Ejemplo n.º 1
0
class face_detector():
	def __init__(self):
		# Load the parameters
		self.conf = config()
		# initialize dlib's face detector (HOG-based) and then create the
		# facial landmark predictor
		print("[INFO] loading facial landmark predictor...")
		self.detector = dlib.get_frontal_face_detector()
		self.predictor = dlib.shape_predictor(self.conf.shape_predictor_path)
		
		# grab the indexes of the facial landmarks for the left and
		# right eye, respectively
		(self.lStart, self.lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
		(self.rStart, self.rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
		
		# initialize the video stream and sleep for a bit, allowing the
		# camera sensor to warm up
		self.cap = cv2.VideoCapture(0)
		if self.conf.vedio_path == 0:
			self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
		_, sample_frame = self.cap.read()
		
		# Introduce mark_detector to detect landmarks.
		self.mark_detector = MarkDetector()
		
		# Setup process and queues for multiprocessing.
		self.img_queue = Queue()
		self.box_queue = Queue()
		self.img_queue.put(sample_frame)
		self.box_process = Process(target=get_face, args=(
			self.mark_detector, self.img_queue, self.box_queue,))
		self.box_process.start()
		
		# Introduce pose estimator to solve pose. Get one frame to setup the
		# estimator according to the image size.
		self.height, self.width = sample_frame.shape[:2]
		self.pose_estimator = PoseEstimator(img_size=(self.height, self.width))
		
		# Introduce scalar stabilizers for pose.
		self.pose_stabilizers = [Stabilizer(
			state_num=2,
			measure_num=1,
			cov_process=0.1,
			cov_measure=0.1) for _ in range(6)]
		
		self.tm = cv2.TickMeter()
		# Gaze tracking
		self.gaze = GazeTracking()
	
	def detect(self):
		# loop over the frames from the video stream
		temp_steady_pose = 0
		while True:
			# grab the frame from the threaded video stream, resize it to
			# have a maximum width of 400 pixels, and convert it to
			# grayscale
			frame_got, frame = self.cap.read()
			
			# Empty frame
			frame_empty = np.zeros(frame.shape)
			
			# frame = imutils.rotate(frame, 90)
			frame = imutils.resize(frame, width=400)
			gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
			
			# detect faces in the grayscale frame
			rects = self.detector(gray, 0)
			
			# initialize the frame counters and the total number of blinks
			TOTAL = 0
			COUNTER = 0
			# loop over the face detections
			for (i, rect) in enumerate(rects):
				# determine the facial landmarks for the face region, then
				# convert the facial landmark (x, y)-coordinates to a NumPy
				# array
				self.shape = self.predictor(gray, rect)
				self.shape = face_utils.shape_to_np(self.shape)
				
				# ********************************
				# Blink detection
				# extract the left and right eye coordinates, then use the
				# coordinates to compute the eye aspect ratio for both eyes
				self.leftEye = self.shape[self.lStart:self.lEnd]
				self.rightEye = self.shape[self.rStart:self.rEnd]
				self.leftEAR = eye_aspect_ratio(self.leftEye)
				self.rightEAR = eye_aspect_ratio(self.rightEye)
				
				# average the eye aspect ratio together for both eyes
				ear = (self.leftEAR + self.rightEAR) / 2.0
				
				# check to see if the eye aspect ratio is below the blink
				# threshold, and if so, increment the blink frame counter
				if ear < self.conf.EYE_AR_THRESH:
					COUNTER += 1
				
				# otherwise, the eye aspect ratio is not below the blink
				# threshold
				else:
					# if the eyes were closed for a sufficient number of
					# then increment the total number of blinks
					if COUNTER >= self.conf.EYE_AR_CONSEC_FRAMES:
						TOTAL += 1
					
					# reset the eye frame counter
					COUNTER = 0
				
				# Frame empty
				cv2.putText(frame_empty, "Blinks: {}".format(TOTAL), (30, 60),
							cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 255), 2)
				cv2.putText(frame_empty, "EAR: {:.2f}".format(ear), (30, 90),
							cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 255), 2)
				
				# ********************************
				# convert dlib's rectangle to a OpenCV-style bounding box
				# [i.e., (x, y, w, h)], then draw the face bounding box
				(x, y, w, h) = face_utils.rect_to_bb(rect)
				self.bounding_box = (x, y, w, h)
				# cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
				
				# Frame empty
				cv2.rectangle(frame_empty, (x, y), (x + w, y + h), (0, 255, 0), 2)
				
				# show the face number
				cv2.putText(frame_empty, "Face #{}".format(i + 1), (30, 120),
							cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 255), 2)
				
				# loop over the (x, y)-coordinates for the facial landmarks
				# and draw them on the image
				for (x, y) in self.shape:
					# cv2.circle(frame, (x, y), 1, (0, 255, 255), -1)
					cv2.circle(frame_empty, (x, y), 1, (0, 255, 255), -1)
			
			# **********************************************************
			if frame_got is False:
				break
			
			# If frame comes from webcam, flip it so it looks like a mirror.
			if self.conf.vedio_path == 0:
				frame = cv2.flip(frame, 2)
			
			# Pose estimation by 3 steps:
			# 1. detect face;
			# 2. detect landmarks;
			# 3. estimate pose
			
			# Feed frame to image queue.
			self.img_queue.put(frame)
			
			# Get face from box queue.
			self.facebox = self.box_queue.get()
			
			if self.facebox is not None:
				# Detect landmarks from image of 128x128.
				face_img = frame[self.facebox[1]: self.facebox[3],
						   self.facebox[0]: self.facebox[2]]
				face_img = cv2.resize(face_img, (self.conf.CNN_INPUT_SIZE, self.conf.CNN_INPUT_SIZE))
				face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
				
				self.tm.start()
				# marks = self.mark_detector.detect_marks([face_img])
				self.tm.stop()
				
				# Convert the marks locations from local CNN to global image.
				self.shape *= (self.facebox[2] - self.facebox[0])
				self.shape[:, 0] += self.facebox[0]
				self.shape[:, 1] += self.facebox[1]
				
				# Uncomment following line to show raw marks.
				# mark_detector.draw_marks(
				#     frame, marks, color=(0, 255, 0))
				
				# Uncomment following line to show facebox.
				# mark_detector.draw_box(frame, [facebox])
				
				# Try pose estimation with 68 points.
				self.pose = self.pose_estimator.solve_pose_by_68_points(self.shape)
				
				# Stabilize the pose.
				self.steady_pose = []
				pose_np = np.array(self.pose).flatten()
				for value, ps_stb in zip(pose_np, self.pose_stabilizers):
					ps_stb.update([value])
					self.steady_pose.append(ps_stb.state[0])
				self.steady_pose = np.reshape(self.steady_pose, (-1, 3))
				
				# Uncomment following line to draw pose annotation on frame.
				# pose_estimator.draw_annotation_box(
				# 	frame, pose[0], pose[1], color=(255, 128, 128))
				
				# Uncomment following line to draw stabile pose annotation on frame.
				# pose_estimator.draw_annotation_box(frame, steady_pose[0], steady_pose[1], color=(128, 255, 128))
				
				# Uncomment following line to draw head axes on frame.
				# pose_estimator.draw_axes(frame, steady_pose[0], steady_pose[1])
				self.pose_estimator.draw_axes(frame_empty, self.steady_pose[0], self.steady_pose[1])
				print('steady pose vector: {}'.format(self.steady_pose[0], self.steady_pose[1]))
			else:
				# cv2.putText(frame, "Signal loss", (200, 200),
				# 			cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
				cv2.putText(frame_empty, "Signal loss", (200, 200),
							cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
			# ******************************************************************
			# We send this frame to GazeTracking to analyze it
			self.gaze.refresh(frame)
			
			frame = self.gaze.annotated_frame()
			text = ""
			
			if self.gaze.is_blinking():
				text = "Blinking"
			elif self.gaze.is_right():
				text = "Looking right"
			elif self.gaze.is_left():
				text = "Looking left"
			elif self.gaze.is_center():
				text = "Looking center"
			
			cv2.putText(frame_empty, text, (250, 250), cv2.FONT_HERSHEY_DUPLEX, 0.5, (147, 58, 31), 2)
			
			left_pupil = self.gaze.pupil_left_coords()
			right_pupil = self.gaze.pupil_right_coords()
			cv2.putText(frame_empty, "Left pupil:  " + str(left_pupil), (250, 280), cv2.FONT_HERSHEY_DUPLEX, 0.5,
						(147, 58, 31), 1)
			cv2.putText(frame_empty, "Right pupil: " + str(right_pupil), (250, 310), cv2.FONT_HERSHEY_DUPLEX, 0.5,
						(147, 58, 31), 1)
			
			# ********************************************************************
			# show the frame
			# cv2.imshow("Frame", frame)
			cv2.imshow("Frame", frame_empty)
			key = cv2.waitKey(1) & 0xFF
			
			self.pass_variable = np.array(1)
			
			try:
				self._listener(self.pass_variable)
			except:
				pass
			
			# if the `q` key was pressed, break from the loop
			if key == ord("q"):
				break
		# do a bit of cleanup
		cv2.destroyAllWindows()
		# self.cap.stop()
	
	def set_listener(self, listener):
		self._listener = listener
Ejemplo n.º 2
0
def main():
    """MAIN"""
    # Video source from webcam or video file.
    video_src = args.cam if args.cam is not None else args.video
    if video_src is None:
        print(
            "Warning: video source not assigned, default webcam will be used.")
        video_src = 0

    cap = cv2.VideoCapture(video_src)
    if video_src == 0:
        cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
    _, sample_frame = cap.read()

    # Introduce mark_detector to detect landmarks.
    mark_detector = MarkDetector()

    # Setup process and queues for multiprocessing.
    img_queue = Queue()
    box_queue = Queue()
    img_queue.put(sample_frame)
    box_process = Process(target=get_face,
                          args=(
                              mark_detector,
                              img_queue,
                              box_queue,
                          ))
    box_process.start()

    # Introduce pose estimator to solve pose. Get one frame to setup the
    # estimator according to the image size.
    height, width = sample_frame.shape[:2]
    pose_estimator = PoseEstimator(img_size=(height, width))

    # Introduce scalar stabilizers for pose.
    pose_stabilizers = [
        Stabilizer(state_num=2,
                   measure_num=1,
                   cov_process=0.1,
                   cov_measure=0.1) for _ in range(6)
    ]

    tm = cv2.TickMeter()

    while True:
        # Read frame, crop it, flip it, suits your needs.
        frame_got, frame = cap.read()
        if frame_got is False:
            break

        # Crop it if frame is larger than expected.
        # frame = frame[0:480, 300:940]

        # If frame comes from webcam, flip it so it looks like a mirror.
        if video_src == 0:
            frame = cv2.flip(frame, 2)

        # Pose estimation by 3 steps:
        # 1. detect face;
        # 2. detect landmarks;
        # 3. estimate pose

        # Feed frame to image queue.
        img_queue.put(frame)

        # Get face from box queue.
        facebox = box_queue.get()

        if facebox is not None:
            # Detect landmarks from image of 128x128.
            face_img = frame[facebox[1]:facebox[3], facebox[0]:facebox[2]]
            face_img = cv2.resize(face_img, (CNN_INPUT_SIZE, CNN_INPUT_SIZE))
            face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)

            tm.start()
            marks = mark_detector.detect_marks(face_img)
            tm.stop()

            # Convert the marks locations from local CNN to global image.
            marks *= (facebox[2] - facebox[0])
            marks[:, 0] += facebox[0]
            marks[:, 1] += facebox[1]

            # Uncomment following line to show raw marks.
            # mark_detector.draw_marks(frame, marks, color=(0, 255, 0))

            # Uncomment following line to show facebox.
            # mark_detector.draw_box(frame, [facebox])

            # Try pose estimation with 68 points.
            pose = pose_estimator.solve_pose_by_68_points(marks)

            # Stabilize the pose.
            steady_pose = []
            pose_np = np.array(pose).flatten()
            for value, ps_stb in zip(pose_np, pose_stabilizers):
                ps_stb.update([value])
                steady_pose.append(ps_stb.state[0])
            steady_pose = np.reshape(steady_pose, (-1, 3))

            # Uncomment following line to draw pose annotation on frame.
            # pose_estimator.draw_annotation_box(
            #     frame, pose[0], pose[1], color=(255, 128, 128))

            # Uncomment following line to draw stabile pose annotation on frame.
            pose_estimator.draw_annotation_box(frame,
                                               steady_pose[0],
                                               steady_pose[1],
                                               color=(128, 255, 128))

            # Uncomment following line to draw head axes on frame.
            pose_estimator.draw_axes(frame, steady_pose[0], steady_pose[1])

        # Show preview.
        cv2.imshow("Preview", frame)
        if cv2.waitKey(10) == 27:
            break

    # Clean up the multiprocessing process.
    box_process.terminate()
    box_process.join()
Ejemplo n.º 3
0
def main():
    """MAIN"""
    # Video source from webcam or video file.
    video_src = args.cam if args.cam is not None else args.video
    if video_src is None:
        engine.say(
            "Warning: video source not assigned, default webcam will be used")
        engine.runAndWait()
        video_src = 0
    cap = cv2.VideoCapture(video_src)
    if video_src == 0:
        cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
    _, sample_frame = cap.read()
    # Introduce mark_detector to detect landmarks.
    mark_detector = MarkDetector()

    # Setup process and queues for multiprocessing.
    img_queue = Queue()
    box_queue = Queue()
    img_queue.put(sample_frame)
    box_process = Process(target=get_face,
                          args=(
                              mark_detector,
                              img_queue,
                              box_queue,
                          ))
    box_process.start()
    gaze = GazeTracking()
    # Introduce pose estimator to solve pose. Get one frame to setup the
    # estimator according to the image size.
    height, width = sample_frame.shape[:2]
    pose_estimator = PoseEstimator(img_size=(height, width))

    # Introduce scalar stabilizers for pose.
    pose_stabilizers = [
        Stabilizer(state_num=2,
                   measure_num=1,
                   cov_process=0.1,
                   cov_measure=0.1) for _ in range(6)
    ]

    tm = cv2.TickMeter()
    head_flag = 0
    gaze_flag = 0
    while True:
        # Read frame, crop it, flip it, suits your needs.
        frame_got, frame = cap.read()
        if frame_got is False:
            break

        # Crop it if frame is larger than expected.
        # frame = frame[0:480, 300:940]
        #audio_record(AUDIO_OUTPUT, 3)
        #sphinx_recog(AUDIO_OUTPUT)
        # If frame comes from webcam, flip it so it looks like a mirror.
        if video_src == 0:
            frame = cv2.flip(frame, 2)

        # Pose estimation by 3 steps:
        # 1. detect face;
        # 2. detect landmarks;
        # 3. estimate pose

        # Feed frame to image queue.
        img_queue.put(frame)

        # Get face from box queue.
        facebox = box_queue.get()
        gaze.refresh(frame)
        frame = gaze.annotated_frame()
        text = ""
        if facebox is not None:
            # Detect landmarks from image of 128x128.
            face_img = frame[facebox[1]:facebox[3], facebox[0]:facebox[2]]
            face_img = cv2.resize(face_img, (CNN_INPUT_SIZE, CNN_INPUT_SIZE))
            gray = cv2.cvtColor(face_img, cv2.COLOR_BGR2GRAY)
            face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
            rects = detector(gray, 0)
            tm.start()
            marks = mark_detector.detect_marks([face_img])
            tm.stop()
            #
            for rect in rects:
                # determine the facial landmarks for the face region, then
                # convert the facial landmark (x, y)-coordinates to a NumPy
                # array
                shape = predictor(gray, rect)
                shape = face_utils.shape_to_np(
                    shape)  #converting to NumPy Array矩阵运算
                mouth = shape[Start:End]
                leftEye = shape[lStart:lEnd]
                rightEye = shape[rStart:rEnd]
                leftEAR = eye_aspect_ratio(leftEye)  #眼睛长宽比
                rightEAR = eye_aspect_ratio(rightEye)
                ear = (leftEAR + rightEAR) / 2.0  #长宽比平均值
                lipdistance = lip_distance(shape)

                if (lipdistance > YAWN_THRESH):
                    #print(lipdistance)
                    flag0 += 1
                    print("yawning time: ", flag0)
                    if flag0 >= 40:
                        cv2.putText(frame, "Yawn Alert", (10, 150),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255),
                                    2)
                        cv2.putText(frame, "Yawn Alert", (220, 150),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255),
                                    2)
                        engine.say("don't yawn")
                        engine.runAndWait()
                        flag0 = 0
                else:
                    flag0 = 0

                if (ear < thresh):
                    flag += 1
                    print("eyes closing time: ", flag)
                    if flag >= frame_check:
                        cv2.putText(frame,
                                    "****************ALERT!****************",
                                    (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7,
                                    (0, 0, 255), 2)
                        cv2.putText(frame,
                                    "****************ALERT!****************",
                                    (10, 250), cv2.FONT_HERSHEY_SIMPLEX, 0.7,
                                    (0, 0, 255), 2)
                        engine.say("open your eyes")
                        engine.runAndWait()
                        flag = 0
                else:
                    flag = 0
                if gaze.is_right():
                    print("Looking right")
                    text = "Looking right"
                elif gaze.is_left():
                    print("Looking left")
                    text = "Looking left"
                elif gaze.is_up():
                    text = "Looking up"
                else:
                    text = "Looking center"
                if text is not "Looking center":
                    gaze_flag += 1
                    if gaze_flag >= 20:
                        engine.say("look forward")
                        engine.runAndWait()
                        gaze_flag = 0
                else:
                    gaze_flag = 0
            marks *= (facebox[2] - facebox[0])
            marks[:, 0] += facebox[0]
            marks[:, 1] += facebox[1]

            # Uncomment following line to show raw marks.
            # mark_detector.draw_marks(
            #     frame, marks, color=(0, 255, 0))

            # Uncomment following line to show facebox.
            # mark_detector.draw_box(frame, [facebox])

            # Try pose estimation with 68 points.
            pose = pose_estimator.solve_pose_by_68_points(marks)
            # get angles
            angles = pose_estimator.get_angles(pose[0], pose[1])
            if ((-8 > angles[0] or angles[0] > 8)
                    or (-8 > angles[1] or angles[1] > 8)):
                head_flag += 1
                if head_flag >= 40:
                    print(angles[0])
                    engine.say("please look ahead")
                    engine.runAndWait()
            else:
                head_flag = 0
            # pose_estimator.draw_info(frame, angles)

            # Stabilize the pose.
            steady_pose = []
            pose_np = np.array(pose).flatten()
            for value, ps_stb in zip(pose_np, pose_stabilizers):
                ps_stb.update([value])
                steady_pose.append(ps_stb.state[0])
            steady_pose = np.reshape(steady_pose, (-1, 3))

            # Uncomment following line to draw pose annotation on frame.
            pose_estimator.draw_annotation_box(frame,
                                               pose[0],
                                               pose[1],
                                               color=(255, 128, 128))

            # Uncomment following line to draw stabile pose annotation on frame.
            pose_estimator.draw_annotation_box(frame,
                                               steady_pose[0],
                                               steady_pose[1],
                                               color=(128, 255, 128))

            # Uncomment following line to draw head axes on frame.
            pose_estimator.draw_axes(frame, steady_pose[0], steady_pose[1])
            #pose_estimator.show_3d_model

        # Show preview.
        cv2.imshow("Preview", frame)
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break

    # Clean up the multiprocessing process.
    box_process.terminate()
    box_process.join()