64])
                for n in range(score_map.size(0)):
                    predictions[meta['index'][n], :, :] = preds[n, :, :]

                if self.debug:
                    gt_batch_img = batch_with_heatmap(input, target)
                    pred_batch_img = batch_with_heatmap(input, score_map)
                    if not gt_win or not pred_win:
                        plt.subplot(121)
                        gt_win = plt.imshow(gt_batch_img)
                        plt.subplot(122)
                        pred_win = plt.imshow(pred_batch_img)
                    else:
                        gt_win.set_data(gt_batch_img)
                        pred_win.set_data(pred_batch_img)
                    plt.pause(.05)
                    plt.draw()

                losses.update(loss.item, input.size(0))
                acces.update(acc[0], input.size(0))

                batch_time.update(time.time() - end)
                end = time.time()

                bar.suffix = '({batch}/{size}) Data: {data:.6f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | Acc: {acc: .4f}'.format(
                    batch=i + 1,
                    size=len(self.val_loader),
                    data=data_time.val,
                    bt=batch_time.avg,
                    total=bar.elapsed_td,
                    eta=bar.eta_td,
                    loss=losses.avg,
                    acc=acces.avg)

                bar.next()

            bar.finish()
        return losses.avg, acces.avg, predictions
def validate(val_loader,
             model,
             criterion,
             flip=True,
             test_batch=6,
             njoints=18):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    acces = AverageMeter()

    # predictions
    predictions = torch.Tensor(val_loader.dataset.__len__(), njoints, 2)

    # switch to evaluate mode
    model.eval()

    gt_win, pred_win = None, None
    end = time.time()
    bar = Bar('Eval ', max=len(val_loader))

    with torch.no_grad():
        for i, (input, target, meta) in enumerate(val_loader):
            # measure data loading time
            data_time.update(time.time() - end)

            input = input.to(device, non_blocking=True)
            if global_animal == 'horse':
                target = target.to(device, non_blocking=True)
                target_weight = meta['target_weight'].to(device,
                                                         non_blocking=True)
            elif global_animal == 'tiger':
                target = target.to(device, non_blocking=True)
                target_weight = meta['target_weight'].to(device,
                                                         non_blocking=True)
                target = target[:,
                                np.array([
                                    1, 2, 3, 4, 5, 6, 7, 8, 15, 16, 17, 18, 13,
                                    14, 9, 10, 11, 12
                                ]) - 1, :, :]
                target_weight = target_weight[:,
                                              np.array([
                                                  1, 2, 3, 4, 5, 6, 7, 8, 15,
                                                  16, 17, 18, 13, 14, 9, 10,
                                                  11, 12
                                              ]) - 1, :]
            else:
                raise Exception('please add new animal category')

            # compute output
            output = model(input)
            score_map = output[-1].cpu() if type(
                output) == list else output.cpu()
            if flip:
                flip_input = torch.from_numpy(fliplr(
                    input.clone().numpy())).float().to(device)
                flip_output = model(flip_input)
                flip_output = flip_output[-1].cpu() if type(
                    flip_output) == list else flip_output.cpu()
                flip_output = flip_back(flip_output)
                score_map += flip_output

            if type(output) == list:  # multiple output
                loss = 0
                for o in output:
                    loss += criterion(o, target, target_weight, len(idx))
                output = output[-1]
            else:  # single output
                loss = criterion(output, target, target_weight, len(idx))

            acc, _ = accuracy(score_map, target.cpu(), idx)

            # generate predictions
            preds = final_preds(score_map, meta['center'], meta['scale'],
                                [64, 64])
            #for n in range(score_map.size(0)):
            #    predictions[meta['index'][n], :, :] = preds[n, :, :]

            # measure accuracy and record loss
            losses.update(loss.item(), input.size(0))
            acces.update(acc[0], input.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            # plot progress
            bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.8f} | Acc: {acc: .8f}'.format(
                batch=i + 1,
                size=len(val_loader),
                data=data_time.val,
                bt=batch_time.avg,
                total=bar.elapsed_td,
                eta=bar.eta_td,
                loss=losses.avg,
                acc=acces.avg)
            bar.next()

        bar.finish()
    return losses.avg, acces.avg
Ejemplo n.º 13
0
def validate(val_loader,
             model,
             criterion,
             criterion_seg,
             debug=False,
             flip=True,
             test_batch=6,
             njoints=68):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses_kpt = AverageMeter()
    losses_seg = AverageMeter()
    acces = AverageMeter()
    inter_meter = AverageMeter()
    union_meter = AverageMeter()

    # predictions
    predictions = torch.Tensor(val_loader.dataset.__len__(), njoints, 2)

    # switch to evaluate mode
    model.eval()

    gt_win, pred_win = None, None
    end = time.time()
    bar = Bar('Eval ', max=len(val_loader))

    interocular_dists = torch.zeros((njoints, val_loader.dataset.__len__()))

    with torch.no_grad():
        for i, (input, target, target_seg, meta) in enumerate(val_loader):
            # measure data loading time
            data_time.update(time.time() - end)

            input, target, target_seg = input.to(device), target.to(
                device, non_blocking=True), target_seg.to(device)
            target_weight = meta['target_weight'].to(device, non_blocking=True)

            # compute output
            output_kpt, output_seg = model(input)
            score_map = output_kpt[-1].cpu() if type(
                output_kpt) == list else output_kpt.cpu()

            if flip:
                flip_input = torch.from_numpy(fliplr(
                    input.clone().numpy())).float().to(device)
                flip_output = model(flip_input)
                flip_output = flip_output[-1].cpu() if type(
                    flip_output) == list else flip_output.cpu()
                flip_output = flip_back(flip_output)
                score_map += flip_output

            if type(output_kpt) == list:  # multiple output
                loss_kpt = 0
                loss_seg = 0
                for (o, o_seg) in zip(output_kpt, output_seg):
                    loss_kpt += criterion(o, target, target_weight, len(idx))
                    loss_seg += criterion_seg(o_seg, target_seg)
                output = output_kpt[-1]
                output_seg = output_seg[-1]
            else:  # single output
                loss_kpt = criterion(output_kpt, target, target_weight,
                                     len(idx))
                loss_seg = criterion(output_seg, target_seg)

            acc, batch_interocular_dists = accuracy(score_map, target.cpu(),
                                                    idx)
            _, pred_seg = torch.max(output_seg, 1)

            # generate predictions
            preds = final_preds(score_map, meta['center'], meta['scale'],
                                [64, 64])
            for n in range(score_map.size(0)):
                predictions[meta['index'][n], :, :] = preds[n, :, :]

            if debug:
                gt_batch_img = batch_with_heatmap(input, target)
                pred_batch_img = batch_with_heatmap(input, score_map)
                if not gt_win or not pred_win:
                    plt.subplot(121)
                    gt_win = plt.imshow(gt_batch_img)
                    plt.subplot(122)
                    pred_win = plt.imshow(pred_batch_img)
                else:
                    gt_win.set_data(gt_batch_img)
                    pred_win.set_data(pred_batch_img)
                plt.pause(.05)
                plt.draw()

            # measure accuracy and record loss
            losses_kpt.update(loss_kpt.item(), input.size(0))
            losses_seg.update(loss_seg.item(), input.size(0))
            acces.update(acc[0], input.size(0))

            inter, union = inter_and_union(
                pred_seg.data.cpu().numpy().astype(np.uint8),
                target_seg.data.cpu().numpy().astype(np.uint8))
            inter_meter.update(inter)
            union_meter.update(union)

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            iou = inter_meter.sum / (union_meter.sum + 1e-10)

            # plot progress
            bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss_kpt: {loss_kpt:.8f} | Loss_seg: {loss_seg:.8f} | Acc: {acc: .8f} | IOU: {iou:.2f}'.format(
                batch=i + 1,
                size=len(val_loader),
                data=data_time.val,
                bt=batch_time.avg,
                total=bar.elapsed_td,
                eta=bar.eta_td,
                loss_kpt=losses_kpt.avg,
                loss_seg=losses_seg.avg,
                acc=acces.avg,
                iou=iou.mean() * 100)
            bar.next()

        bar.finish()
        print(iou)
    return losses_kpt.avg, acces.avg, predictions, iou.mean() * 100
Ejemplo n.º 14
0
def validate(config,
             val_loader,
             val_dataset,
             model,
             criterion,
             output_dir,
             tb_log_dir,
             writer_dict=None):
    batch_time = AverageMeter()
    losses = AverageMeter()
    acc = AverageMeter()

    # switch to evaluate mode
    model.eval()

    num_samples = len(val_dataset)
    all_preds = np.zeros((num_samples, config.MODEL.NUM_JOINTS, 3),
                         dtype=np.float32)
    all_boxes = np.zeros((num_samples, 6))
    image_path = []
    image_ids = []
    bbox_infos = []
    filenames = []
    imgnums = []
    idx = 0
    with torch.no_grad():
        end = time.time()
        for i, (input, target, target_weight, meta) in enumerate(val_loader):
            # compute output
            output = model(input)
            if config.TEST.FLIP_TEST:
                # this part is ugly, because pytorch has not supported negative index
                # input_flipped = model(input[:, :, :, ::-1])
                input_flipped = np.flip(input.cpu().numpy(), 3).copy()
                input_flipped = torch.from_numpy(input_flipped).cuda()
                output_flipped = model(input_flipped)
                output_flipped = flip_back(output_flipped.cpu().numpy(),
                                           val_dataset.flip_pairs)
                output_flipped = torch.from_numpy(output_flipped.copy()).cuda()

                # feature is not aligned, shift flipped heatmap for higher accuracy
                if config.TEST.SHIFT_HEATMAP:
                    output_flipped[:, :, :, 1:] = \
                        output_flipped.clone()[:, :, :, 0:-1]
                    # output_flipped[:, :, :, 0] = 0

                output = (output + output_flipped) * 0.5

            target = target.cuda(non_blocking=True)
            target_weight = target_weight.cuda(non_blocking=True)

            loss = criterion(output, target, target_weight)

            num_images = input.size(0)
            # measure accuracy and record loss
            losses.update(loss.item(), num_images)
            _, avg_acc, cnt, pred = accuracy(output.cpu().numpy(),
                                             target.cpu().numpy())

            acc.update(avg_acc, cnt)

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            c = meta['center'].numpy()
            s = meta['scale'].numpy()
            score = meta['score'].numpy()

            preds, maxvals = get_final_preds(config,
                                             output.clone().cpu().numpy(), c,
                                             s)

            all_preds[idx:idx + num_images, :, 0:2] = preds[:, :, 0:2]
            all_preds[idx:idx + num_images, :, 2:3] = maxvals
            # double check this all_boxes parts
            all_boxes[idx:idx + num_images, 0:2] = c[:, 0:2]
            all_boxes[idx:idx + num_images, 2:4] = s[:, 0:2]
            all_boxes[idx:idx + num_images, 4] = np.prod(s * 200, 1)
            all_boxes[idx:idx + num_images, 5] = score
            image_path.extend(meta['image'])
            if 'image_id' in meta:

                image_ids.extend(meta['image_id'].numpy())
                #print(meta['image_id'])
            # for posetrack dataset, im_bbox must be considered
            if 'im_bbox' in meta:
                now_boxes = meta['im_bbox']
                bbox_infos.extend(now_boxes.numpy())
            if config.DATASET.DATASET == 'posetrack':
                filenames.extend(meta['filename'])
                imgnums.extend(meta['imgnum'].numpy())

            idx += num_images

            if i % config.PRINT_FREQ == 0:
                msg = 'Test: [{0}/{1}]\t' \
                      'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' \
                      'Loss {loss.val:.4f} ({loss.avg:.4f})\t' \
                      'Accuracy {acc.val:.3f} ({acc.avg:.3f})'.format(
                          i, len(val_loader), batch_time=batch_time,
                          loss=losses, acc=acc)
                logger.info(msg)

                prefix = '{}_{}'.format(os.path.join(output_dir, 'val'), i)
                save_debug_images(config, input, meta, target, pred * 4,
                                  output, prefix)

        name_values, perf_indicator = val_dataset.evaluate(
            config, all_preds, output_dir, all_boxes, image_path, image_ids,
            bbox_infos)

        _, full_arch_name = get_model_name(config)
        if isinstance(name_values, list):
            for name_value in name_values:
                _print_name_value(name_value, full_arch_name)
        else:
            _print_name_value(name_values, full_arch_name)

        if writer_dict:
            writer = writer_dict['writer']
            global_steps = writer_dict['valid_global_steps']
            writer.add_scalar('valid_loss', losses.avg, global_steps)
            writer.add_scalar('valid_acc', acc.avg, global_steps)
            if isinstance(name_values, list):
                for name_value in name_values:
                    writer.add_scalars('valid', dict(name_value), global_steps)
            else:
                writer.add_scalars('valid', dict(name_values), global_steps)
            writer_dict['valid_global_steps'] = global_steps + 1

    return perf_indicator
Ejemplo n.º 15
0
def validate(val_loader,
             model,
             criterion,
             debug=False,
             flip=True,
             test_batch=6,
             njoints=68):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    acces_re = AverageMeter()
    # switch to evaluate mode
    model.eval()

    gt_win, pred_win = None, None
    end = time.time()
    bar = Bar('Eval ', max=len(val_loader))

    with torch.no_grad():
        for i, (input, target, meta) in enumerate(val_loader):
            # measure data loading time
            data_time.update(time.time() - end)

            input = input.to(device, non_blocking=True)
            target = target.to(device, non_blocking=True)
            target_weight = meta['target_weight'].to(device, non_blocking=True)

            # compute output
            output, output_refine = model(input)
            score_map = output[-1].cpu() if type(
                output) == list else output.cpu()
            score_map_refine = output_refine[-1].cpu() if type(
                output_refine) == list else output_refine.cpu()
            if flip:
                flip_input = torch.from_numpy(fliplr(
                    input.clone().numpy())).float().to(device)
                flip_output, flip_output_re = model(flip_input)
                flip_output = flip_output[-1].cpu() if type(
                    flip_output) == list else flip_output.cpu()
                flip_output_re = flip_output_re[-1].cpu() if type(
                    flip_output_re) == list else flip_output_re.cpu()
                flip_output = flip_back(flip_output, 'real_animal')
                flip_output_re = flip_back(flip_output_re, 'real_animal')
                score_map += flip_output
                score_map_refine += flip_output_re

            if type(output) == list:  # multiple output
                loss = 0
                for (o, o_re) in (output, output_refine):
                    loss = loss + criterion(
                        o, target, target_weight, len(idx)) + criterion(
                            o_re, target, target_weight, len(idx))
            else:  # single output
                loss = criterion(
                    output, target, target_weight, len(idx)) + criterion(
                        output_refine, target, target_weight, len(idx))

            acc_re, _ = accuracy(score_map_refine, target.cpu(), idx)

            if debug:
                gt_batch_img = batch_with_heatmap(input, target)
                pred_batch_img = batch_with_heatmap(input, score_map)
                if not gt_win or not pred_win:
                    plt.subplot(121)
                    gt_win = plt.imshow(gt_batch_img)
                    plt.subplot(122)
                    pred_win = plt.imshow(pred_batch_img)
                else:
                    gt_win.set_data(gt_batch_img)
                    pred_win.set_data(pred_batch_img)
                plt.pause(.05)
                plt.draw()

            # measure accuracy and record loss
            losses.update(loss.item(), input.size(0))
            acces_re.update(acc_re[0], input.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            # plot progress
            bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} ' \
                          '| Loss: {loss:.8f} | Acc_re: {acc_re: .8f}'.format(
                            batch=i + 1,
                            size=len(val_loader),
                            data=data_time.val,
                            bt=batch_time.avg,
                            total=bar.elapsed_td,
                            eta=bar.eta_td,
                            loss=losses.avg,
                            acc_re=acces_re.avg
                            )
            bar.next()

        bar.finish()

    return losses.avg, acces_re.avg